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Abstract
As one of themost popular preprocessing steps in computer vision fields, superpixel generation algorithm has been extensively
studied in recent years. Researchers have to find a way to produce superpixels with both accuracy and computationally
efficiency. Inspired by the real-time superpixel segmentation method using density-based spatial clustering of applications
with noise (DBSCAN), we propose a two-stage, non-iterative superpixel segmentation approach. In the first stage, we produce
the initial regions. To make the superpixels attach to most object boundaries well, we define an adaptive parameter based
on the boundary probability map in the distance measurement. At the same time, we adopt the averaging colors of region
to represent the cluster center feature. In the second stage, we merge small regions to produce superpixels. To make them
have uniform sizes, we take the initial region size into consideration and define a new distance measurement between the
two neighboring regions. In the whole framework, we process all the pixels only once. We test the proposed method on the
public data sets. The experimental results show that our proposed algorithm outperforms the most compared approaches with
accuracy and has competitive speed with the real-time methods (e.g., DBSCAN).

Keywords Superpixel · Image segmentaion · Efficient · Real time · Accuracy

1 Introduction

The definition of superpixel was first put forward by Ren and
Malik [34] in 2003. Superpixels group similar pixels into
perceptually meaningful atomic regions and capture struc-
ture information in an image. Superpixels are usually used
to replace the rigid pixel grids in an image to reduce the
number of primitive in computer vision tasks, such as image
segmentation [35,38], matching [10], semantic segmenta-
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tion [36], object detection and tracking [19,21,44,49,52],
classification [6,22] and image-based rendering [47], and
improve their efficiency. These tasks require a high accuracy,
i.e., good boundary adherence, for superpixel segmentation.
Meanwhile, as a preprocessing step, a desired superpixel seg-
mentation method should be computationally efficient.

In recent years, a great deal of progress has been achieved
on this crucial topic. David Stutz et al. [42,43] have made a
reviewof the existing superpixel generation algorithms.Most
of them are categorized into cluster-based methods [1,5,13,
14,17,18,24,25,33,40,51], graph-based approaches [3,4,23,
26,27,30,32,39] and learning-based algorithms [15,16,45].
Among them, the cluster-based method is attractive for its
simplicity and efficiency, such as the simple linear itera-
tive clustering approach (SLIC) [1]. However, it often takes
more time to obtain high-accuracy superpixels. For exam-
ple, superpixels with contour adherence using linear path
(SCALP) [13,14], the linear spectral clustering (LSC) [5]
methods generate superpixels with higher boundary recall,
while much slower than SLIC. Besides, some algorithms
improve their efficiency by optimizing the algorithm frame-
work. For example, simple non-iterative cluster (SNIC) [2],
DBSCAN [40], adopt a non-iterative framework to generate
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superpixels. Seeds [8] reduces the computational timebypro-
cessing only boundary pixels in each iteration. Nevertheless,
the accuracy of superpixels produced by these approaches
is not enough good for computer vision tasks. As a prepro-
cessing step of image processing applications, there is still
a challenge to develop a real-time superpixel segmentation
approachwith accuracy, including goodboundary adherence.

In this paper, we propose a new efficient approach,
an improvement of DBSCAN [40], adopting a two-stage
non-iterative framework to generate superpixels with more
accuracy and competitive computational time. The main
works of this paper relative to DBSCAN algorithm are as
follows.

(1) In the first stage, we calculate the average color of
pixels in a region once a pixel is included, which is more
accurate to represent the region features than the chosen pixel
seed color used in DBSCAN.

(2) We define an adaptive parameter for each pixel based
on boundary probabilities and use it to calculate the dis-
tance measurement from a pixel to a seed in the first stage.
As a result, compared with DBSCAN, where the parameter
is fixed for all pixels, our superpixels boundaries adhere to
image contours better.

(3) In the second stage, we merge small initial regions and
define a new distance measurement between two adjacent
regions combining with their sizes. In this case, the result
superpixels have uniform sizes.

The remainder of this paper is organized as follows. We
review the related works of superpixel generation in Sect. 2.
In Sect. 3, we elaborate on the proposed approach in detail.
Section 4 shows the experiments comparing several existing
algorithms, and we summarize this work in Sect. 5.

2 Related works

In recent years, numerous methods have been presented to
generate superpixels. Generally, each of them can be catego-
rized into cluster-based methods, graph-based approaches or
learning-based algorithms. In the following, we review these
superpixel generation methods briefly.

Cluster-based approach produces superpixels using the
clustering method. One of the most popular and applica-
ble superpixel segmentation algorithms is SLIC [1]. SLIC
adopts k-means clustering method iteratively in a combined
five-dimensional color and spatial space. However, during
the iterative process, some edges preserved at the beginning
may be lost, which is a common drawback of iterative meth-
ods. Anyway, SLIC is fast and generates superpixels with
regular size and shapes. Inspired by the merits of SLIC, so
many algorithms are developed to improve the performance
either on accuracy or efficiency. In order to get better contour

adherence, Peng et al. [32] used k-means clustering method
to get the initial superpixels and then refined thembyoptimiz-
ing an energy function,which includes a first-order data term,
a second-order smoothness term and a higher order term.
Giraud, Remi et al. [13,14] computed superpixels with con-
tour adherence using linear path (SCALP). SCALP enhances
the distance from a pixel to a superpixel center by consid-
ering the linear path to the barycenter. As a result, SCALP
produces regular superpixels with accuracy. Zhang et al. [51]
developed a new distance measurement with three items to
restrain the boundary adherence. At the same time, they
updated the superpixel seeds only by the most reliable pixels
in each iteration. Hence, the update of superpixel center is
stable and accurate, and the number of iterations is reduced.
The resultant superpixels preserve more object boundaries
and obtain a higher segmentation accuracy. Yet, the compu-
tational cost is higher than SLIC. Lee et al. [17] proposed
a new contour-constrained superpixel algorithm (CCS) to
improve the accuracy. It employs the holistically nested edge
detection (HED) scheme [50] to obtain a boundary probabil-
ity map at first. Based on this, CCS formulates an objective
function with contour constraint and generates superpixels
with good boundary adherence, whereas, even if ignoring
the run time of HED, CCS is much slower than SLIC. Liu
et al. [24,25] presented a manifold SLIC (MSLIC) method
to compute content-sensitive superpixels. MSLIC projects
the five-dimensional feature in R5 used by SLIC into a two-
dimensional manifold M ⊂ R

5. Although MSLIC makes a
quantitative improvement in superpixel quality, it also needs
multiple iterations. Li and Chen et al. [5] proposed a linear
spectral clustering (LSC) method. Each pixel is mapped to a
point in a ten-dimensional feature space, in which weighted
K-means is applied for segmentation. It captures perceptu-
ally important global image properties. LSC has been one of
the most accurate superpixel segmentation approaches. All
of the methods listed above are more accurate than SLIC.
However, they are iterative and slower than SLIC.

From another perspective, the desired superpixel methods
should be completed in limit time. Den et al. [8] proposed
a fast method, Seeds, to generate superpixels via energy-
driven sampling. It starts from an initialized partition and
refines the initialization continuously by only modifying its
boundary pixels. It is fast, whereas the shapes of super-
pixels are irregular. Choi, Kangsun and Oh, Kiwon [7,31]
proposed two new methods to speed up SLIC. They use the
Cauchy–Schwarz inequality to find a formula with simple
computations, which is a lower bound of the original dis-
tance measurement used in SLIC [31]. In each iteration, the
lower bound of the distance is calculated at first and com-
pared with the minimum distance in the last iteration. If the
lower bound is smaller, the original distance measurement
should be calculated and the pixel may be relabeled; other-
wise, the pixel label remains unchanged without any other
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computation. In this way, the computational cost of SLIC
is reduced to some extent. Besides, Choi, Kangsun and Oh,
Kiwon [7] used the spatial correlation between adjacent pix-
els to reduce the number of the candidate clusters. These two
accelerating methods are slightly faster than SLIC and have
similar performance with SLIC. Achanta et al. [2] designed
a new scheme to implement SLIC by using a priority queue,
named as simple non-iterative cluster (SNIC). The smaller
the distance is, the higher the priority of the pixel is. SNIC
generates superpixels by labeling the pixel with the shortest
distance one by one without iteration. SNIC is faster than
SLIC and has comparable performance. Shen et al. [40] pro-
posed a real-time image superpixel segmentation approach,
DBSCAN, which is one of the fastest state-of-the-art meth-
ods. It initials superpixels by clustering pixels only by using
color restrictions and refines superpixels by merging small
ones. All the pixels in an image are processed only once,
which makes the algorithm speed up to 50 frames per sec-
ond. Yet, the result superpixels miss some object boundaries
and have irregular size.

Graph-based method represents an image as a graph by
taking pixels as nodes. Shen et al. [39] proposed a method
using lazy randomwalk (LRW) to get superpixels. The LRW
algorithm calculates the probabilities of each pixel from the
input image and utilizes them with the commute time to get
the initial superpixels. Then, they introduce an energy func-
tion based on texture measurement and the commute time,
to optimize the initial superpixels iteratively. It can preserve
weak boundaries, and segment complicated texture regions
very well. However, the LRW algorithm is very expensive
with the computational cost O

(
nN 2

)
. (n is the number of

iterations, and N is the number of pixels in an image.)Dong et
al. [11] proposed a sub-Markov random walk (subRW) algo-
rithm and provided a new idea for designing RWmethods to
solve the image segmentation problems.With label prior, the
designed subRW approach outperforms previous RW meth-
ods for image segmentation. Wang et al. [48] proposed an
adaptive nonlocal random walk (ANRW) to generate super-
pixels. They use ANRW to get the initial superpixels and
merge small ones to get the resultant compact and regular
superpixels. Liang et al. [20] applied partially absorbing ran-
domwalks to get more accurate video supervoxels in regions
with complex textures orweak boundaries. Liu et al. [23] pre-
sented another graph-based approach (ERS) that connects
subgraphs by maximizing an objective function based on
the entropy rate of a random walk. ERS is fast and able
to preserve jagged object boundaries. However, the result
superpixels are in irregular size and shapes. Shen et al. [41]
proposed a novel minimization method to reduce any order
of a general higher-order energy function, without auxiliary
variables and produce accurate solutions. Image segmen-
tation with entropy optimized by this method can achieve

better results. To solve computer vision problems, Shen et
al. [37] proposed a framework of maximizing quadratic sub-
modular energy with a knapsack constraint approximately.
The experimental results of image segmentation prove the
effectiveness of the new energy function. Mooer et al. [30]
proposed a method named as Lattices, to generate superpix-
els preserving the topology of a regular lattice. However,
the performances on superpixel quality and efficiency rely
heavily on the precomputed boundary map. Ban et al. [3]
presented an alternative superpixel segmentation algorithm
based on the Gaussian mixture model (GMMSP). It assumes
that each superpixel corresponds to a Gaussian distribution
and each pixel can be represented by a Gaussian mixture
model. It proposes a new method to estimate the parameters
of Gaussian distributions and assigns a unique label for pix-
els based on a posterior probability.GMMSPoutperforms the
state-of-the-art methods in accuracy and speed up by using
OpenMP. Dong et al. [12] utilized the user scribbles to build
the Gaussian mixture model (GMM) and proposed a novel
interactive co-segmentation method using global and local
energy optimization. Beucher and Meyer [4] segmented an
image by using the watershed method and achieved a good
performance. To speed up the watershed approach, some
linear-complexity algorithms [29,46] have been proposed.
The method [46] performs a gradient ascent step by start-
ing from local minima to produce watersheds, lines, which
separate catchment basins. This method is fast with the com-
plexity of O(N log N ). However, the result superpixels are
often highly irregular in size and shapes, and the boundary
adherence is relatively poor. To overcome these problems,
Machairas et al. [26,27] introduced a spatially regularized
gradient algorithm to generate superpixels and achieved a
tunable trade-off between the superpixel regularity and the
boundary adherence. In the meantime, the complexity of this
method is also linear with the number of pixels in an image.

Learning-based method generates superpixels with
machine learning, which is one of the hottest technologies
currently.Most classical superpixel segmentation approaches
rely on color and coordinate features that limit the per-
formance on low-contrast regions and the applicability to
infrared or medical images with a wide range of boundary
changes. At present, learning-based methods use a neural
network to get more image features and generate superpixels
based on them by applying the traditional approach. Verelst
et al. [45] used scattering networks to generate 81 features
maps of size 64 × 64 per image channel and applied SLIC
to get the superpixel map. Jampani et al. [16] proposed a
new superpixel sampling networks (SSN). The input image
is firstly passed onto a deep network that extracts features
of each pixel, which are then used by differentiable SLIC to
produce the superpixels.
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Fig. 1 Illustrating superpixel segmentation results in different stages.
a The initial regions after the first stage and b the final result after the
second stage

3 The proposed algorithm

Most of the cluster-based superpixel generation algorithms
are iterative. As a result, the computational cost is expensive.
Furthermore, a post-processing step is usually adopted to
enhance the connectivity. A real-time superpixel generation
method with accuracy is always worth pursuing.

Inspired by the idea of DBSCAN [40], we adopt a simple
two-stage framework without iteration to produce superpix-
els in a high speed with better boundary adherence than
DBSCAN. In the first clustering stage, we apply neighbor
search and group pixels with similar intensities as initial
regions, as shown in Fig. 1a. In the second merging stage,
we merge small regions to produce the result superpixels as
shown in Fig. 1b.

In the whole procedure, all the pixels in an image are pro-
cessed only once. Due to the neighbor search scheme in the
first stage, the initial regions and the result superpixels are
interconnected without any post-processing step. The pro-
posed approach can generate superpixels faster than many
existing algorithms (such as, SLIC [1], SNIC [2], Seeds [8])
and has comparable efficiency with the current real-time
methods (e.g., DBSCAN). Our major works, which also are
the differences from DBSCAN lie in three aspects: (1) We
update the cluster centers dynamically in the first stage, rather
than fixed on the chosen seeds in DBSCAN. In this way, the
resultant regions may be more homogeneous and adhere to
object boundaries better. Section. 3.1.1 gives more details.
(2) In the clustering stage, to preserve more object bound-
aries accurately, we use a boundary probability map to define
an adaptive parameter in the distance measurement between
pixels, which are presented in Sect. 3.1.2. (3) In the merg-
ing stage, we define a new distance measurement between
two neighboring regions combining their size as explained
in Sect. 3.2. Merge small ones based on the closest distance
and generate final superpixels with uniform size.

Notations: The superpixel segmentation of an image I con-
taining N pixels is to divide it into a collection of subregions,
namely I = {Sk |k = 1, 2, · · · , K } by assigning a unique

Fig. 2 Illustration of four-neighbor search. Each grid represents a pixel.
Pixel x in green is chosen as the seed. The pixels in yellow are the
candidate pixels to be labeled the same as x

label for each pixel in an image. L (x) = k represents the
pixel x belongs to the kth superpixel with the center C̃k .

3.1 Clustering stage

In the clustering stage, we process the pixels in an image
in a conventional order from left to right and from top to
bottom and form initial regions one by one. All the pixels are
processed only once. To achieve this, we define a matrix L
to identify whether a pixel is labeled or not. Only unlabeled
pixels are likely to be selected as a new seed and form new
regions.

Supposing pixel x is chosen as a new seed and labeled as
k, we produce the kth region by four-neighbor searching as
shown in Fig. 2. Only those pixels in yellow around of x are
computed. Compared with searching in eight-neighbor and
circle regions, four-neighbor search can reduce computation
efficiently. Meanwhile, it can ensure the connectivity in the
generated regions.

If the similarity between the candidate pixel
xi , (i = 1, 2, 3, 4) and the seed x is larger than the prede-
fined threshold, set the pixel xi ∈ Sk , label it as k and insert
it into a waiting queue Q, in which four-neighborhood pix-
els of each element are candidates to form the region Sk . The
growth process of the four neighborhoods is shown in Fig. 3.

Repeat this process to produce the initial region from seed
x until the terminal condition is satisfied. To constrain the
initial regions to have homogeneous intensities and uniform
sizes, there are two stopping criteria, respectively. The first
one is that the waiting queue Q is empty, which means there
is no neighboring pixel which has similar intensities enough
with the current seed.As a result, the initial regions are homo-
geneous. The second one is that the number of pixels in
Sk becomes larger than expected, which controls the size
of regions based on the anticipated number of superpixels.

Select the first unlabeled pixel in the conventional order
as a new seed and generate regions by performing the steps
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Fig. 3 Illustration of growth process in the clustering stage. Each grid
represents a pixel. Pixel x is the seed that has expanded the region
marked in dark gray. The pixels that blue arrows point to are the candi-
date pixels to be labeled the same as that of x

described above.Repeat the process till all pixels in the image
are labeled and produce the initial regions.

We use the formula defined as Eq. 1 to measure the dis-
similarities between pixel i and seed x conditioned by the
pixel j .

Dc (i, j, x) = β × dc (i, j) + α × dc (i, x) , (1)

where j represents the pixel in the waiting queue Q labeled
with k as the same as x . The unlabeled pixel i which is adja-
cent to the pixel j in four neighborhoods is a candidate to
be labeled as k. dc (i, j) represents the RGB color distance
between the pixel i and j , which is defined as Eq. 2. dc (i, x)
carries the similar meaning.

dc (i, j) =
√(

Ri − R j
)2 + (

Gi − G j
)2 + (

Bi − Bj
)2

(2)

The first item in Eq. 1 measures the color difference
between two adjacent pixels, which is sensitive to the local
features and can detect little changes in an image. The sec-
ond item dc (i, x) represents the color dissimilarity between
pixel i and the seed x , which is benefit for the intensity con-
sistency inside the regions. α and β are weight functions that
are designed to vary the focus on different characteristics
with the constraint α + β = 1.

In order tomaintain the intensity consistency better within
the region and detect more image boundaries accurately, we
use a new strategy to calculate dc (i, x), which will be illus-
trated in detail in Sect. 3.1.1. At the same time, we do effort
on the formula definition of α and β as the function of image
edge probability as described in Sect. 3.1.2.

Fig. 4 Visual comparison of the superpixel segmentation results of
different calculations of seeds color. The number of superpixel is about
500. a Ground truth; b seed is fixed as the pixel x ; and c seed is updated
by average all labeled pixels

3.1.1 Calculations of seeds color

Due to the strategy of selecting seeds in the conventional
order, the seeds are usually located in the upper left margin
of the regions. The first seed, the top-left pixel in the image,
is a prime example. Besides, the seeds are most likely near
the image boundaries, which is not a good representation
of a region. To get homogeneous regions, we use the color
of center C̃k , the average color (Rk,Gk, Bk) of pixels in the

region Sk to calculate dc
(
i, C̃k

)
instead of the constant color

of the selected seed x . Equation 1 can be reformulated as:

Dc

(
i, j, C̃k

)
= β × dc (i, j) + α × dc

(
i, C̃k

)
. (3)

Most cluster-based superpixel generation approaches,
such as SLIC [1], calculate the average color of superpix-
els in the last iteration and set it as the new seeds intensity
in the next iteration. However, the seed color is fixed in each
iteration. The biggest difference from this is that once a new
pixel marked as k, we recalculate the color of C̃k immedi-
ately and use it to measure the distance to other candidate
pixels.

To further illustrate the effectiveness of this work, Fig. 4
shows the superpixel results using different calculations of
seeds color. It is clear that the superpixels generated by Eq. 3,
as shown in Fig. 4c, adhere more object boundaries tightly
and the intensities within the superpixels are more homoge-
neous.
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3.1.2 The formula definition of˛

InDBSCAN [40]method,α andβ are set as constants, which
means that all the pixels play the same role in preserving the
image contour. However, for one pixel that lies on object
boundaries, the color distance between it with the center of
a region should be of more importance for detecting image
edges, that is to say, α should be larger.

Tomaintainmore edges, especiallyweakones in an image,
we set α based on the possibility of pixels on boundaries, in
a simple and direct manner as Eq. 4.

α = g (i) + g ( j)

2
, (4)

where g (i) and g ( j) state the possibilities that pixel i and
j are located on the boundaries, respectively. If pixel i is
on or near the edge of the image (the adjacent pixel j is on
edges),whether to include it into the region ismore relying on
the dissimilarity between pixel x and Ck , namely the second

item dc
(
i, C̃k

)
. That is to say, as long as g(i) or g( j) is

large, α should be large. Thus, we define that the value of
α is proportional to g(i) and g( j). In this way, the resultant
regions may adhere to boundaries well.

Existing edge detection approaches, such as Sobel, Canny
operators, methods in [9,50] can be used to calculate the
boundary possibilities. In this paper, in order to show the
validity of the definition of α, we adopt the simple Sobel
operator to calculate the gradient values as the probabilities
of pixels on object boundaries.

Figure 5 shows the result superpixels obtained by the
same procedure only with different settings of α and β.
The second row in Fig. 5 is partial enlargement of the yel-
low rectangle regions. Figure 5a shows the results obtained
with α = 0.62, β = 0.38, the same as the value used in
DBSCAN [40]. α defined as Eq. 4 is used to get the results
in Fig. 5b. It is clear that our proposed method can produce

Fig. 5 Superpixel results by different α settings. The number of super-
pixel is about 500. a Result generated using constant α; b result
generated by α defined as Eq. 4; c boundary probability map

superpixels with detecting object boundaries, especially that
the yellow arrow points to, more accurately.

To further illustrate the effect of alpha on the result super-
pixels, we take the pixels in yellow and blue in Fig. 5 as an
example. Figure 5c shows the boundary probability map of
the input images calculated by Sobel operator. For group-
ing pixels in the conventional order, pixels that have been
labeled are located in the top left corner, where the intensi-
ties are homogeneous. C̃k , the average color of the labeled
pixels can be represented by the white pixel in Fig. 5a. The
yellow pixel has been labeled as k, and the blue pixel is cal-
culated based on Eq. 1 to decide whether to be labeled as k
or not. As shown in Fig. 5c, the blue pixels are most likely on
object boundaries. In this case, the probability of blue pixel
labeled as k is more relative to the dissimilarity between C̃k .

That is to say, the second item dc
(
i, C̃k

)
in Eq. 3 matters

more. The value of α should be large. As a result, α defined
in Eq. 4 is helpful to keep more object boundaries as shown
in Fig. 5b.

3.2 Merging stage

In the clustering stage, we produce initial regions, preserv-
ing the most boundaries. Consequently, some regions may
have much smaller sizes than expected and the number of
regions is greater than K . To enforce the uniformity of the
result superpixels size and control the number of superpixels,
we merge small regions in the second stage considering the
initial region size and the expected number of superpixels.
We define a new distance measurement between two adja-
cent regions labeled as k1 and k2 as Eq. 5 to decide whether
to merge them or not.

D (k1, k2) = s (k1, k2) × dc (k1, k2) + λ × ds (k1, k2) , (5)

where dc (k1, k2) indicates the color distance that evalu-
ates the intensity homogeneity of the resultant superpixels.
ds (k1, k2) represents the spatial distance defined as in Eq. 6,
which has a strong impact on the regular shapes of superpix-
els. s (k1, k2) is the term to constrain the uniform size of the
result superpixels. λ is a parameter.

ds (k1, k2) =
√(

xk1 − xk2
)2 + (

yk1 − yk2
)2

. (6)

In order to make the superpixels have uniform sizes, the
smaller neighbor regions compared to the expected size are,
the more preferentially it should be merged into. So, we
define s (k1, k2) based on the initial region size as follows.

s (k1, k2) =
∣∣Sk1

∣∣ + ∣∣Sk2
∣∣

2ñ
, (7)
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Fig. 6 Visual comparison of superpixel results with different merging
schemes. a Superpixels merged according to dc(k1, k2); b superpixels
merged without considering superpixel size (s (k1, k2) = 1 in Eq. 5); c
superpixels merged based on Eqs. 5 and 7

where
∣∣Sk1

∣∣ and
∣∣Sk2

∣∣ represent the number of pixels in
regions with the label k1 and k2, respectively. ñ = N

K is the
expected size of superpixels. Sk1 is the detected small region
which should be merged. Sk2 , next to Sk1 , is the candidate
one, with which combine Sk1 . The average color values and
the coordinates of the centroids in the initial regions are used
to measure the distance. We merge the small ones into its
neighbors with the shortest distance. The smaller

∣∣Sk2
∣∣ is,

the value of ds (k1, k2) decreases generally. The possibility
of merging Sk1 and Sk2 depends on the color similarity of
them. In this way, the process is inclined to generate super-
pixels with more intensity homogeneous. Inversely, if

∣∣Sk2
∣∣

is large, s (k1, k2) and ds (k1, k2) increase and the superpixel
Sk1 is not reliable to be combined with Sk2 . Superpixels with
similar size are pleased to be formed. λ is a positive con-
stant. The larger the value of λ is, the more regular shapes of
superpixels have. In this paper, we set λ = 2.

To demonstrate that our rule in the merging stage is effec-
tive, Fig. 6 shows the superpixel results by different merging
schemes. The blue and yellow rectangular areas are mag-
nified and displayed in the second and third rows. Merging
superpixels into their neighbors only with the closest color
distance dc (k1, k2) may cause the resultant superpixels in a
mess as shown in Fig. 6a. Comparatively speaking, consider-
ing the spatial distance in themerging stagemaybring regular
superpixels relatively, as shown in Fig. 6b, c. It is obvious
that the superpixels in Fig. 6c obtained by merging regions
according to the closest distance defined as Eq. 5 perform
the best. They adhere to the most object boundaries and have
uniform sizes as much as possible, especially in the yellow
rectangular areas. The reasons may rely on the weighting
sum of color and spatial distance between two neighboring
regions and the consideration of region size in the definition
of s (k1, k2).

Besides, we make a test on 100 images from Berkeley
segmentation database (BSD) [28] to prove the effective-
ness of our scheme. Denote the method with fixed seed,
constant α in Eq. 3, s (k1, k2) = 1 in Eq. 7 as f1, f2, f3,
respectively. We use three common metrics, boundary recall
(BR), under-segmentation error(USE) and achievable seg-
mentation accuracy (ASA) to evaluate the performance of
f1, f2, f3 and our proposed method. The higher the BR and
ASA are, lower USE is, the superpixels are more accurate.
More about these metrics are described in 4.2. At the same
time, we calculate the average standard deviation of super-
pixels size to measure the uniformity of superpixel size. We
plot them against the number of superpixels in Fig. 7. It is
clear that our proposed approach has the best performance.
In Fig. 7d, it is clear that the superpixels generated by our
proposed method have more regular sizes with more than 20
percent increase than f3, which uses s (k1, k2) = 1 in Eq. 7.

As a summary, Algorithm 1 gives a complete description
of the proposed method.

Algorithm 1: Proposed superpixel generation algorithm
Data: image I , expected number of superpixel K
Result: the labels of pixels

1 Set initial label as 0 for each pixel in image I ;
2 Calculate the probabilities of pixels on object boundaries ;
3 while each pixel has a new label do
4 set Q = ∅;
5 find a new seed x labeled as k and insert x into Q;
6 while Q �= ∅ and the number of pixels labeled as k is smaller

than N
K do

7 for each pixel j in the queue Q do
8 set L( j) = k;
9 |Sk | + +;

10 compute the color of C̃k by averaging the color of
pixels in Sk ;

11 for each pixel i around the pixel j do
12 compute alpha using Equation. 4;

13 compute the distance Dc

(
i, j, C̃k

)
using

Equation. 3;

14 if Dc

(
i, j, C̃k

)
≤ ϕ then

15 insert i into Q;
16 end
17 end
18 end
19 end
20 end
21 Merging small regions according to the closest guideline based

on Equation. 5;
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Fig. 7 Quantitative evaluation on BSD data Val set. f1 denotes the
proposed method without calculation of seed color in Sect. 3.1.1; f2
represents the method with constant α in Eq. 3; f3 denotes the method

with s (k1, k2) = 1 in Eq. 7. a Boundary recall; b under-segmentation
error; c achievable segmentation accuracy; and d uniformity of super-
pixel size

Fig. 8 Visual comparison of superpixel segmentation results by our proposed method, DBSCAN [40], SLIC [1], SNIC [2], SCALP [14], LSC [5],
Seeds [8] and LRW [39] from left to right. The number of superpixel is about 300. Images are provided in high resolution for zoom-in examination

4 Results and analysis

In this section, we evaluate the performance of our pro-
posed approach by comparing with several state-of-the-art
methods, including DBSCAN [40], SLIC [1], SNIC [2],
SCALP [14], LSC [5]. Seeds [8], as one of the fastest
method, is used to make comparisons. We also compare with
LRW [39], as a representative of graph-based algorithm. All
the results of the compared methods are obtained by running
the publicly available codes provided by the original authors
with parameter settings recommended by them. All of the
algorithms are tested on BSD [28] data set, which contains
500 images with approximately 6 human-annotated ground
truth segmentation for each image.

4.1 Visual comparison

Figures 8 and 9 give the representative visual superpixel
results generated by the proposed method, DBSCAN [40],
SLIC [1], SNIC [2], SCALP [14], LSC [5], Seeds [8] and
LRW[39] from left to right, respectively. Some local segmen-
tation results are enlarged to facilitate close visual inspection
and displayed at the bottom. It is clear that the superpix-
els generated by our proposed method as shown in the left
columns in Figs. 8 and 9 are among the best performers on
the adherence to object boundaries in images, especially in
the yellow rectangular regions. For instance, the right ear

boundaries of the lion in Fig. 8 are kept tightly in the result
superpixels generated by our proposed method, while having
a certain extent of contraction in the results of some compared
algorithms as shown in the second row in Fig. 8. On the one
hand, the reason is that the iterative methods such as SLIC,
some edges may be lost in the iterations. On the other hand,
in our algorithm, image boundaries are considered addition-
ally in the clustering stage by calculating the color distance
between two neighboring pixels. At the same time, we use a
boundary probability map to define the function of α in Eq. 1
for detecting more object boundaries accurately.

Figure 10 shows various images from BSDwith their cor-
responding superpixel results. It is clear that our algorithm
performance is among the best ones.

4.2 Quantitative comparison

Superpixels segmentation usually serves as a fundamental
process in the computer vision field. Thus, the accuracy, the
ability to preserve object boundaries, is one of the most cru-
cial merits of a superpixel generation algorithm. We adopt
three commonly used metrics on evaluation boundary adher-
ence for quantitative comparison, including boundary recall
(BR), under-segmentation error (USE) and achievable seg-
mentation accuracy (ASA). BRmeasureswhat fraction of the
ground truth edges falls within at least two pixels of super-
pixel boundaries. A high BR indicates that very few true
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Fig. 9 Visual comparison of superpixel segmentation results by our proposed method, DBSCAN [40], SLIC [1], SNIC [2], SCALP [14], LSC [5],
Seeds [8] and LRW [39] from left to right. The number of superpixel is about 500. Images are provided in high resolution for zoom-in examination

edges are missed. USE essentially measures the error that an
algorithm makes in segmenting an image with respect to the
known ground truth (human-segmented images in this case).
This error is computed in terms of the ‘bleeding’ of the seg-
ment output by an algorithm when placed over the ground
truth segments. This measure thus penalizes superpixels that
do not tightly fit the ground truth segment boundaries. A
low USE indicates that fewer superpixels straddle multiple
objects. ASA measures whether objects in images are cor-
rectly recognized. In other words, ASA computes the highest
achievable accuracy by labeling each superpixel with the
label of the ground truth segmentation that has the biggest
overlap area. A higher ASA indicates that the superpixels
match objects in the image better. We calculate all the met-
rics of each considered approach by averaging the values of
them across all of the 500 images in BSD and plot them
against the number of superpixels in Fig. 11.

As shown in Fig. 11a, it is obvious that the BR of our
proposed method is larger than that of DBSCAN [40] from
the lower superpixel densities to the higher one. The rea-
son mainly relies on the boundary probability map which is
used in Eq. 4 to define the distance measurement in Eq. 3.
Meanwhile, our algorithm outperforms SLIC [1], SNIC [2],
SCALP [14] and LRW [39] and achieves competitive per-
formance with Seeds and becomes better with increase in
superpixel number. It is clear that LSC [5] has the best perfor-
mance on BR, USE and ASA, as shown in Fig. 11. The main
reason is that LSC maps pixels to a ten-dimensional feature
space and preserves global image structures by optimiz-
ing the cost function of the normalized cuts using K-means
approach. It has the advantage of these two approaches.

SNIC and SCALP are slightly better than the proposed
method on the metrics USE when the number of superpixels
is less than 300. The metric ASA of SCALP is somewhat

larger than the proposed method when the number of super-
pixels is less than 500. Nonetheless, the BR values of them
are much smaller than the proposed approach. Furthermore,
as the number of superpixels increases, the proposed algo-
rithm outperforms them.

We also evaluate the uniformity of the result superpixels
size. We plot the averages of the standard deviation of super-
pixel size of all the compared methods against the number of
superpixels in Fig. 12. It is clear that, as the number of super-
pixel increases, our algorithm has comparable performance
as SLIC and LRW. Furthermore, superpixels generated by
the proposedmethod are always havemore regular sizes than
those obtained byLSC, SNIC, Seeds, SCALP andDBSCAN.
The reason is that in themerging stage,wemerge small super-
pixels into its neighbors with the closest distance considering
the initial region sizes.

4.3 Analysis of computational complexity and
comparison

For superpixel segmentation commonly serves as a prepro-
cessing step in computer vision tasks, the computational
efficiency matters a great deal in addition to accuracy.
Thus, we analyze the complexity of the proposed method
and compare the computation times with all the compared
approaches.

Supposing an image I contains N pixels, and the expected
number of superpixels is K . Then, each superpixel should
contain approximately N

K pixels. In the clustering stage, our
algorithm searches thewhole image in the conventional order
to find the unlabeled pixels as new seeds and groups the unla-
beled neighboring pixels to generate initial regions. Each of
the pixels in the image is processed only once, and the compu-
tational cost is O(N ). In themerging stage, initialized regions
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Fig. 10 Visual comparison of superpixel segmentation results by our proposed method, DBSCAN [40], SLIC [1], SNIC [2], SCALP [14], LSC [5],
Seeds [8] and LRW [39] from up to down

in the first stage are processed. Supposing the number of ini-
tial regions is M , the second stage can be completed with the
complexity of O(M). M is much less than N and has a lot
to do with the thresholds in the cluster step. The smaller the
threshold is, more object boundaries can be detected accu-
rately and M increases. In the merging stage, only small
regions should be merged, whose number is much smaller
than M and N . That makes the merging stage can be finished

with the complexity of O(1). Thus, the total computational
cost of the proposed algorithm is O(N ).

Figure 13 shows the plots of average run time for all the
compared methods versus the number of superpixels. All the
experiments are performed on a personal computer based on
Intel(R) Core(TM) i7-6700 central processing units, oper-
ating at 3.10 GHz. The size of all tested images is kept
as 321 × 481. The time consumption of LRW is consider-
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Fig. 11 Quantitative evaluation on BSD data set. a Boundary recall; b Under-segmentation error; c achievable segmentation accuracy
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Fig. 12 Quantitative evaluation on superpixel size uniformity

ably higher than that of the other algorithms and divided
by 100 for comparison. For one thing, it is obvious that
our method and DBSCAN are relatively much faster than
the other algorithms. The reason is that those slower meth-
ods, except SNIC, are iterative, while our proposed approach
and DBSCAN process all pixels in an image only once.
SNIC, another non-iterative approach, spends more times
than DBSCAN and our proposed method. This is mainly
due to the sort operation in priority queues, which is time-
consuming. It is clear from Fig. 13 that our algorithm is
slightly slower than DBSCAN. It may rely on the consid-
eration of the boundary possibilities of pixels and the initial
region sizes in clustering and merging stages, respectively.
For another, the computation times for some algorithms
(LSC, LRW, SLIC, Seeds, to name a few) increase slightly
with the number of superpixels, while our proposed method
is reversing that owing to the bottom to the top scheme,which
means that the larger K is, the less the regions that need to
be merged in the second stage.
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Fig. 13 Computation time comparison

As supplementary, Table 1 lists the computational statis-
tics of the compared approaches and the proposed method,
where the number of superpixels is fixed on 700. The compu-
tational complexity of each algorithm is also listed. n is the
number of iterations. It is clear that the results are consistent
with the description above.

4.4 Limitation

Although the proposed approach has competitive perfor-
mance with the most compared algorithms, state of the art on
accuracy and efficiency, room for improvement still exists.
First, the boundary adherence should be improved further.
Second, the uniformity of the resultant superpixel sizes has
some room for increase. Although small initial regions are
merged into its neighbors with the constraint of size, the size
of the resultant superpixels still varies greatly as shown in
Fig. 12. The reason may fall in two aspects. On the one hand,
it is caused by the image intrinsic properties. In order to seg-
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Table 1 Performance metrics of superpixel segmentation algorithms as the superpixel number is 700

DBSCAN [40] SLIC [1] SNIC [2] SCALP [14] LSC [5] Seeds [8] LRW [39] Ours

Adherence to boundaries

Boundary recall (BR) 0.9062 0.8172 0.8891 0.9037 0.9546 0.9045 0.8545 0.9185

Under-segmentation error (USE) 0.2129 0.1945 0.1826 0.1753 0.1628 0.2146 0.1827 0.1577

Achievable segmentation accuracy (ASA) 0.9553 0.9587 0.9608 0.9639 0.9678 0.9536 0.9585 0.9656

Segmentation speed

Computational complexity O (N ) O (nN ) O (N ) O (nN ) O (nN ) O (nN ) O
(
nN 2 lg N

)
O (N )

Average time per image (s) 0.0236 0.2069 0.0778 0.6501 0.4294 0.0939 66.6045 0.0261

ment an image accurately, smaller superpixels are presented
in the detailed regions and larger ones, whose size is con-
trolled by the desired number of superpixels, present on the
flat areas. On the other hand, the proposed algorithm uses a
constant threshold in the clustering stage and merges regions
whose size are smaller than 1

4 × N
K only.

5 Conclusion

We develop a fast superpixel segmentation algorithm with
more accuracy compared with several existing superpixel
generationmethods.Our proposed approach generates super-
pixels in two steps. In the first stage, we use a dynamic
seeding strategy and a boundary probability map of an image
to define a new distance measurement and produce the ini-
tial regions attaching to the object boundaries. In the second
stage, we merge small regions obtained in the first step into
their nearest neighbors by considering their size, color and
spatial information. Experiments on BSD show that our pro-
posed algorithm achieves competitive performance. In future
work, we will incorporate the deep networks to get some
image representation features and generate superpixels with
better boundary adherence andmore regular size.Besides,we
will design a new network to generate superpixels end-to-end
by taking superpixel segmentation as image smoothing prob-
lem. We also plan to extend the proposed method to video
supervoxels segmentation and take superpixels/supervoxels
as the input of deep networks of computer vision tasks.
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