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Abstract
Current approaches of human body skeleton extraction mainly suffer from following problems: insufficient temporal and
spatial continuity, unrobust to background, ambient noise, etc. This paper proposes a three-dimensional human body skeleton
extraction method from consecutive meshes. We extract the consistent skeletons from consecutive surfaces based on shape
segmentation and skeleton sequences; then, we present a spatiotemporal skeleton optimization model to adjust the skeleton
sequences. Experiments on multiview images captured from a light field device demonstrate that our method captures more
complete and accurate skeletons compared to state-of-the-art methods.

Keywords Human body skeletons · Consecutive surfaces · Spatio-temporal consistency model

1 Introduction

Extracting three-dimensional (3D) human body skeletons
from geometric surfaces is an important research topic in
the fields of computer graphics, pattern recognition, and
human–computer interaction. It has wide applications in
pose estimation [24,28], human body modeling [2,31], and
skeleton manipulation [10,30]. In general, skeleton extrac-
tion methods can be divided into two categories according to
different inputs: point cloud-based methods [13,33,35] and
mesh-based methods [7,32]. While many research work are
devoted to human body skeleton extraction from static point
clouds (e.g., [13]), the results are unsatisfactory due to many
factors, e.g., self-occlusion, environmental noise.

Although a few skeletonization technologies from point
clouds have been proposed and achieved great successes [7,
13,32], those approaches suffer from issues when applying
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to extract body skeletons from consecutive point clouds: the
number of body skeletons extracted from different frames
may differ; many body skeletons locate with great errors
due to the ignorance of prior structure of human body.
The first issue prevents those technologies from directly
applying to skeleton-based animation as well as 3D human
body operation, while the second issue reduces the effect of
human–computer interaction. In essence, spatial and tempo-
ral coherence of human poses is far from being sufficiently
explored.

The recent development of light field acquisition devices
provides an opportunity for solving those issues. Compared
with traditional multiview devices, light field devices can
automatically capture a sequence of multiview images of
human body that performs continuous motion based on the
lighting and frequency setting, while traditional multiview
devices can only collect single-frame multiview image sets
under specific actions. Based on a light field device, we
propose a spatial–temporal consistency model (STC) for
extracting human body skeletons from consecutive point
clouds. The key of STC is a spatial–temporal consistency
adjustment model, which fine-tunes the location of skeletons
by exploiting both inter-frame and intra-frame consistency
of skeletons. Compared with traditional skeleton extraction
methods, STC is unsupervised, completely automated, and
requires no training stages. Experimental results on light field
acquisition data indicate that 3D human body skeletons pro-
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duced by STC are precise and suitable for applications such
as skeleton-based animation.

This paper is organized as follows. Section 2 reviews
relatedwork on body extracting skeletons of human body and
skeletonization of objects. Section 3 proposes the method-
ology of STC. Section 4 gives the experimental results.
Section 5 concludes this paper.

2 Related work

We review related work on extraction of human body skele-
tons and object skeletonization based on static surfaces and
consecutive surfaces.

2.1 Skeleton extraction from static surfaces

Static surfaces can be divided into static mesh surfaces and
static point clouds.

2.1.1 Skeleton extraction frommesh surfaces

Curvature flow methods Tagliasacchi et al. proposed a curve
skeletonization method based on the property of area min-
imization of mean curvature flows (MCF) by assigning the
curvature flow with extreme values [33]. Chuang et al. pro-
vided an effective flow curve method for mesh evolution,
which requires no initialization at the beginning of each step
due to the proposed finite-elements hierarchy [6].

Contraction methods Au et al. generated curve skeletoniza-
tion by contracting the mesh geometry into zero volume
skeleton shape using implicit Laplacian smoothing and
global position constraints; the skeletonization method can
retain the shape and topology relationship of the original
mesh [1]. Cao et al. developed a curve skeletonization tech-
nology based on local Delaunay triangulation and topology
refinement [7]. A contraction operation was proposed to
repair collected skeletons from meshes with missing data
and applied to surfaces with boundary. Jiang et al. proposed
an algorithm to extract curve skeletonization from triangle
meshes [15]. In this work, the initial skeletonization map
is constructed by copying the connectivity and geometric
information of the input mesh, and then, the nodes of the
skeletonization map are iteratively generated by using the
coupling process of graph contraction and surface cluster-
ing.

Mesh decompositionmethodsKatz et al. proposed a skeleton
extraction method by dividing complex objects into simple
sub-objects using a hierarchical mesh decomposition algo-
rithm [16]. Li et al. decomposed meshes into semantic
segmentation based on the idea of edge contraction and space
scanning [20]. Sharf et al. proposed a real-time skeleton

extraction algorithm from both point clouds and polygonal
meshes [29]. The algorithm is based on a deformable model
evolution process, which captures the volume and shape of
objects. The deformable model, which consists of multiple
competing fronts, evolves in the interior of objects in a rough-
to-fine fashion, tracks the center of these surfaces, and then
merges and filters the generated arcs to obtain curve skele-
tons of objects. Chuang et al. proposed a 3D object shape
description based on generalized cylinders [4]. The derived
generalized cylinder representation is better than the object
shapes based on simple generalized cylinder subclasses.

2.1.2 Skeleton extraction from point clouds

Skeleton extraction from missing data Cao et al. developed a
contraction operation for generalized discrete geometry data
by local Delaunay triangulation and topology refinement,
which handles missing data without explicit surface recon-
struction [7]. Tagliasacchi et al. proposed an algorithm to
extract skeleton curves frompoint cloudswith a large amount
of missing data based on generalized rotational symmetry
axis of an oriented point set [33]. Huang et al. devel-
oped a L1-media skeleton construction algorithm, which
can be directly applied to unoriented raw point scan with
significant noise, outliers and large area of missing data,
without strong requirements for the quality of input point
clouds [13]. Zhang et al. proposed �0-regularization-based
skeleton optimization method from continuous point set of
dynamic human body [35]. By integrating spatiotemporal
constraints, the method recovers missing points in the skele-
tons, corrects the outliers in the skeleton, and maintains the
motion characteristics.

Other skeleton extraction methods Liang et al. proposed a
framework for skeletonization of point clouds by using a
discretization scheme of differential operators and applied to
geometric understanding of point clouds [21]. The frame-
work defined a discretized Laplace–Beltrami operator on
point clouds, which effectively combines local information
with global information. Zhang et al. proposed to recon-
struct a skeletonization of trees using an enhanced PyrLK
optical flow method [36]. The method circumvents the issue
of manual interaction and inaccuracy and facilitates auto-
matic tree modeling by reconstructing a 3D skeletonization
model of trees with realistic sense. Mei et al. proposed an
incomplete point cloud skeletonization of trees from laser
scanning data, by using a hybrid model consisting of an L1
intermediate skeleton algorithm and minimum spanning tree
algorithm [22].

In summary, the existing skeleton extractionmethods from
static surfaces suffer from three shortcomings:
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– Imperfect point clouds with missing data cannot be well
treated [7,21,33].

– Closed loops and glitches exist in extracted skeletons [6,
7,15].

– Incomplete skeletons or skeletons with error branches
may be produced [35].

2.2 Skeleton extraction from consecutive surfaces

Topology matching methods Topology matching is par-
ticularly useful for interactive retrieval of 3D objects.
Hilaga et al. proposed a topology matching technology
by comparing multi-resolution Reeb map, calculating the
similarity between polyhedral models, establishing the cor-
responding relationship between various parts of the object,
and achieving accurate search of 3D shape data set [12].
Dey et al. defined a medial geodesic function and derived
an approximate algorithm of curve skeletons; the gener-
ated curve skeletonization together with proper attributes can
model different types of real-world objects [9]. Chen et al.
proposed a 3D object shape description based on general-
ized cylinders, which can better approximate the entity [4].
Zimovnov et al. proposed an effective algorithm for calculat-
ing the three-dimensional distance transformation of voxels
inside visual shells to form the first approximation of curve
skeletons [37]. Zheng et al. regarded the curve skeletons
of shapes as a global description feature and assumed that
the skeleton structure of the captured shape be consistent
for a period of time [38]. Other scholars extract skeletons
by determining motion postures based on the observation of
continuous frames of body movements [5,35].

Animation driven methodsWang et al. proposed a shape cor-
respondence method based on base point driving, which can
extract joint object skeleton from 3D mesh shape, and can
be applied to skeleton driven animation [34]. Aguiar et al.
proposed a robust framework, which automatically extracts
motion skeleton and surface skin weight from any mesh
animation [8]. Using this framework, deformation mesh
sequences can be automatically switched to fully assem-
bled virtual objects completely. Pantuwong et al. proposed
an algorithm for automatically generating inverse kinematic
skeleton of characters and did not require the input 3D char-
acter model which have a certain attitude or direction [25].
Le et al. introduced an example-based assembly method
for automatically generating a linear hybrid skin model with
skeleton structure [19]. James et al. extended the method of
skinned characters to a general setting of skinned deformable
mesh animation and provided an algorithm of automatic and
progressive skin approximation, which is particularly effec-
tive for pseudo-joint motion [14]. Baran et al. proposed
an automatic character animation method based on static
character meshes and general skeletons, by attaching skele-

tons to the surface of characters for realistic animation [3].
Pang et al. proposed to extract skeletons from animation sur-
faces by using a global skeleton alignmentmethod,which can
spread the key skeletons to the initial skeletons [26].

In summary, the existing skeleton extractionmethods from
consecutive surfaces suffer from two shortcomings.

– Inter-frame consistency skeletons are difficult to produce.
– Most ofmethods are unsuitable for the data of point cloud
with outliers, noises, and much missing points.

3 Details of STC

We introduce details of STC in this section. Figure 1 shows
a flowchart of STC, and Algorithm 1 shows an algorithm of
STC. STC mainly consists of four stages, each of which is
detailed in the following subsections.

Denote ‖A‖F to be the Frobenius norm of a matrixA, and
denote ‖v‖2, ‖v‖0 to be the �2 norm, the �0 pseudo-norm of
a vector v, respectively. Denote [A]i, j to be the element of
the i th row, j th column of A, and denote [A] j to be the j th
column of A.

3.1 Data preprocessing

The first stage of STC is data preprocessing, which consists
of three steps (see Lines 1–3 of Algorithm 1).

Multiview image collection We set different frame rates
according to different actions (see Table 1) and collect mul-
tiview images of a moving human body of each action using
the light field acquisition device (see Fig. 2), which contains
50 industrial cameras with a given frame rate (see Fig. 1a).

Point cloud generation, normalization, and alignment We
generate a 3D dense point cloud of human body using patch-
based multiview stereopsis (PMVS [11]) and then perform
a normalization and alignment scheme to scale to a unit
box and move to the origin on the point cloud so that all
point clouds of human body of an action sequence share
similar sizes, geometric centers and orientations (see Fig.
1b–e).

Triangular mesh reconstruction In order to perform a
semantic segmentation on human body, we require a mesh
representation of human body besides the point cloud
model. Thus, we downsample the dense point cloud by
merging multiple points within the same grid box into a
single point, whose color intensity (normal, resp.) is deter-
mined by averaging the color intensity (normal, resp.) of
multiple points in a box whose size is set as 0.03 ×
0.03×0.03, and perform Poisson surface reconstruction [17]
to obtain a triangular mesh of human body (see Fig.
1f).
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Fig. 1 A flowchart of spatial–temporal consistency model. aMultiview image collection; b sparse point cloud; c dense point cloud of whole scene;
d dense point cloud of human body; e normalization and alignment; f Poisson surface reconstruction; g initial skeleton extraction; and h skeleton
adjustment

Table 1 Different frame rates for different actions

Actions Frame rates (fps)

Arm Stretching 5

Walking 30

Arms&Legs Moving 30

3.2 Initial skeleton extraction

The second stage of STC extracts initial skeletons from point
clouds of each frame individually based on a semantic seg-
mentation of triangular meshes of human body (see Fig. 3).
Specially, this stage consists of four steps (see Lines 4–7 of
Algorithm 1) which are introduced as follows.

Pseudo-skeleton generation (Fig. 3b, c): We segment the
mesh into several semantic patches using [18] (Fig. 3b)
and generate “pseudo-skeletons” using the centroid of each
patch (Fig. 3c). Those pseudo-skeletons differ from stan-
dard human body skeletons in two aspects: pseudo-skeletons
always havedifferent numberswith standard skeletonswithin
eachbody component, andmayhave incorrect locations com-
pared with standard skeletons. We solve the first issue using
the following two steps and leave the second issue until
Sect. 3.4.

CShoulder, Waist, and head determination (Fig. 3d): We
connect each pair of pseudo-skeletons belonging to adjacent
semantic patches with an edge, and CShoulder is recognized
as the unique pseudo-skeleton which achieves the maximum
degree.1 Similarly,Waist is recognized as the unique pseudo-
skeleton which achieves degree three.2 Then, we determine
head as the only point which both achieves degree one and is
adjacent to
CShoulder.

LShoulder and RShoulder determination (Fig. 3e): After
determining CShoulder andWaist skeletons, we observe that
the patch corresponding to CShoulder includes LShoulder
and RShoulder additionally. To determine their locations,
we first select the leftmost adjacent patch (i.e., left upper
arm) and rightmost adjacent patch (i.e., right upper arm) of
current patch by human body topology connection obtained
when model segmentation. Then, we divide points of current
patch into three subpatches with equal cardinality accord-
ing to a distance rule: the first (second, resp.) subpatch is

1 When more than two pseudo-skeletons achieve the maximum degree
simultaneously, we select the pseudo-skeleton with the greatest z coor-
dinate. Our experiments show that the semantic segmentationmethod of
[18] always produces semantic patches with exactly a pseudo-skeleton
whose degree achieves the maximum value (four).
2 When more than two pseudo-skeletons achieve degree three simulta-
neously, we select the pseudo-skeleton with the smallest z coordinate.
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Fig. 2 A light field acquisition system

Fig. 3 A flowchart of initial skeleton extraction. a Input point cloud; b semantic segmentation; c pseudo-skeleton generation; d Determining
CShoulder,Waist, head; e determining LShoulder, RShoulder; and f standard skeleton completion

Fig. 4 Standard human model: a directed rooted tree of 20 body skele-
tons (black spheres) and six body components Torso, Head, LArm,
RArm, LLeg, RLeg (colored line segments)

the point set which achieves closest distances to the left-
most (rightmost, resp.) adjacent patch. Finally, we determine
LShoulder and RShoulder using the centroid of the first and
second subpatches, respectively.

Standard skeleton completion (Fig. 3f): So far we obtain
several pre-defined pseudo-skeletons and four skeletons
(CShoulder, Waist, LShoulder, RShoulder), whose number
may differ from standard skeletons. To fulfill an initial skele-
ton extraction with the same number and similar locations

to standard skeletons, we divide the collection of all pseudo-
skeletons and those four skeletons into six subsets corre-
sponding to six components of human body: Torso, Head,
LArm, RArm, LLeg, RLeg, according to their connectivity
(see Fig. 4). Note each component corresponds to a number
of standard skeletons. If the number of pseudo-skeletons of
a component exceeds the number of corresponding standard
skeletons, we select the shortest edge among all edges of
the component and replace both of two endvertices of that
edge with their center; if the number of pseudo-skeletons of
a component is less than the number of corresponding stan-
dard skeletons, we select the longest edge among all edges
of current component and add its center as a new pseudo-
skeleton. Either of two tricks is repeated until the number
of pseudo-skeletons equals the standard number of current
component.

3.3 Skeletonmatching

The third stage of STC is to match skeleton points between
consecutive frames, i.e., to establish the correspondence
between skeletons of different frames so that each skeleton of
different frames is correctly matched. We first align CShoul-
der of all frames so that all CShoulder skeletons share the
same coordinate. Next, we find a correspondence between
two arms (and two legs) of pairwise adjacent frames, by
comparing the total distance from LArm and RArm of the
next frame with respect to LArm of the previous frame, i.e.,
we denote xt,i ∈ R

3 to be the 3D coordinates of the i th
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Fig. 5 Effect of inter-frame skeletonmatching.Column1: the 16th frame (top) and 21st frame (bottom) of Walking. Columns 2–21: 01©-20©skeletons
of the 16th frame (top) and 21st frame (bottom) of Walking (marked by green). All the skeletons of the 21st frame are correctly matched

skeleton of the t th frame; if

5∑

i=2

‖xt,i − xt+1,i‖22 <

5∑

i=2

‖xt,i − xt+1,i+4‖22 (1)

holds, then the skeletons of the arm of the (t + 1)th frame
are correctly matched; otherwise we switch the skeletons of
two arms of the (t + 1)th frame from LArm to LArm. The
correspondence between two legs is computed in a similar
fashion.

Algorithm 1: Algorithm for STC
input : Multiview image sequence, α = 0.5, ε = 0.02,

λmax = 6000, μ = 2, lmax = 300
output : optimized skeletons X(k), k = 1, 2, 3
initialize: λ = 0.001
// Data preprocessing

1 Point cloud generation using PMVS;
2 Point cloud normalization and alignment;
3 Triangular mesh reconstruction;
// Initial skeleton extraction

4 Pseudo-skeleton generation;
5 Determine CShoulder and Waist;
6 Determine LShoulder and RShoulder;
7 Standard skeleton completion;
// Skeleton matching

8 Align CShoulder of all frames;
9 Find the correspondence between two arms (and two legs) of
pairwise adjacent frames;
// Spatial–temporal consistency adjustment model

10 for l = 1, . . . , lmax do
11 Solve the X(k)-subproblem of (3) by

[X(k)] j =
{
(D�D)−1D�[Y(k)]1 if j = 1
(αI + λD�D)−1(αz jk + λD�[Y(k)] j ) if j ≥ 2

z jk =(1 − ε)[X(k)
init] j + β j ε[X(k)

init]parent( j), k = 1, 2, 3;

12 Solve the Y(k)-subproblem of (3) by

[Y(k)]i j =
{

[DX(k)]i j if [DX(k)]i j ≥ 1√
λ

0 otherwise
, k = 1, 2, 3;

13 Update penalty parameter: λ ← min(μλ, λmax);
14 end

Figure 5 shows the effect of the skeleton matching of
the 16th frame and the 21st frame of Walking. The left-
most subfigure of Fig. 5 denotes the 16th frame (top) and
21st frame (bottom) before matching. The top row repre-
sents all skeleton points of the 16th frame, while the bottom
row represents all skeleton points of the 21st frame after
matching.

The x, y, z coordinates of initial skeletons obtained in this
section are denoted by X(1)

init,X
(2)
init,X

(3)
init ∈ R

T×20, respec-
tively, where T , 20 are total frame number and total skeleton
number, respectively, and the t th row of X(k)

init corresponds
to the coordinates of initial skeletons at the t th frame, k =
1, 2, 3, t = 1, . . . , T .
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min
{X(k)}3k=1

3∑

k=1

‖DX(k)‖0
︸ ︷︷ ︸

inter-frame consistency

+α

3∑

k=1

20∑

j=2

∥∥∥[X(k)] j − (1 − ε) · [X(k)
init] j − β jε · [X(k)

init]parent( j)
∥∥∥
2

2

︸ ︷︷ ︸
intra-frame consistency

β j =
{
1 if j = 2, 3, 6, 7, 11, 12, 13, 16, 17, 20

−1 if j = 4, 5, 8, 9, 14, 15, 18, 19
, j = 2, . . . , 20, (2)

[D]i, j =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if 2 ≤ i ≤ T − 1 ∧ i = j ± 1

2 if 2 ≤ i ≤ T − 1 ∧ i = j

0 otherwise

, i, j = 1, . . . , T ,

3.4 Skeleton adjustment

The fourth stage of STC adjusts skeletons by using a spatial–
temporal consistency adjustment model (see Fig. 1h). Our
motivation arises from two observations. For one thing,
positions of each skeleton of a motion sequence exhibit
continuous change, i.e., for almost all frames, the posi-
tion of a skeleton can be given by the median value of
the positions of the same skeleton of the former and latter
frames (see Fig. 6 which demonstrates the smooth change
of the positions of a skeleton); for another, for each frame,
semantic segmentation produced by [18] is imprecise: most
non-root skeletons locate far from the corresponding “parent
skeletons” defined by Fig. 4 except four ending skeletons
(LHand, RHand, LFoot, RFoot) which locate close from
their “parent skeletons.” The reason is that each of those
four skeletons locates at the end of a body component, and
the segmented patch produced by [18] cannot distinguish
that skeleton from its parent skeleton. Based on the argu-
ment above, we propose the spatial–temporal consistency
adjustment model (2), which consists of an inter-frame con-
sistency term and an intra-frame consistency term (α > 0
is a parameter for balancing two terms). The first term
enforces the medium representation of skeletons of almost
all frames, with a median representation matrix D ∈ R

T×T ;
the second term enforces a framewise fine-tuning over all
non-root skeletons for approaching or keeping away from
the corresponding parent skeletons,with pre-given parameter
β j , j = 2, . . . , 20. That parameter determines whether each
skeleton approaches or keeps away from its parent skeleton.
Specially, for most of skeletons, we set β j = 1 to guar-
antee that each of them approach its parent skeleton; for
skeletons 04©, 05©, 08©, 09©, 14©, 15©, 18©, 19© which belong to four
limbs LArm, RArm, LLeg, RLeg, respectively, as two skele-
tons locating at the end of each limb are closer to the parent
node, we set β j = −1 to keep them away from each corre-
sponding parent skeleton.

To solvemodel (2),we introduce auxiliarymatricesY(k) ∈
R
T×20 for replacing DX(k), k = 1, 2, 3, and transform (2)

into (3)

min
{X(k),Y(k)}3k=1

3∑

k=1

⎛

⎝‖Y(k)‖0 + α

20∑

j=2

∥∥∥[X(k)] j − (1 − ε) · [X(k)
init] j

−β j ε · [X(k)
init]parent( j)

∥∥∥
2

2
+ λ‖Y(k) − DX(k)‖2F

)
. (3)

by using naive Lagrange multiplier method, where λ > 0
is the penalty parameter. We then solve (3) by alternating
solving two subproblems of X(k) and Y(k) (see Lines 10–13
of Algorithm 1).

4 Experimental results and analysis

In this section, we evaluate the effectiveness of STC by
comparing it with state-of-the-art methods. The experiments
are conducted on an Intel(R) Core(TM) i5-8250U 1.8GHZ
CPU with 8GB RAM using Matlab R2016a. We collect
multiview color images of three actions by using 50 indus-
trial cameras with 2.2 million pixels through the light field
acquisition system (Fig. 2), and the captured images are of

Fig. 6 Coordinate changes at LElbow on the 20th, 33rd, 49th, and 66th
frames of Arm Stretching
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Fig. 7 Multiview images of three actions captured by the light field acquisition system

2048 × 1088 resolution. The three actions are detailed as
follows:

– Arm Stretching: which consists of 40,000 images
collected from 50 different perspectives in 160 s, with
frame rate 5 fps (see Fig. 7a).

– Walking: which consists of 90,000 images collected
from 50 different perspectives in 60 s, with frame rate 30
fps (see Fig. 7b).

– Arms&Legs Moving: which consists of 120,000
images collected from 50 different perspectives in 80 s,
with frame rate 30 fps (see Fig. 7c).

4.1 Ablation study on skeleton adjustment

While STC consists of three stages, the skeleton adjustment
stage plays a key role for the whole STC framework. Thus,
we first show comparative results before skeleton adjustment
and after skeleton adjustment in Figs. 8, 9, 10, 11, and 12.

According to Fig. 8, the results before skeleton adjustment
tend to produce Waist of lower height (see the red boxes),
and produce LWrist (RWrist, resp.) which is closer to LEl-
bow (RElbow, resp.) (see the green boxes); moreover, both
LLeg and RLeg before skeleton adjustment exhibit abnormal
lengths (see the blue boxes). In contrast, results after skeleton
adjustment reflect a promising location of body skeletons.

According to Figs. 9 and 10, skeleton adjustment produces
a more accurate prediction of LWrist, RWrist,Waist, LAnkle,
and RAnkle (the red boxes). Moreover, the length of both
LLeg and RLeg is more consistent over those frames after
using skeleton adjustment (the blue boxes).

According to Figs. 11 and 12, the results before skele-
ton adjustment produce the skeletons that are not compatible
with the actual skeleton of the human body, such as LHand,
RHand, LWrist, RWrist, LFoot, and RFoot (the red boxes).
In contract, the skeletons after adjustment are more accurate
(the green boxes).

Overall, by using the skeleton adjustment, STC produces
skeletons which are tidier, smoother, and are closer to real
body skeletons, and hence achieves good results from differ-
ent action sequences.

4.2 Comparative results with state-of-the-art
methods

We select four state-of-the-art methods for comparative
experiment and introduce them as follows:

– Tagliasacchi et al. [32] propose a average curvature
skeleton extraction method. The authors formulate the
skeletonization problem via MCF. While the classical
application of MCF is surface fairing, Tagliasacchi et al.
take advantage of its area-minimizing characteristic to
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Fig. 8 Top: input data of the 25th, 50th, 55th, 63rd, 76th, 84th, 88th, and 90th frames of Arm Stretching. Middle: results before skeleton
adjustment. Bottom: results after skeleton adjustment

Fig. 9 Top: input data of the
16th, 21st, 26th, 31st, 36th,
46th, 56th, and 61st frames of
Walking. Middle: results
before skeleton adjustment.
Bottom: results after skeleton
adjustment

drive the curvature flow toward the extreme so as to
collapse the input mesh geometry and obtain a skeletal
structure.

– Cao et al. [7] propose a Laplacian contraction method.
The authors develop a contraction operation that is
designed to work on generalized discrete geometry data,
particularly point clouds, via local Delaunay triangula-
tion and topological thinning. The method is robust to
noise and can handle moderate amounts of missing data,
allowing skeleton-based manipulation of point clouds
without explicit surface reconstruction.

– Huang et al. [13] propose an �1 median skeleton extrac-
tion method by introducing �1-medial skeleton as a curve
skeleton representation for 3D point cloud data. They
adapted �1-medians locally to a point set representing a
3D shape that gives rise to a one-dimensional structure,
which can be seen as a localized center of the shape.

– Zhang et al. [35] propose an �0-regularization-based
skeletonoptimizationmethod fromconsecutive point sets
of kinetic human body to extract consecutive skeletons
by using the temporal constraint and a spatial constraint.
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Fig. 10 Top: input data of the
71st, 86th, 91st, 101st, and
111th frames of Walking.
Middle: results before skeleton
adjustment. Bottom: results after
skeleton adjustment

Fig. 11 Top: input data of the
643rd–650th frames of
Arms&Legs Moving.
Middle: results before skeleton
adjustment. Bottom: results after
skeleton adjustment

Figures 13, 14, and 15 show qualitative results of STC
and four state-of-the-art methods for Arm Stretching,
Walking, and Arms&Legs Moving, respectively. We
summarize the main shortcomings of comparative methods
as follows.

Tagliasacchi et al. [32] always produce incomplete skele-
tons on arms obviously (see the 61st, 96th, frames of Fig. 14,
the 643rd, 644th skeletons of Fig. 15, marked by red boxes),
as well as inconsistent connection points of four limbs and
Torso (see the 50th, 55th, 63rd frames of Fig. 13, the 36th,
46th, 61st, 91st, 86th frames of Fig. 14, and the 645th, 647th,

648th, 649th, 650th, and 651st skeletons of Fig. 15, marked
by blue boxes).

Cao et al. [7] suffer from missing of skeletons, especially
on LArm-Torso junction, RArm-Torso junction, LLeg-Torso
junction, RLeg-Torso junction (see the 25th, 50th, 55th, 63rd,
76th, 84th, 88th, and 90th frames of Fig. 13, the 36th, 46th,
56th, 61st, 91st, and 86th frames of Fig. 14 and the 643rd–
649th frames of Fig. 15, marked by blue boxes) and great
prediction errors on LArm-Torso junction, RArm-Torso junc-
tion (see the 61st frames of Fig. 14), LKnee-Torso junction
(see the 63rd frame of Fig. 13), the RArm skeleton (see the
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Fig. 12 Top: input data of the 651st, 652nd, 655th, 656th, 657th, 658th, 659th, 660th, 661st, and 662nd frames of Arms&Legs Moving. Middle:
results before skeleton adjustment. Bottom: results after skeleton adjustment

Fig. 13 Qualitative results of Tagliasacchi et al. [32] (row 2), Cao et al. [7] (row 3), Huang et al. [13] (row 4), Zhang et al. [35] (row 5), and STC
(row 6) of 25th, 50th, 55th, 63rd, 76th, 84th, 88th, and 90th frames of Arm Stretching
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Fig. 14 Qualitative results of
Tagliasacchi et al. [32] (row 2),
Cao et al. [7] (row 3),
Huang et al. [13] (row 4),
Zhang et al. [35] (row 5), and
STC (row 6) of 36th, 46th, 56th,
61st, 91st and 86th frames of
Walking

56th frame of Fig. 14), and RLeg-Torso junction (see the 63rd
frame of Fig. 13 marked by red boxes). The skeletons are
incomplete on LArm of the 643rd frame of Fig. 15 (marked
by red boxes).

Huang et al. [13] suffer from obvious problems such
as missing of skeleton points (see the 76th, 84th, and 90th
frames of Fig. 13, the 61st, 91st frames of Fig. 14, the 643rd,
645–648th, 650th, and 651st frames of Fig. 15 marked by
red boxes), missing of branches (the 76th of Fig. 13, the
645–648th frames of Fig. 15), incorrectness of connection
between branches (the 63rd of Fig. 13, the 61st frame of
Fig. 14 marked by blue boxes, and the 643rd, 645th frames

of Fig. 15 marked by blue boxes), as well as incorrectness of
branches (see the 651st frames of Fig. 15 marked by orange
boxes).

Zhang et al. [35] occasionally produce incomplete skele-
tons on the head (the 50th, 55th frames of Fig. 13 marked
by red boxes), incomplete skeletons on two arms (see the
644th, 649th, 650th, and 651st frames of Fig. 15), incorrect
branches (see the legs of the 646th, 647th frames of Fig. 15
marked by blue boxes), and the skeletons are not an accurate
representation of the human body. In particular, for the 46th,
56th, 61st frames of Fig. 14, Zhang et al. [35] produce bent
left arms (which should be straight) and incorrect propor-
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Fig. 15 Qualitative results of Tagliasacchi et al. [32] (row 2), Cao et al. [7] (row 3), Huang et al. [13] (row 4), Zhang et al. [35] (row 5), and STC
(row 6) of 643rd–651st frames of Arms&Legs Moving

tion of human body (i.e., shorter legs); for the 643rd, 644th,
645th frames skeletons of Fig. 15, Zhang et al. [35] produce
very small difference between extracted skeletons exist in the
results of Zhang et al. [35], while those frames of the human
pose produce great different movement.

In contrast, STC produces more accurate skeletons gener-
ally, without the appearance of incorrect branches, and more
complete than above skeletons, and are consistent, response
to human posture better. Because initial standard skeleton
extraction algorithmbased on shape segmentation can extract
the 3D human body skeleton with 20 points. The temporal
consistency preserving skeleton optimization algorithm has
the position constraints of the intra-frame skeleton points
and the position constraints of inter-frame skeleton points.
Our optimization model makes the final standard skeletons
more accurate, more tidy, and more conformable to the orig-
inal input surfaces, more in line with the actual human body
skeleton points distribution. Therefore, STC is better than
many traditional skeleton extraction methods and is more
convenient for subsequent posture estimation, human body
modeling and operation.

4.3 Analysis and discussion

It should be noted that STC has many shortcomings and
requires improvement. First, the effect of skeleton extraction
of STC heavily depends on the effect of mesh segmenta-
tion. Failure of model segmentation may occur when point
cloud is seriously missing. Segmentation errors occur when
body parts are in contact. As a result, the extracted skeleton
is inaccurate. Secondly, compared with deep learning-based
methods [23,27], STC cannot treat singular poses or poses
with sudden changes due to the lack of training set. This
issue may be circumvented by exploiting motion principles
or detecting anchor landmarks (e.g., head) of special actions.

5 Conclusion

We propose a 3D human body standard skeleton extraction
method from consecutive surfaces, by using a spatiotemporal
consistency model. Our model can be applied to 3D human
body standard skeletons extraction from meshes which are
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reconstructed from either multiview images of moving body
or 3D scanned human motion surfaces, without requiring
manual intervention. The model produces more complete,
tidier, more accurate 3D human body standard skeletons, and
facilitates subsequent posture estimation, human modeling
and operation.

In the future work, we shall consider generalizing our
method to (semi-)supervised fashion, so that singular poses
can be inferred. Moreover, we shall consider action spe-
cific periodicity estimation for improving skeleton extraction
accuracy.
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