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Abstract
Recently, the correlation filters have been successfully applied to visual tracking, but the boundary effect severely limits their
tracking performance. In this paper, to overcome this problem, we propose a correlation tracking framework with the capacity
implicitly to extend the search region (TESR), while inhibiting the undesirable impact of the background noise. The proposed
tracking method is a two-stage detection framework. The search region of the correlation tracker is extended by considering
other four search centers, in addition to the target location in the previous frame. Thus our TESR will generate five potential
object loactions. Then, an SVM classifier is used to determine the correct target position. We also introduce and apply the
salient object detection score to regularize the output of the SVM classifier to improve its performance. The experimental
results demonstrate that TESR exhibits superior performance in comparison with the state-of-the-art trackers.

Keywords Visual tracking · Correlation filter · Boundary effect

1 Introduction

Video tracking is a hot research topic in the field of computer
vision. It plays an important role in many applications, such
as robotics, surveillance and human–computer interaction,
to name a few [5,6,8–10,13,16–18,20,21,30,37,42,47,48]. In
general, tracking target is defined in the first frame of the
video in terms of an upright bounding box. A tracker identi-
fies the location of the object in the subsequent frames. Over
the last decade, video tracking has advanced significantly, but
still many challenging problems remain to be solved such as
fast motion, camera shaking, occlusion, and so on.

In the recent tracking algorithms, the correlationfilter (CF)
tracker and the two deep neural network-based tracker are
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the two mainstream tracking methods. The tracking algo-
rithms based on deep networks have excellent performance
because they take advantage of the large amount of data train-
ing off-line, but they often suffer in terms of tracking speed
because of their slow online fine-tuning. The CF tracking
algorithms have received wide attention for their impressive
performance in both speed and accuracy, as well as bene-
fiting from their very simple implementation. In contrast to
neural network-based tracking method, the correlation fil-
ter method is the lightweight tracker. Extensive research and
various forms of improvement of CF have been reported, but
some open problems still persist. The boundary effect that is
closely linked with the underlying assumption that the object
signal is periodic is a prominent problem in CF. The intuitive
method to solve this problem is to extend the search region
of CF, but this introduces irrelevant background information
which is not periodic and will lead to the decline of the track-
ing performance. Kiani Galoogahi et al. [20] and Danelljan
et al. [10] circumvent the background noise problem asso-
ciated with the search region extension by adopting other
approaches. The proposed method addresses this problem,
by implicitly extending the search region to overcome the
boundary effect of CF by means of a multiposition tracking
solution.

In this paper, we propose a correlation tracking frame-
work, which implicitly extends the search region (TESR).
The conventional CF methods take the target location in the
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Fig. 1 In a, the black box represents the target location in the previous
frame. The conventional CF detects the object in the area defined by
the magenta box. Apart from this area, we add four extra search regions
around the original search center, shown in red, blue, green and yellow.

In b, the red box represents one of the additional extra search regions
the black box and the magenta box are the same as that in a. The yellow
dash dot box is the implicit search region of TESR

previous frame as the current frame search center and detect
object in a search region of bigger size than the object size,
delineated by the bounding box, to find the correct location
of the tracking target. The radius of the surrounding area of
the bounding box is expanded by a factor as p ∗ r , where r
is the radius of the object. Hence, the search region radius
of conventional CF methods is (1 + p) ∗ r , where p is the
padding scale factor. The proposed TESR adopts a multipo-
sition tracking method. As shown in Fig. 1, in addition to
the search center with the location of the tracked target in
the previous frame, we consider multiple extra search cen-
ter positions around the original search center. For every
added position, we also search the object in the region of
size: (1 + p) ∗ r . The distance between the added center
and the original center is set to α ∗ r , the total radius of our
search region is (1+ p+α)∗r . We can see the search region
is implicitly enlarged without introducing extra background
noise.

The main contributions of this work can be summarized
as follows:

– We propose a novel method to overcome the boundary
effect of CF which implicitly extends the search region
without compromising periodicity.

– We adopt a two-stage tracking strategy: CF detection
and SVM detection. Different from the traditional mul-
ticlassifier structure, the two classifiers use independent
updating periods based on the model of ASMM [1].

– To deal with the problem of drift, we apply the salient
object detection score to regularize the output of the SVM
classifier with promising results.

We show that TESR can obtain excellent results. The
experiments demonstrate the superior performance of TESR
as compared with the state-of-the-art trackers on the popular
OTB [44,45] and VOT [22,23] benchmarks.

2 Related works

Video tracking has beenwidely studied over the past decades.
There is a considerable body of related literature, where both
CF trackers and deep networks trackers are reported to have
achieved competitive performance. We only focus on these
two main types of trackers in this paper. We refer the reader
to [34,44] for further details of visual tracking.
Correlation filter The recent upsurge of interest in correlation
filters startedwith theBolme’s seminal article [5], advocating
a tracking method based on the minimum output of the sum
of squared error (MOSSE). This is a high-speed tracker with
600–700FPS.Henriques [16] realized a discriminative corre-
lation tracker based on dense sampling by using the property
of the circulant matrix. His algorithm, named KCF, was
improved in 2015 by adding kernel method and multichan-
nel features (e.g. HOG). SAMF [25] and DSST [9] improved
the performance of KCF and MOSSE by endowing them
with a scale estimation mechanism. To handle the occlusion,
[26,27,48] incorporated a common part-based technology
into CF. Both [4,36] proposed methods to handle the lim-
itations of the assumption of isotropy of the CF response.
It is worth mentioning that to reduce the boundary effect,
[20] proposed a new CF objective function by introducing a
specific mask matrix, and SRDCF [10] added a spatial regu-
larization component into the CF objective function. SRDCF
achieved impressive performance at the cost of very low
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Correlation tracking with implicitly extending search region 1031

Fig. 2 A flowchart of the
proposed tracking framework.
In the first stage, the same CF is
applied in five different search
regions, i.e., red, blue, green,
yellow and magenta dot boxes,
to generate object candidates.
The black box represents the
object location in the previous
frame. The white box represents
the target that is predicted by
our method. In the second stage,
all candidates will be detected
using an SVM classifier. The
candidate with the highest score
is treated as the tracking target

speed. The two methods have not fundamentally solved the
problem of boundary effect because they both circumvent the
problem of extending the search region of CF. Different from
the [20] and [10], we propose a multiposition search method,
which implicitly extends the search region without infect-
ing extra background noise. The proposed method solves
the problem of boundary effect elegantly. Related papers on
CF also include [2,5,6,9,10,12,16–20,25,27,32,35,36,47,50].
For further details of correlation tracking, please refer to [7].
Deep neural network-based tracking In many areas of com-
puter vision, such as image classification, object detection
and segmentation, deep neural network algorithms have
reported an impressive success. Recently, neural network-
basedmethods have alsobeenused in the trackingfield.There
are two main types of the deep neural network-based track-
ers. One is the online fine-tuning neural networkmethod. For
example, MDNet [31] pretrains a convolutional network to
obtain a generic target representation and constructs a new
network by the pretrained CNN by adding a new binary clas-
sification layer, which is updated online. The other is the
offline training method. For example, CF2 [29] adopts a
pretrained CNN to extract feature in a CF tracking frame-
work, where the neural network is only used for feature
extraction. SiameseFC [3] is a fully convolutional Siamese
network trained offline on the ILSVRC15 [33] dataset for
object detection in video. The two-stream networks do not
update online. Related papers on deep neural network-based
tracking methods also include [15,24,38–41,49]. Although
deep neural network-based tracking algorithms have supe-
rior performance, their tracking speed is limited because of
the slow online updating. If these methods adopt a network
completely trained offline, their accuracy often decreases.
Our method is a lightweight correlation filter tracker. The
proposed tracker consists of the SVM classifier and the CF,
we regard the two classifiers as long-term and short-term

ones-respectively, rather than multiple experts for simulta-
neous fusion. Moreover, the proposed method is a two-stage
tracking framework. The components of both stages can be
replaced by arbitrary CF and discriminative classifier.

3 Proposed approach

3.1 Overview

TESR is a two-stage tracking framework: The first stage sets
to detect object in five different search regions, respectively,
by the same correlation filter. The CF will give a response
map as its output in each search region. TESR takes the posi-
tion of the peak value in the response map as the candidate
of the tracking object. The second stage tests the five candi-
dates using an SVM classifier and views the candidate with
the highest score as the predicted target position. Figure 2
presents a visual representation of the overall tracking pro-
cedure.

In the CF detection stage, in addition to the tracked target
location found in the previous frame, TESR takes the other
multiple tracking positions around the original search cen-
ter as the base search points. In fact, they are the vertices of
the bounding box. As discussed in Sect. 4, when the number
of added positions is set to be four, TESR exhibits the best
performance. Thus TESR tracks the object five times using
the same CF and attains five response maps. During this pro-
cessing, because we maintain the search size of every CF
constant, no extra background noise is introduced. However,
on the search region is extended on a whole, the strategy
effectively deals with the problem of motion blur, camera
shaking, occlusion, and so on.

In the second stage, we choose the SVMas the classifier to
select the correct candidate. We can also use the other classi-
fiers such as the neural network, but comparedwith the neural
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Fig. 3 In a, for the sake of simplicity, the 1D pink signal represents the
2D image signal. In b, the assumption of periodicity distorts the pink
signal in correlation tracking. The smaller the search window, the more

sever the distortion of the target patch signal, shown as the red curve
segment, and this serves as input to the correlation filter. In c when the
search window size is enlarged, the target patch signal is undistorted

network, SVM classifier does not need the offline training,
and it is also faster than neural network, as well as free from
exhibiting degradation in performance. In this stage, TESR
applies the method proposed in [43,46] and regularizes the
output of the SVM classifier by the salient object detection
score to enhance the performance of the SVM classifier. For
the five candidates generated in the first stage, we take the
candidate with the highest score as the final tracking object
position.

The proposed tracking framework consists of two classi-
fiers. Both classifiers must be continuously updated. Similar
to [18], we also argue that the tracker should have both the
long-term and short-termmemories. TESR updates CF every
frame to handle any fast appearance change of the object and
updates SVM slower, e.g. every 10–15 frames, which is con-
sidered as a long-term memory. The support vectors in SVM
primarily capture the elementary features of the object.

3.2 CF detection stage

For simplicity,we assume that x ∈ R
n represents the tracking

target. To take advantage of the property of the circulant
matrix, we generate a matrix X=[x,Px,P2x, . . .,Pn−1x],
where P is a permutation matrix denoting the circulant shift
of a vector, Px=[xn,x1,. . .,xn−1]. The response of CF is
modelled as a 2D Gaussian map in the ideal case. The peak
of the response map is the object location. The goal of CF
is to learn a filter w, which can minimize the cost of ridge
regression problem as follows:

min
w

{‖Xw − y‖2 + λ ‖w‖2} (1)

where y is the ideal 2D Gaussian response and λ is the trade-
off parameter.

We can solve Eq. 1 and its dual problem to obtain w =
XTα, where α = (XXT +λI)−1 y is the solution of the dual

problem of Eq. 1. Using the relationship between circulant
matrix and its Fourier transform, we can compute w in the
frequency domain very fast as follows:

ŵ = x̂ � ŷ

x̂∗ � x̂ + λ
(2)

where x̂ is the FFT of x, and x̂∗ is the conjugated FFT of x.
� denotes the element-wise product.

In the object detection stage, we compute the response
map f (x) = wTx and take the peak point of the response as
the current target location. The details of CF can be found in
[17].

As mentioned in Sect. 1, although there has been much
improvement in CF in recent years, the boundary effect is
the main problem which is difficult to be solved. As shown
in Fig. 3, for simplicity, we use the 1D signal to replace the
2D image signal. We find the signal distorted because of the
assumption of the periodicity, as indicated by the pink signal
shown in Fig. 3b. If the search window is not large enough,
the distorted target patch signal input to the correlation filter
will cause the tracker to drift. To overcome this problem
directly, as shown in Fig. 3c, the target patch signal will not
be influenced by the assumption of the periodicity. But the
drawback of the process is also obvious. On one hand, we
need to expand the search region around the target to cope
with fast motion or camera shaking in video. Otherwise, the
object will partly move out of the search window and CFwill
fail to detect it. On the other hand, as CF relies on the property
of circulant matrix to speed up the detection and learning of
the tracker, if the search region is extended, injecting much
background noise in the process, the tracker will start to drift.

As shown in Fig. 1, TESRadds other four search positions,
which can implicitly extend total search size without leading
to the drift problem. TESR takes the four diagonal vertices
of the bounding box (black box) as the additional correlation
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Correlation tracking with implicitly extending search region 1033

filter search centers. Consequently, all filters use the original
search size. We can see the search region of the left top CF
(red box) and the right top CF (blue box) can cover the target,
and TESR can ultimately track the object position correctly.

Let us assume the size of target is m ∗ n. The padding
area around target of conventional CF is p times of the target
size, i.e., (pm) ∗ (pn). Assume that the size of search region
of conventional CF is M ∗ N such that M = (1 + p)m,
N = (1 + p)n. We denote the image patch of conventional
search region as x0 = [x1, x2, . . . , xM∗N ]. In CF detection
stage of TESR, x0 is shifted to the neighbor of the vertexes
of bounding box. We denote xi = x0(ai , bi )(i = 1, . . . , 4)
as added search region, which is shifted from x0 by (ai , bi ),
with ai and bi given by

ai =
{

α ∗ m i = 1, 3

−α ∗ m i = 2, 4
(3)

bi =
{

α ∗ n i = 1, 2

−α ∗ n i = 3, 4
(4)

where α is a scale parameter.
For each search region, TESR will track the object using

the same CF. In the first stage of TESR, the response map of
each CF is computed as follows:

yi = f (xi ) = wTxi ∀i = 0 : 4 (5)

For each yi , we find the location of its peak value and
regard this position as a target candidate. TESR generates
five candidates in this stage. As shown in Sect. 3.3, an SVM
classifier selects the correct result of our tracking framework.
Each CF still tracks the object in the search region with the
size M ∗N or (1+ p)m ∗(1+ p)n, but the total search size of
TESR is implicitly increased to be (1+p+α)m∗(1+p+α)n.
This approach of extending search region implicitly does not
introduce any extra background noise.

To speed up our TESR, we do not use multiposition detec-
tionmethoddescribed above in all frames. For the response of
original CF, i.e., y0, is transformed to the probability form by
a Gaussian cumulative distribution with mean of 0 and STD
of 1. If the peak value of the response is less than a threshold
s, TESR will track the object using multiposition detection
and apply the SVM classifier to select the best candidate. If
the peak value is greater than s, we accept the original CF
tracking target as the TESR’s result.

3.3 SVM detection stage

In the first stage, there are separate correlation filters, which
generate five target candidates, respectively. We could adopt
the method of multiclassifier fusion to define our tracker. But
as shown inFig. 2, someoutputs of correlationfilters look like

the target, while some outputs are severely contaminated by
noisy background pixels. If we simply adopt a multiclassifier
fusion method, the tracker will easily start to drift. For this
reason,we adopt an SVM to determinewhich candidate is the
correct target position in the second detection stage. There
are still several problems which we must consider: The two
classifiers, i.e., CF and SVM, should adopt different feature
extraction methods, and SVM classifier should be able to
detect and update rapidly. Furthermore, the two classifiers
should be updatedwith different frequencies to adapt to rapid
change in the appearance of the target and focus on stable
properties of the object.

The SVM classifier used in TESR is inspired by TVM
[43,46], which uses a fixed-size training data Q = {ζi =
(φ(qi ), ωi , si )}B1 , φ(qi ) is the feature vector of an image
patch qi , ωi is a binary label and si is the number of support
vectors representing the decision boundary. Given new data
L = {xi , yi }J1 , the goal of the TVM is to learn the weight w
by minimizing the objective function:

min
w,b

{
1

2
‖w‖2 + C

{
B∑

i=1

si
Nωi

Lh(ωi , qi ;w)

+
J∑

i=1

1

Nyi
Lh(yi , xi ;w)

}}
(6)

whereC is the slack parameter, Lh is the hinge loss function.
By taking advantage of the twin prototypes, TVM can

maintain a reasonable support vector budget and can be
designed as a linear SVM classifier, so it can detect and
learn to adapt the decision boundary to support the real-time
requirement of visual tracking. For the feature extraction,
the current mainstream CF methods adopt multichannel fea-
ture like HOG [10,17,18,20]. TESR makes use of CIELab
feature as the feature representation of TVM. Thus, the two
features which are used in CF and TVM are complemen-
tary to each other. HOG focuses on the gradient information,
while CIELab feature focuses on the color information. Sim-
ilar to MEEM, to deal with illumination change, we also
adopt the nonparametric local rank transform (LRT) [18].
As TVM is viewed as a long-term memory, its updating fre-
quency is slower than that of CF. We find that when SVM
classifier updates at every 10–15 frames, TESR achieves the
best performance. By managing the updating frequency of
SVM classifier, we retain control over the tracking speed as
it is inversely proportional to updating frame rate.

3.4 Salient feature detection

As an online learning method, the memory of TESR, i.e.,
the filter of CF and the support vectors of SVM, bound to
be contaminated in practice. To alleviate this problem, we
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Fig. 4 In a, the five candidates generated in the first stage of TESR at the ninth frame of bolt sequence are shown as red, blue, green, yellow and
black boxes. In b–f, the five candidate patches are extracted from the original image

adopt a salient feature detection regularization method. We
find that the tracking target is always a salient object in gen-
eral, which can be considered as a priori knowledge of visual
tracking. In some cases, we can accurately determine the cor-
rect target position from several candidates even without any
information extracted from the previous frames. Shown in

Fig. 4d–f are more like the tracking target because they con-
tain a salient featuremanifest by thewhole object.Wemodify
the discriminative method in Sect. 3.3 based on regularizing
the output of SVM classifier using the priori knowledge of
the saliency of the object.
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Correlation tracking with implicitly extending search region 1035

Fig. 5 The black box represents the target location in the previous
frame, and the black point represents the its center. The conventional
CF detects the object in the area defined by the magenta box. The addi-
tional search regions are shown with red, blue, green and yellow boxes,

where the value of p is 1, and the color points represent the additional
search centers.We set the α to be 2.5, 2 and 0.8 in a–c. We can see when
α is greater than 1 + p, the additional search regions will not overlap

For the salient feature detection, we use the approach pro-
posed in [28]. We assume that the area of the bounding box
is R, and the search region of CF is Rsearch. The surrounding
area of the bounding box is Rs, i.e., the area in Rsearch besides
R, Rs = Rsearch − R. We adopt the Chi-square of the color
histogram as the salient feature detection score as follows:

χ2(R, Rs) = 1

2

∑
i

(Ri − Ri
s)
2

Ri + Ri
s

(7)

where Ri and Ri
s are the i th bins of the color histogram of R

and Rs.
Obviously, if the color information of the target candidate

area is significantly different from the surrounding area, it is
more likely that it contains a salient object. Accordingly, the
objective function of SVM detection stage is turned to:

f (x) = wTx + μχ2(R, Rs) (8)

where w is the weight of the SVM classifier and μ is a trade-
off parameter.

The five candidates generated in CF detection stage are
assessed by the criterion in Eq. 8 to determine the correct
tracking target.

4 Experiments

4.1 Base tracker

TESR is regarded as a two-stage detection framework based
on CF. The base CF tracker used in the first stage can be any
tracker based on CF. We choose two CF trackers as our base
trackers: KCF [17] and STAPLE [2] because both have high
tracking speed and appealing performance. The discrimina-
tive classifier used in the second stage is TVM as mentioned

above. We choose it also for its highly efficient and effective
performance. We call the two implementations of TESR as
TESRKCF and TESRSTAPLE in the following sections.

Like KCF, our TESRKCF does not adapt to scale changes,
but similar to STAPLE, the tracking of TESRSTAPLE is robust
to scale change.Themotivation for choosingbaseCF trackers
with different characteristics is to allow a fair comparison
between our TESR version and its existing approaches. We
shall show that our two CF-based trackers TESRKCF and
TESRSTAPLE are not only better than KCF and STPALE, but
also deliver promising performance in comparison with the
state-of-the-art trackers.

4.2 Implementation details and parameters

In all our experiments, we use MATLAB on an Intel(R)
Xeon(R) 3.30 GHz CPU with 8 GB RAM. For the base
tracker KCF and STAPLE, we retain the original parame-
ter settings. In the multiposition detection in CF, we set the
threshold s of responsemap peak value to be 0.6 and the value
of α to be 0.8. Although the larger the value of α, the larger
the search region, if the α is too large, our additional search
regions will not overlap, which may result in the loss of the
target. As shown in Fig. 5, the maximum value of α cannot
be greater than 1+ p, where p is the padding scale factor. We
test the value of α from 0.1 to 2 . With p equal to 1, the best
value of α is 0.8. We also test the impact of additional search
centers in other positions and increase the counting number
of themultiposition detection (themaximum number is set to
be 20). Interestingly, the performance is not sensitive to the
number of search centers; the reason may be that more false
candidates are generated as the number of additional search
centers increases. Moreover, the speed will be slower.

For TVMused in the second detection stage,we also retain
the original parameter setting in MEEM [46]. The trade-
off parameter μ determines the impact of the salient feature

123



1036 Q. Qian et al.

Fig. 6 Precision plots of our TESR by comparison with the state-of-the-art trackers on the OTB2013 a and OTB2015 b benchmark

Fig. 7 Success plots of our TESR by comparison with the state-of-the-art trackers on the OTB2013 a and OTB2015 b benchmark

detection as shown in Eq. 8. We test its value from 0.01 to
10 and find it is best at 0.7. The updating frequencies of CF
and SVM are one frame and nine frames for TESRKCF and
one frame and 12 frames for TESRSTAPLE, respectively. We
use the sliding window sampling approach around the pre-
dicted location to obtain the training samples in the updating
of TVM. The sampling region has the same size for the CF
original search size, i.e., (1 + p) ∗ r , where r is the radius
of object, p is the padding scale factor. We only extract sam-
ple patches at the updating period, i.e., every 9 frames or 12
frames. In addition to these samples, we also retain the object
candidates generated in CF detection as the training samples
at every frame. For all training sample patches, we calcu-
late the overlaps of them and the predicted object location,

We regard the samples with an overlap greater than 90% as
positive samples and consider the samples with an overlap
less than 50% as negative samples. All the other samples are
discarded.

4.3 Evaluation

We run our TESR on two recent popular benchmarks, i.e.,
OTB [44,45] and VOT [22,23], and compare it to several
state-of-the-art trackers. We use the source codes provided
by the original authors and run the code ourselves on the
OTB benchmark to evaluate their performance. For VOT
benchmark, since VOT challenge provides the results of all
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Table 1 A comparison of the DPE/OPE scores on sequences classified
according 11 challenging factors: IV (illumination variation), SV (scale
variation),OCC(occlusion),DEF (deformation),MB(motionblur), FM

(fast motion), IPR (in-plane rotation), OPR (out-of-plane rotation), OV
(out-of-view), BC (background clutters) and LR (low resolution)

KCF DSST MEEM DLSSVM STAPLE SRDCF TESRKCF TESRSTAPLE

IV(38) 0.720/0.482 0.739/0.567 0.739/0.519 0.700/0.511 0.782/0.599 0.787/0.615 0.724/0.491 0.868/0.657

SV(64) 0.637/0.395 0.648/0.477 0.717/0.460 0.696/0.457 0.731/0.528 0.750/0.570 0.688/0.433 0.822/0.602

OCC(47) 0.630/0.445 0.614/0.464 0.719/0.495 0.693/0.497 0.728/0.548 0.732/0.561 0.667/0.463 0.820/0.621

DEF(42) 0.618/0.439 0.562/0.426 0.703/0.467 0.704/0.500 0.751/0.554 0.736/0.548 0.677/0.470 0.824/0.618

MB(31) 0.618/0.459 0.608/0.499 0.695/0.537 0.693/0.551 0.716/0.559 0.780/0.617 0.689/0.518 0.809/0.633

FM(42) 0.629/0.456 0.578/0.471 0.696/0.515 0.698/0.525 0.715/0.547 0.767/0.604 0.712/0.512 0.767/0.590

IPR(51) 0.703/0.471 0.707/0.510 0.789/0.524 0.758/0.525 0.768/0.553 0.742/0.546 0.748/0.509 0.830/0.605

OPR(62) 0.662/0.458 0.663/0.482 0.786/0.523 0.755/0.525 0.742/0.541 0.744/0.556 0.705/0.483 0.852/0.624

OV(14) 0.495/0.393 0.478/0.385 0.647/0.484 0.620/0.468 0.664/0.477 0.599/0.464 0.552/0.427 0.747/0.557

BC(32) 0.717/0.501 0.721/0.526 0.730/0.514 0.735/0.522 0.754/0.565 0.776/0.585 0.713/0.505 0.851/0.630

LR(9) 0.664/0.284 0.673/0.375 0.842/0.381 0.783/0.368 0.689/0.393 0.769/0.528 0.735/0.330 0.891/0.748

Numbers in parenthesis in the first column refer to the numbers of sequences with the corresponding attributes

Fig. 8 Tracking results for challenging factors such as changing illumination and action

participated trackers, we use these reported results to com-
pare with our TESR.

4.3.1 OTB

We run our TESRKCF and TESRSTAPLE on benchmark
OTB2013 [44] and OTB2015 [45]. We also run the other
state-of-the-art trackers includingKCF [17], DSST [9], STA-
PLE [2], MEEM [46], SRDCF [10] and DLSSVM [32]. Two
performance measures are used. The precision evaluation of
a tracker on a sequence is expressed as the average per-frame

location error between its predicted bounding box and the
ground truth. The success rate evaluation is expressed as the
average per-frame overlap between its predicted bounding
box and the ground truth using the intersection-over-union
(IOU) criterion St = rt∩rGT

rt∪rGT
, where rt is the predicted bound-

ing box and rGT is the ground truth.
Figure 6 shows the precision plot at the threshold set to

20. Figure 7 shows the success plot of the proportion of suc-
cessful frames at the IOU thresholds varying from 0 to 1.
We use the area-under-curve (AUC) to measure the repre-
sentative success score. We can see that on both OTB2013
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Fig. 9 Accuracy–Robustness (AR) rank plot on VOT2014 benchmark. Better trackers are closer to the top right corner

Table 2 The raw accuracy and
robustness scores on VOT2014
benchmark (over 25 sequences)
of some top performers

KCF SAMF DSST LGTv1 PLT14 PLT13 TESRSTAPLE

Accuracy 0.62 0.61 0.62 0.46 0.56 0.54 0.66

Robustness 1.32 1.28 1.16 0.66 0.16 0.08 1.00

Higher accuracy score and lower robustness score are better

and OTB2015, our TESRKCF and TESRSTAPLE achieve very
good results in comparison with base trackers KCF and STA-
PLE. TESRKCF is better by 11% in precision and 14% in
success rate on OTB2013 and 7% in precision and 7% in
success rate on OTB2015. TESRSTAPLE shows improvement
of 14% in precision and 12% in success rate on OTB2013
and 10% in precision and 11% in success rate on OTB2015.
TESRSTAPLE is the best in terms of both evaluation mea-
sures. The precision measure achieved by TESRSTAPLE is
88.9% and 86.1% on OTB2013 and OTB2015, respectively.
The success rate measure achieved by TESRSTAPLE is 67.3%
and 64.4% on OTB2013 and OTB2015, respectively.

Table 1 compares the precision and success rate scores
of TESR and the state-of-the-art trackers on sequences
classified according to various challenging factors. All the
videos inOTB2013 are annotatedwith 11 different attributes,
namely: illumination variation, scale variation, occlusion,
deformation, motion blur, fast motion, in-plane rotation, out-
of-plane rotation, out-of-view, background clutter and low
resolution. Some tracking results according to various fac-
tors such as light changing and action changing dramatically
are also shown in Fig. 8 We can see our TESRSTAPLE out-
performs existing trackers on all attributes in precision and

on ten attributes in success rate. In particular, TESRSTAPLE

achieves relatively larger performance gains, as compared
with the second best tracker, when target object experiences
illumination variation, deformation, occlusion, out-of-view
and background clutter. According to the results for the sub-
set of background clutter, TESR can identify the target due
to the stable features of object stored in the support vectors
of SVM classifier. The superior performance on the subset of
illumination variation and deformation is the result of adap-
tation to fast appearance change by our CF store. Since we
adopt a large search region, TESR can re-capture the object
easily after it starts drifting due to occlusion.

4.3.2 VOT

We also run our TESRSTAPLE on VOT2014 [23] and
VOT2016 [22]. On VOT benchmark, there are two highly
interpretable weakly correlated performance measures to
analyze tracking behavior in reset-based experiments: accu-
racy (A) and robustness (R). Unlike OTB, VOT-related
methodology resets the tracker after it drifts off the target.
The accuracy (A) is the average overlap between the pre-
dicted bounding boxes and ground truth during successful
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Fig. 10 Accuracy–Robustness (AR) rank plot onVOT2016 benchmark. Better trackers are closer to the top right corner. Note CCOT is the champion
of VOT2016 challenge which is shown as yellow cross

Table 3 The raw accuracy and robustness scores on VOT2016 benchmark (over 60 sequences) of some top performers

STRUCK STAPLE SRDCF SCT4 SAMF KCF DSST CCOT TESRSTAPLE

Accuracy 0.42 0.54 0.52 0.45 0.48 0.48 0.48 0.52 0.54

Robustness 3.37 1.35 1.50 1.95 2.10 2.03 2.52 0.85 1.50

Higher accuracy score and lower robustness score are better

tracking periods. The robustness (R) measures the number
of the failures of the tracker.

To generate Fig. 9 and Table 2, we use themost recent ver-
sion of the VOT toolkit, which can be downloaded from the
VOT challenges Web site. As shown in Fig. 9, for all 38 par-
ticipated trackers of VOT2014 challenge, our TESRSTAPLE

gets the best accuracy ranking. Table 2 presents the raw accu-
racy score for some trackers of VOT2014 challenge. We can
see our TESRSTAPLE achieves a 6% improvement in accu-
racy in comparison with the second best tracker: KCF [17]
and DSST [9].

The experimental results of 70 trackers that participated
in the VOT16 challenge are publicly available. For sim-
plicity, we compare TESRSTAPLE to some state-of-the-art
trackers. We only include the trackers: CCOT [11], DSST
[9], KCF [17], SAMF [25], SCT4 [8], SRDCF [10], STAPLE
[2], STRUCK [14]. Note CCOT is the champion tracker of
VOT2016 challenge. As shown in Fig. 10 and Table 3, we can
see TESRSTAPLE also significantly outperforms other track-

ers in accuracy measure. We achieve the better ranking than
CCOT in accuracy ranking which is shown in Fig. 10.

It is worth recalling that the robustness performance
defined for the benchmark is the number of the failures on
tracking periods. The VOT toolkit resets the tracker once the
IOU between the predicted bounding box and the ground
truth reduces to zero. This measure method is not favorable
to our TESRSTAPLE. As TESR implicitly extends the search
region, it can capture the target again after it completely
misses the object. As shown in Fig. 11, in sequence couple,
jogging1 and birds1, TESRSTAPLE captures the target again
in 107th, 81th and 32th frames, respectively, after its IOU
completely drops to zero. Then it continues tracking well in
the following frames. Note that this is the advantage of our
method. We do not need redetection technology. Neverthe-
less, our TESR is still a short-term tracker. Unfortunately, the
robustness measure of VOT benchmark views these frames
as failures, and this increases the value of robustness score.
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Fig. 11 a, b, sequence couple, c, d, sequence jogging1, e, f, sequence birds1. The red box represents the ground truth, and the white box represents
the predicted location of TESR
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Table 4 Comparing the impact
of different components of
TESR on OTB2013/2015 with
the precision/success rate
scores/fps

TESRSTAPLE TESRNonSD TESRNonSVM TESR1F

OTB2013 0.889/0.671/14.2 0.875/0.659/19.3 0.814/0.627/16.9 0.833/0.636/9.2

OTB2015 0.861/0.644/14.0 0.851/0.638/18.9 0.815/0.609/16.6 0.785/0.593/8.7

As a result TESRSTAPLE has not achieved a very high ranking
in robustness measure on VOT2014 and VOT2016.

4.4 Impact of different components of TESR

To verify the effectiveness of different innovations of TESR,
we conducted the ablation study by suppressing different
parts of TESRSTAPLE technology, by performing experi-
ments to measure the impact on OTB datasets, as shown in
Table 4. TESR is a fast tracker. In particular, if we remove the
significance feature detection module, the TESR will reach
a speed of 19fps with only a slight performance degradation.

For the impact of the saliency detection, we removed the
salient feature detection module, and denoted the resulting
tracker as TESRNonSD. The experimental results obtained
on OTB2013 and OTB2015 are presented as follows: The
precision is 87.5% and 85.1%, and the success rate is 65.9%
and 63.8%, respectively. This shows that the salient feature
detection improves the performance.

For the impact of the SVM detection, we deleted it and
maximized over the five peak values to judge which can-
didate is most likely the object. The tracker is denoted
as TESRNonSVM. The results obtained on OTB2013 and
OTB2015 are given as follows: The precision is 81.4% and
81.5%, and the success score is 62.7%and60.9%.This shows
clearly that our two-stage strategy improves the performance.
The reason of the decrease in the performance is that peak
value of the response of CF does not always correspond to
the target position.

Our TESR is not the simple combination of two clas-
sifiers, i.e CF and SVM. Firstly, our CF detection stage
implicitly extends the search region in comparison with
the conventional CF trackers. Secondly, different from the
traditional multiclassifier structures, the two classifiers use
independent update periods. The correlation filter is viewed
as a long-term memory, adapting to the rapid appearance
change, while the SVM classifier is viewed as a long-term
memory, adapting to stable property of the object. These
complementary concepts are of paramount importance to our
tracking framework. Note, if SVM classifier updates every
frame, denoted as TESR1F , the precision on OTB2013 and
OTB2015 would decrease to 83.3% and 78.5%, the success
would also decrease to 63.6% and 59.3% respectively.

5 Conclusion

In this paper, we propose a correlation tracking framework
employing implicitly extending search region (TESR) to deal
with the problem of occlusion, motion blur and camera shak-
ing in visual tracking. Our method is a two-stage detection
solution. In the first stage, we decrease the boundary effect
with a very unique way. In the second stage, we use an
SVM classifier to choose the best candidate generated in the
first stage. The results of experiments demonstrate that our
method exhibits superior performance in comparison with
the current state-of-the-art trackers on benchmark OTB and
VOT.
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