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Abstract
Visual object tracking has become one of the most active research topics in computer vision, which has been growing in
commercial development as well as academic research. Many visual trackers have been proposed in the last two decades.
Recent studies of computer vision for dynamic scenes include motion detection, object classification, environment modeling,
tracking of moving objects, understanding of object behaviors, object identification, and data fusion from multiple sensors.
This paper provides an in-depth overview of recent object tracking research. Object tracking tasks in realistic scenario often
face challenging problems such as camera motion, occlusion, illumination effect, clutter, and similar appearance. A variety of
tracker techniques have been published, which combine multiple techniques to solve multiple visual tracking sub-problems.
This paper also reviews the latest research trend in object tracking based on convolutional neural networks, which is receiving
growing attention. Finally, the paper discusses the future challenges and research directions for the object tracking problems
that still need extensive studies in coming years.
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1 Introduction

One of the major tasks in the field of computer vision is to
help machines, such as robots, computers, drones, and vehi-
cles, and perform the main tasks of the human vision system,
such as image comprehension, and motion analysis. To real-
ize these functions of intelligentmotion analysis,manyworks
have attempted to track the visual objects, which became a
high-demand research area in the real-time computer vision
field. Basically, the main step of visual tracking is to evaluate
the trajectory model (i.e., position, direction, shape, etc.) of
a tracked object in each scene of a video sequence. A robust
tracker appoints consistent markers to the target objects in
successive scenes. In short, visual tracking is an operation
that seeks to locate, detect, and define the dynamic configu-
ration of one or more objects in the video sequence of one or
different cameras.

In recent years, researchers worldwide have been influ-
enced by a broad range of real-world applications, including
human activity recognition, video monitoring, visual com-
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pression, traffic control surveillance, and human–computer
interaction. There are three fundamental stages in scene anal-
ysis: moving object detection, object tracking from scene to
scene, and object analysis to observe the behavior. There-
fore, the development of object tracking is relevant to many
purposes. For instance, object tracking has been employed to
enhance the analysis of human activities [1]. In the field of
intelligent traffic systems, many object tracking techniques
have been proposed to address traffic systems, such as traf-
fic surveillance [2]; accident avoidance, especially at traffic
intersections [3, 4]; and pedestrian counting [5, 6].Moreover,
the standard of MPEG-4 video compression [7, 8] exploits
object tracking techniques to provide more encoding bytes to
moving objects in the scene and fewer encoding bytes for the
remaining redundant background scene. Currently, the most
active applications are human–computer interaction, such as
hand gesture recognition [9], which needs a powerful visual
tracking mechanism. Tracking is motivating several compa-
nies, such as Sony and Intel, which have developed cameras
appropriate for visual monitoring, like omnidirectional cam-
eras [10, 11] and smart cameras [12]. Additionally, visual
tracking is used inmodernmedicine. The tracker is employed
to observe the tracking path of protein stress granules in cells
and discover the characteristics of the cell structure [13]. Fur-
thermore,military guidance utilizes visual tracking [14], as in
rocket steering, individual combat systems, unmanned aerial
vehicle (UAV) flight control, and radar detection.

The aforementioned works demonstrate a wide and
mounting benefit in visual tracking in successive video
scenes. Moreover, we can directly observe that the appli-
cations strongly depend on the results achieved by an object
tracking method. If such a tracking method yields inaccurate
outputs and unstable results, it could not be used for such
applications. Therefore, the key to grow these applications
is to overcome the problems associated with visual tracking.
In addition, online robust visual tracking techniques are in
high demand and many works are being developed to deal
with online performance. Unfortunately, several challenges
make visual tracking of objects complex. To create a robust
visual tracking system, some difficulties need to be consid-
ered, which are as follows:

(i) The appearance of the object can be changed by the
position and viewing angle, and it shows a large range
of dimensions and distances.

(ii) The object could be tracked in highly dynamic scenes.
The camera and tracked object are in motion, which
makes tracking and analysis of the movement difficult.

(iii) Real-time processing is one of the main difficulties. A
system should have high-speed performance to work
with live scene sequences.

This paper does not review all existing works in visual
tracking, as many algorithms have been published every year
since the 1990s. Moreover, comparing different trackers is
a non-trivial task. For these reasons, the paper only eval-
uates and compares some state-of-the-art works on visual
tracking. As such, the paper will help researchers, espe-
cially newcomers, understand the performance ofmost of the
existing trackers they need in order to compare their tracker
results in terms of current issues in visual tracking. Another
goal of the paper is to highlight the status of visual track-
ing, provide the challenges associated with the trackers, and
present the research direction of recent publications. In addi-
tion, we debate the quickly rising technique in the tracking
community, which is deep learning, and more specifically,
Convolutional Neural Network (CNNs). We cover many
aspects, measurement analyses, classifications, in-demand
implementations, and the upcoming potential of the tech-
niques.

Our work investigates the approaches of online-learning
tracking, for which the first framemust have a bounding box.
Such approaches can exploit adaptive appearance models,
which aim to expand to consider continuous target defor-
mations. Moreover, these approaches should observe the
drifting issue. The approaches of pre-trained tracking are
not discussed, for which an object is identified earlier than
at system startup. The achievement of pre-trained tracking
relies on sequential video frames, as well as the training
data,which can be considered another problem. Furthermore,
offline tracking is not regarded by our work, which utilizes
the total enhancement of the path by scanning forward and
backward through the video. Offline tracking is generally
based on the needs of medical applications, but we consider
the broader implementation domains of online tracking.

The paper is organized as follows. In Sect. 2, the principle
of tracking is briefly reviewed. In Sect. 3, the paper states
common and milestone visual tracking techniques and dis-
cussions. Then, CNN-based tracking is discussed in Sect. 4.
Finally, the concluding remarks and summary are given in
Sect. 6.

2 Principle of tracking

This section discusses the challenges that impact visual track-
ing. In addition, we present the different metric methods that
are commonly applied to test the output of visual tracking
approaches. We further discuss the principles of the clas-
sifications of visual tracking based on its applications and
methods [15].
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Fig. 1 Different tracking challenges

2.1 Challenges in visual tracking

Many issues appear when tracking through sequential frames
that can potentially cause the failure of object tracking.
Below, we consider a group of the most common challenges.
Figure 1 summarizes these tracking issues.

Illumination changes. The light surrounding an object can
continuously vary from area to area formany reasons, such as
indoor (turning lights on or off) or outdoor (weather, time of
day) lighting. Shadows also impact the lighting conditions.
In the same spirit, reflectance or transparency factors can be
shown in the scene, whose occurrence differs corresponding
to incident light and angle of view. These types of variations
create different color distributions over time on the tracked
object, which disturbs the performance of the tracking mech-
anism.

Cameramotion effects.Many applications require embed-
ding one or more cameras, as in the case of vehicles, drones,
and body-mounted systems. In such applications, it is dif-
ficult to distinguish the motion associated with the tracked
object from the motion associated with the embedded cam-
era. An embedded camera can also produce irregular motion
that cannot be modeled. This motion, in some cases, causes
motion blurring, which deforms the image details, and there-
fore, decreases the visual tracker performance.

Cluttered environment effects.Cluttered scenes are created
by either additional objects, especially objects that are similar
to the tracked object, or highly textured backgrounds. This
confuses the visual tracking algorithm and results in output
drift.

Changes in object model. The tracked object has some
geometric degradation, because the frames are projected
from the 3D space onto the 2D plane. In other words, the
object shape is changed based on 3D-to-2D projection, and
therefore, some information is lost.

Effects of frames quality. The sensors and acquisition con-
ditions impact the quality of the consecutive video frames.

When the video sequence has been compressed, block arti-
facts can be observed. This causes the visual tracker to yield
an undesired output.

Occlusion effects. Other unwanted objects in the scene
may occlude the tracked object. The tracker encounters dif-
ficulties in that case, because the tracked object can be
hidden, either partially or completely, and sometimes, the
most important parts of the object can be hidden from the
tracker scene.

Disappearance effects. The tracked object may enter the
scene, but it leaves temporally due to object motion. In
another case, the object may be visible across two or more
cameras without overlapping in the scene (for instance, a per-
son can enter by one door and leave from another). In these
cases, the visual tracker should memorize the tracked object
and be able to find it upon its reappearance in the scene. The
difference between occlusion and disappearance is that in the
former, the object is covered by another unwanted object,
but the object is still in the scene (e.g., the object is walk-
ing behind wall or the target person is standing behind tree).
In the case of disappearance, the tracked object is removed
completely from the scene for a while, but reappears in either
the same or another camera scene.

Abrupt effects in motion. The motion rate of the tracked
object can change abruptly over the time. This change can
be unpredictable, and therefore, the tracker can misplace the
object location due to incorrect location prediction.

Similar appearance effects. When the video sequence
frames have objects similar in appearance to the target object,
as in the case of tracking vehicles on the road, the differ-
entiation between the correct object and the similar objects
becomes a difficult challenge for the visual tracking algo-
rithm.

A robust visual tracking technique is required to resist the
above-mentioned issues appearing in the successive frames,
which are strongly interesting for the researchers. Moreover,
the quality of the tracker results must cost less in terms
of computational and time efficiency. Today, based on our
knowledge, no approach can satisfy all these requirements.
Therefore, future tracking approaches are still concerned
with these challenges, in different applications such as driver
assistance systems, vehicle navigation, traffic surveillance,
video player analysis, activity-based recognition, human—
computer interfacing, and motion analysis. The visual track-
ing algorithms are classified based on their applications.

2.2 Classification of visual tracking algorithms

Classification by camera movement. Visual tracking algo-
rithms can be categorized based on the condition of the
camera, which is either stationary (static) or non-stationary
(moving). The background is unchanging in the condition
of a stationary camera; therefore, the foreground and back-
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ground can be segmented simply. Several works have been
presented to segment the foreground and background, such as
mixture of Gaussian (MOG) [16, 17]. In the case of a moving
camera, the segmentation process between foreground and
background is a complex step, because both are changing.

Classification by scene.Visual tracking has two scene sce-
narios in existing applications. The first one is tracking using
a single scene, and the second is tracking across multiple
scenes. The single-scene tracking depends on one camera to
track the target object, whereasmulti-scene scenarios depend
on an established network by multiple different cameras to
track the object [18]. In the case of multiple scenes, a unique
identifier for the object is determined and it is tracked the
object continuously using fused images.

Classification by number of moving objects.Visual object
tracking can be divided into two classes based on the num-
ber of moving objects: single object and multiple objects.
Generally, multiple-object tracking is more difficult than
single-object tracking. However, both should perform the
steps of object detection correctly and object extraction pre-
cisely from the video frames. Several factors affect the result
of the detection and extraction steps, such as noise, back-
ground clutter, and illumination. Multiple-object tracking
should tolerate mergers, detection, and occlusion among
these objects. In contrast, in the case of single-object track-
ing, we define one object as the target object and other objects
as the background.

Evaluation metrics of visual tracking. The visual track-
ing algorithm can be compared based on qualitative metrics.
Unfortunately, qualitative metrics are insufficient, especially
when twoormore approaches have similar results. Therefore,
quantitative methods have been used and many quantita-
tive metrics for testing the efficiency of trackers have been
adopted. Typically, the visual tracking performance is com-
pared against the ground truth. This sub-section presents
different quantitative measures, namely the most general
evaluations applied in object tracking. The three main types
of error in tracking are deviations, false positives, and false
negatives. In the deviation case, the deviation error of the
location of the object is computed from the ground truth. In a
false positive result, the object marked is not a target object.
In a false negative result, the object is missed, but it is in the
scene.

The overlap between the detected and ground-truth object
is calculated based on PASCAL [19]:

T i ∩ GT i

T i ∪ GT i
≥ 0.5 (1)

where Ti is the tracked location in scene i and GTi is the
ground-truth location in the same scene. If Eq. (1) is realized,
the tracking approach can be consistentwith the ground truth.
Many researchers have developed PASCAL overlap without

a threshold, calledDice [20], which is similar to the similarity
metric without a threshold. However, most studies apply a
threshold, because it can be used to easily compute metrics
on large videos.

Another popular metric comprises precision and recall.

Precision � ntp(
ntp + n f p

) (2)

Recall � ntp(
ntp + n f n

) (3)

Here, ntp, nfp, and nfn are the number of true positives, false
positives, and false negatives in a sequence, respectively. Pre-
cision and recall can be embedded in the F-score [21]:

F � 2 · Precision · Recall
Precision + Recall

(4)

F1-score [22] is considered, when the area is included:

F1 � 1

Nframes

∑

i

(
2 · pi · r i

pi + r i

)
(5)

Here, pi and ri are:

pi �
∣∣T i ∩ GTi

∣∣

T i
(6)

r i �
∣∣T i ∩ GT i

∣∣

GT i
(7)

Equation (7) considers the average coverage of the tracked
object region and the ground-truth region.

We calculate the object tracking accuracy (OTA) metric
as follows:

OTA � 1 −
∑

i

(
nif n + nif p

)

∑
i g

i
(8)

Here, gi determines the number of ground-truth bounding
boxes in sequence i. The OTA computes how much tracked
object patches match with ground-truth patches. In the same
manner, object tracking precision (OTP) can be expressed
with precision similar to that of Dice [23]:

OT P � 1

|Ms |
∑

i∈Ms

∣
∣T i ∩ GT i

∣
∣

∣∣T i ∪ GT i
∣∣ (9)

Here, Ms refers the number of frames in a video, where the
tracked object area overlaps the ground-truth area. The aver-
age tracking accuracy (ATA) is also similar to OTP [24].

AT A � 1

N f rames

∑

i∈Ms

∣∣T i ∩ GT i
∣∣

∣∣T i ∪ GT i
∣∣ (10)
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Themethod in [25] appliedDeviation, inwhich the central
location error is used as a metric for tracking accuracy:

Deviation � 1 −
∑

i∈Ms
d
(
T i ,GT i

)

|Ms | (11)

Here, d(Ti, GTi) is the normalized distance between the
centroids of patches Ti and GTi [26].

3 Trackingmethods based on online
learning

The challenging task in visual tracking is handling the
appearance variations of a target object. The appearance
variations are categorized as intrinsic or extrinsic. Intrinsic
appearance variations include shape deformation and posi-
tion variation of a target object, whereas extrinsic variations
include changes resulting from varying illumination, camera
motion, camera viewpoints, and occlusion. These variations
should be updated with adaptive mechanisms that have the
ability to continuously adapt their modeling and represen-
tations. Thus, there is an essential necessity for an online
mechanism that learns incrementally. Generally speaking,
existing trackingmethods are classified into generativemeth-
ods and discriminative methods [27].

3.1 Tracking using generative online learning

Generative online learning approaches are used to track an
object by searching for the areas that are most similar to the
target model. The online learning approach is executed in the
tracking algorithm to adapt the representative model of the
target in response to appearance variations.Next, some recent
improvements in online-learning-based generative tracking
approaches are detailed. These approaches are inspired by
the developments in appearance representation.

The deficiency of appropriate appearance representation
is a crucial aspect that weakens the results of visual tracking
algorithms. Classical template matching tracking procedures
cannot handle appearance variations, because they use static
models. Therefore, dynamic templates based on online learn-
ing are adopted to model the appearance variations of an
object due to changes in illumination and posture.

Jepson et al. [28] applied the online expectationmaximiza-
tion (EM) technique and adopted a wavelet-based mixture
model to improve the appearance representation and interpret
the tracking factors efficiently. Zhou et al. [29] included the
EM based algorithm for updated appearance representation
with a particle filter to improve performance. This method
has two EM processes, one for improving the appearance
representation and the other for concluding the tracking fac-
tors. Tu and Tao [30] developed an online EM method to

calculate the appearance representation characteristics and
improve the histogram space through incoming observations.
The EM has efficient characteristics in terms of stability and
simplicity. However, the high number of iterations can cause
the result to easily reach a local optimum, and the slow con-
vergence can cause target loss and tracking failure.

Fussenegger et al. [31] presented an online method that
can adapt a shape model of fewer dimensions by utiliz-
ing incremental principal component analysis (IPCA). This
method preserves the latest model of the object to learn vari-
ations in the object itself and variations in the surrounding
observation. However, in each update, only one sample is
dealt with. Yang et al. [32] converted the scene to the grids
of histograms of oriented gradients (HOG). Therefore, the
IPCA–HOGdescriptor has beendeveloped to allow the track-
ing process to address variations in the appearance as well
as the cluttered scene. Chiverton and Xie [33] developed an
online updating method based on an active contour shape
and a bootstrapping stage. The bootstrapper has been used to
obtain the shape characteristics repeatedly from successive
scenes. Chiverton et al. [34] applied a memory for object
features in a high-dimensional shape coordinate to adapt
high-level shape information online. These shapes have been
utilized to determine templates. The essential limitation of
this technique is that it is unsuitable for real-time processing
due to its inappropriate computational speed. Furthermore,
similar to many active contour tracking methods, effective
tracking follows an empirical selection of factors that adjust
the relative contribution of the different model components.

Liu et al. [35] applied a tracking method based on online
learning with hybrid models that contain several forms of
features, including sketch, texture, and flatness. The hybrid
model is learned by computing the most discriminative fea-
tures from the foreground. Then, the model is developed by
modifying the feature confidences and removing the older,
less discriminative features with the newer, more discrimi-
native ones from the current scene. Several types of features
are used with each other to more fully represent the target
than a single feature could. One main weakness of these
approaches is the lack of clear removal of the invalid patches
during template preservation. To address this issue, Xu et al.
[36] derived a hyper model, using HOG, center-symmetric
local binary patterns, and color histograms to depict the local
statistics of edges, textures, and flatness of objects, which are
automatically adjusted online by combining new, efficiently
selected patches computed from the fusion of the matching
templates and the prospective set.

Kwon and Lee [37] divided the observational paradigm
into multiple fundamental observational paradigms to com-
pute the appearance of the object. Each fundamental observa-
tional paradigm contains a certain feature of the appearance
of the target and is created dynamically at each time step
by sparse principal component analysis (SPCA). The global
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tracker is started from various fundamental trackers cor-
responding to the fundamental observational template and
motion templates. Each tracker covers a specific variation
in the object or its surroundings and increases the method
stability to numerous variations. However, this technique is
insufficient for difficult tracking tasks with severe variations
between scenes, because of the fixed number of basic track-
ers.

To address this issue, Kwon and Lee [38] used a tracker
sampler to determine multiple suitable trackers from the
tracker space dynamically to update to certain variations.
The result of this method is very good, even in a real scene.
However, compared with the multi-feature model, the com-
putation of effective templates increases the cost of the
computation. Thus, without further enhancement, the algo-
rithm cannot be applied to real-time tracking.

Instead of applying a simple methodology to derive the
appearance model for tracking, an online learned subspace
representation is employed to provide a compact representa-
tion of the object and indicate appearance variations through
tracking. The subspace probabilisticmodel provides an effec-
tive calculation.

Ross et al. [39] developed an adaptive probabilistic track-
ing method based on an inference probabilistic Markov
model to adapt the templets of an object by means of
incremental eigenbasis updates. Then, in consideration of
the changing sample mean over time, an incremental mean
update has been incorporated into the learning method [40].
Owing to intrinsic and extrinsic parameters, the appearance
of the object has been learned in order to handle varia-
tions based on a low-dimensional eigen space representation.
Moreover, an impact-lessening parameter was added into the
incremental subspace update process to decrease the impacts
of earlier observations on the existing appearance model
based on IPCA. This technique adapts the appearance pattern
more suitably in order to increase the overall tracking result.
An online incremental method based on an appearance class
was developed by Lee and Kriegman [41]. It is implemented
by a combination of sub-groups and the connectivity between
them.Each group is described by a principal component anal-
ysis (PCA) domain. This method uses a previous appearance
model of a class of objects into the appearance model of an
object of this class by incrementally learning online from
the successive frames, including the target instance. Because
of the use of hyper structures, this method has better strate-
gies than the online update method to obtain a more accurate
appearance model. The limitation of this method is that a
previous model is demanded. In other words, the algorithm
tracks an object if it has a model of the object class being
tracked.

In all of the above-mentioned frameworks, the tracking
relies on image-as-vector representations, which do not obvi-
ously use the spatial information within the image pixels.

Researchers introduced image-as-matrixmethods or high-
order tensors to form representations of image pixels. Li et al.
[42] developed a three-dimensional (3D) temporal represen-
tation for incremental learning using adaptive updates of the
sample mean and eigenbasis. This method succeeded in rep-
resenting the appearance of an object more informatively.
Wen and Gao [43] combined the retinex image with the
original image by defining a weighted subspace representa-
tion of an object to consider the illumination variations. The
online learning mechanism adaptes the appearance model
and the different illumination due to the light reflectance.
This approach does not update, but empirically determines
the weight based on the representation. For more informative
modeling, the target features to construct covariance matri-
ces in five modes are applied to consider both spatial and
statistical parameters of the object appearance [44]. Each
mode of the object updates the eigen-basis and sample mean
online to incrementally learn an eigenspace representation
to handle appearance variations. The covariance calculation
has a computational burden and cannot be embedded in real-
time applications. Wu et al. [45] introduced a framework to
lower the computational burden using incremental covari-
ance representation updates. The current covariance model
computation depends on weighting to give newer samples
greater impact.

Lu et al. [46] proposed a subspace learning method that
depends on exploitation of a locally-connected graph (LCG).
The semantic subspace representation is trained by creating
a supervised graph with some labeled object features. The
LCG integrates the objects with minor negative features to
have a robust subspace through the projection, which is built
before the tracking process. Features of the object are catego-
rized based on semantic details into some categories such as
illumination, occlusion, and rotation. The LCG uses added
label rules to define the subgraph of each class to generate a
better informative and reasonable graph to tackle the drifting
issue [47].

The appearance template of the target is defined in sparse
constraints by a linear combination of only a few basis vec-
tors. The tracking is derived by comparing features with
sufficient accuracy in a learned template subspace.

In Mei and Ling [48], the object can be defined as a lin-
ear combination of the online updated object samples and
negative samples. Then, tracking is considered as a sparse
calculation task. The sparsity is realized by determining a
least squares problem. However, partial occlusion, appear-
ance changes, and other challenging cases are regarded
through an error vector represented by the group of negative
samples. This approach showed a stable tracking outcome
through experiments. However, it does not handle abrupt
pose variations or full occlusion of the object. Liu et al.
[49] developed a two-step sparse enhancement method for
tracking (Two-step Sparsity Tracking, TST). A sparse set of
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samples is adopted to decrease the target remodeling error
and increase the discriminative power. The template set and
the training set are adapted online to improve the efficiency of
the tracker. This approach does not address partial occlusion
in the case of modeling of the target as a single entity.

Liu et al. [50] applied a basis distribution that updates
automatically online and a fixed sparse dictionary to repre-
sent the appearance of the object. Chen et al. [51] represented
the appearance of the object with the actual intensity pixels
of the object region. A similarity measure is used to com-
pute the distance between a tracked object and the updated
appearance template. The maximum a posteriori approxima-
tion is employed to calculate the object conditions in each
frame over time, depending on Bayesian inference.

The model of Jia et al. [52] learns online, depending
on sparse representation and incremental subspace learn-
ing (ISL) to account for the partial occlusion and drifting
issue. The learned framework reinforces the tracker to toler-
ate the changes in an object appearance. Lu et al. [53] used the
geometrical information of the object template set based on
sparse representation. This approach is called non-local self-
similarity regularized coding, and it utilizes K-nearest neigh-
bors (KNNs) to model the structural features of the object.
In this model, the weights of the templates are then learned
to account for the appearance variations. It has a robust per-
formance, but the tracking speed restricts its application.

3.2 Tracking using discriminative online learning

Discriminative online learning frameworks, called tracking
by detection, handle object tracking as a classification task.
They simultaneously exploit features of the object and the
background. A binary classifier is used to discriminate the
object from its background, and it is trained online to address
variations in the environment and appearance. This classifier
utilizes features from both the object and the background.
Next, the various discriminative tracking frameworks that
are dependent on online learning are presented by category,
according to where the online update technique is applied.

The discriminative tracking frameworks depend directly
on the feature space employed. If the features of an object are
readily distinguished from its surroundings, the tracker will
usually be able to track it. The updated online feature space is
applied for visual tracking, instead of applying a static group
of features that is specified a priori. These frameworks adap-
tively rank the features, and the highest ranked discriminative
features are used in the tracking mechanism.

In [54], training features were extracted from raw images
using RGB coordinates. Then, the color transform function
wasused to convert theRGBspace into different color spaces,
such as normalized RGB, XYZ, YCbCr, and YIQ. Finally,
linear discriminant analysis (LDA) is used to build a his-

togram for tracking using a single-color coordinate, which is
decided online.

Collins et al. [55] developed an adjustable online frame-
work to improve and update the proper features for track-
ing. All features are ranked by computing the distinctions
between the object and the background features over time,
to determine the most appropriate features to handle the
appearance. Then, the selected features are used to iden-
tify pixels in the current frame for association with either
the object or background category. Both of these two pre-
vious approaches utilize color information, which does not
have a perfect discrimination property under many condi-
tions, to account for the object and background. For example,
the tracker loses the object when the object and background
areas have identical or very similar color information over
successive frames. Nguyen and Smeulders [56] embedded
textural features to enhance themodeling of the object and the
background.Changes in foreground appearance are exploited
with features extracted from Gabor filters. This framework
is generally robust, but textural features increase dimension-
ality, which makes it invalid for real-time purposes.

In Wang et al. [57], the feature selection method in the
particle-filtering process has the advantage of using the cur-
rent background particles. The Fisher discriminant technique
is applied to determine the online discriminative features in
a large feature space. However, this approach is also inef-
ficient in real time, because of the number of features and
the characteristics of the particle filter. Li et al. [58] used
2D LDA to compute a 2D image matrix instead of trans-
forming 2D images into vectors. The method recursively
computes an improved projection subspace, by only updat-
ing the model at specific frame intervals rather than for every
frame, resulting in less computation time. However, tracking
failure may occur, when there is large variation between suc-
cessive updates, such as an abrupt occlusion or a change in
the other side of the face.

Specific features of an object can be used to train an online
binary classifier.We cannot have sufficient appearance infor-
mation of the object; therefore, the binary classifier should be
continuously updated to compensate for the insufficiency of
training features. The dependence of the classifier on online
learning techniques is considered. The object initial location
is determined in the current frame, and then, the classifier
computes various probable locations in the surrounding area
for successive frames. Avidan [59] applied adaptive boost-
ing (AdaBoost) to build a robust classifier by integrating
an ensemble of weak classifiers. Each individual classifier
is developed online with several training samples based on
an 11D histogram of feature coordinates, including a local
orientation histogram and pixel colors. Then, the pixels in
the following frames are assigned using a strong classifier,
labeling them as either object or background and generating a
confidence map. The new object location is defined using the
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highest confidence score in themap. This approach requires a
small amount of computational time; however, it is sensitive
to noise samples disturbing the tracker performance.

The methods discussed so far handle variations in appear-
ance, cluttered backgrounds, and short-term occlusion. How-
ever, drifting can occur due to the accumulated errors in accu-
racy. To address this issue, the semi-supervised AdaBoost
classifier has been developed [60]. The classifier updating
process is controlled by a second classifier trained on the first
frame. The method categorizes features extracted from the
first frame only, and subsequent training features are uncat-
egorized. The performance is unsatisfactory due to tracking
errors as a result of extracting sub-optimal positive features.

The online multiple-instance learning (MIL) approach
[61] has been developed to solve this difficulty. The clas-
sifier is updated, when the existing tracker patch is captured
as positive features and the surroundings as negative fea-
tures, because the object may not be fully present in the
bounding box, or it may dominate most of the background.
An object area is considered with additional bounding boxes
within close range to generate a positive set. Multiple neg-
ative sets are extracted using bounding boxes with a distant
range. Next, the Haar method is applied, as follows. Prospec-
tive bounding boxes are prescribed uniformly in a circular
region around the original area. The maximum classification
score is used to define the updated location of the object
in the MIL, and the classifier coefficients are updated with
the new data points. The MIL framework is computation-
ally expensive due to ambiguity between samples of positive
sets. Batch-mode adaptive MIL (Li et al. [62]) was designed
to reduce the computation time, by separating training sets
into batches instead of applying them all at once, allowing
real-time tracking.

For long-term tracking, Kalal et al. [63] developed an
efficient method that divides the process into tracking,
learning, and detection (TLD). For the tracking part, a short-
term approach is used, based on the Kanade–Lucas–Tomasi
method, and random forests are used in the detection stage
[64]. A positive–negative (P–N) learning module computes
false positives and false negatives. The object is defined in the
first frame, and then, the pattern is observed by the detector
using two-bit binary patterns differentiated from surrounding
background patterns. In the subsequent frame, the detec-
tor determines the locations of the top 50 scores, and then
each potential candidate window is computed using normal-
ized cross-correlation.Next, the prospectivewindowwith the
greatest similarity to the object is labeled as the same object.

Positive samples are considered to be in the vicinity of
the object after the new location is determined, and negative
samples are considered to be further away from the object.
The main advantage of this method is the ability to learn a
new appearance and to avoid repeating mistakes. However,
it also has several challenges. For example, TLD cannot pro-

vide good results in the case of a rotation out of the original
plane. For the case where an object leaves the field of view,
Hare et al. [65] developed a method named Struck, which
relies upon a multi-structured output support vector machine
(SVM). It explicitly learns a prediction function to directly
compute the object transformation in-between output frames.
Alternatively, to address the drift issue, Zhang et al. [66] pro-
posed a multi-expert restoration structure instead of learning
one classifier only.

Bolme et al. [67] added correlation filters (CFs) into
the tracking process, and proposed the minimum output
sum of squared error (MOSSE) filter. This process con-
verts the essential convolution operations in the time domain
into simple additions and multiplications in the frequency
domain. The MOSSE performs favorably against state-of-
the-art trackers with 600 frames per second. The CF-based
tracking algorithms have grown in popularity within the
tracking community. Heriques et al. [68] introduced a cir-
cular structure kernel (CSK) algorithm that adopts a dense
sampling training pattern created by circular shifts of an input
image patch. TheCSK tracker relies on illumination intensity
features. It has been developed to use more robust features
such as the histogram of oriented gradients (HOG) in ker-
nelized CFs (KCFs) [69], and color attributes or color names
(CNs) [70].

Danelljan et al. [71] combined two independent CFs for
robust scale computation. Prior to this, CF-based trackers
could not handle a scale change in the target. Li and Zhu
[72] applied a multi-resolution extension of a KCF (denoted
SAMF) for scale changes. Danelljan et al. [73] simultane-
ously computed the scale and translation of the target object
while minimizing the search space. In another study [74], the
color histogram was proposed, and channel and spatial reli-
ability were developed. HOG attributes are not sensitive to
motion blur or variation in illumination, while CN features
maintain robustness to shape deformation. Combining the
advantages of using HOG and CN, Bertinetto et al. [75] cre-
ated the STAPLE tracker, which produces outstanding results
compared to state-of-the-art methods.

3.3 Tracking using combined online learning

Generative approaches can efficiently handle the object
appearance, but they have poor performance in complex
backgrounds. On the contrary, discriminative approaches
have the ability to model complex backgrounds and signifi-
cant appearance variations. Nevertheless, the discriminative
approaches cannot handle high noise and generally do not
incur drifting. Furthermore, the discriminative approaches
can be interrupted by other objects that have a similar appear-
ance. Thus, many researchers have developed frameworks to
combine the advantages of both approaches to create a robust
tracker.
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Lin et al. [76] proposed a discriminative generative frame-
work. The generative method is applied online to track
the observational model and the discriminative method is
adopted to compute the next position of the object. Zhang
et al. [77] introduced a framework based on graph-based
discriminative tracking. This framework integrates Fisher
discriminant analysis (FDA) and ISL for tracking. The target
subspace and the pattern models of graphs are learned online
concurrently to collect the appearance variations and derive
the object from its background. This framework attempts
to preserve within-class compactness to adjust the position.
However, it suffers from the drifting error that is accumulated
as the track progresses.

Yu et al. [78] proposed a co-training technique to incorpo-
rate both generative and discriminative models. The genera-
tivemodel depends on subspace features in online learning to
model the object appearance and learn different appearance
variations. The discriminativemodel depends on the continu-
ously updated support vector machine (SVM) classifier with
HOG features. The SVM is updated and trained to capture
the new appearance. This framework is robust and efficient,
but abrupt appearance and occlusion disrupt the tracker per-
formance. Yin and Collins [79] introduced a framework to
mitigate the accumulated pixel classification inaccuracy.This
framework applies the global shape and region-based proba-
bility of the object boundary.Yang et al. [80] proposed a novel
tracker that depends on a particle filter and sparse represen-
tation. Each object can be modeled by object templates and
surrounding templateswith an additional representation error
to learn appearance variations. Both templates of the object
and its surroundings are embedded into a voting method to
differentiate between the object and the background.

4 CNN-based tracking

Machine learning has been revolutionized by deep-learning
methods, and so, the tracking community has been working
to glean from this subject area to improve visual tracking
methods. In general, traditional tracking techniques, includ-
ing online learning techniques, employ man-made features
to improve robustness. Over the last 5 years, deep-learning
techniques [81] have produced good results in feature extrac-
tion via multi-layer nonlinear transformations in numerous
applications. These include computer vision [82, 83], speech
recognition [84, 85], and natural language processing [86,
87]. This means that deep-learning processes automatically
obtain groups of features from the given images [88]. Prepro-
cessing steps may be used, such as the pyramidal technique
[89]. As first described in 2006 [90], the key feature of a
deep-learning model is its layers. Essentially, they depend
on the multi-layered architecture of data representation that
is performed within the neural network, and they extract the

characteristics directly from the raw input. For image anal-
yses, architecture layers learn from the adjacent chain, e.g.,
pixels, then edges, then groups of edges, then shapes.

A deep-learningmodel is configured by several neurons in
various hidden layers. The hidden layers represent the inputs
to higher-level mapping. Generally, the aim of implementing
deep learning within tracking is to distinguish patterns more
quickly and accurately than a human does, thereby enhancing
the efficiency of video applications.

The main advantages of deep-learning methods are as fol-
lows:

(i) Development of efficient representations and produc-
ing new architectures to update and learn these repre-
sentations from large-scale unlabeled data.

(ii) The ability to directly deduce a complex set of features
at a high level of abstraction.

(iii) The ability to learn low-level features from minimally
processed input samples.

(iv) The ability to make decisions using a large number of
datasets.

Typically, deep-learning networks are divided into five
main groups: convolutional neural networks (CNNs), deep
belief networks (DBNs), stacked auto-encoders, deep Boltz-
mann machines (DBMs), and deep residual learning (DRL)
networks.

4.1 History of deep learning

Historically, deep learning has been used since the inception
of artificial neural networks (ANNs) [91]. ANN meth-
ods have brilliantly dominated in the previous decades for
recognition, segmentation, enhancement, and prediction in
the areas of industry, biology, finance, robotics, marketing,
medicine, manufacturing, and detection of moving objects
[92]. In 1980, the perception of deep learning began when
the neocognitron model was suggested by Fukushima [91].
LeCun et al. [93] designed a method to address the recog-
nition issue of hand-written ZIP codes by utilizing the
back-propagation technique in a deep neural network. How-
ever, this method had significant drawbacks which made it
impractical to use, as the training time was unreasonable.
However, deep neural networks have been applied to speech
recognition for several years [94].

Over the next two decades, many research groups
attempted to reduce the time cost of the tracking. Hinton
[90] achieved great outputs for training multi-layer DBNs
by applying an unsupervised restricted Boltzmann machine
to pre-training of a single layer at a time. Then, a super-
vised backpropagation method was exploited for additional
improvements. After that, several research domains imple-
mented a primitive deep-learning model to handle various
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Fig. 2 Percentages of different deep-learning architectures

issues. The parallel configurations of hardware and software
have resulted in magnificent achievements in deep-learning
methods in recent developments [95, 96]. Several models
of deep learning have been proposed. Milestone models are
CNNs [97], stacked autoencoders [98], and recurrent neural
networks (RNNs) [99].

4.2 CNN-based tracking

The CNN model attracts most researchers with its impres-
sive performance, particularly in the computer vision area.
Figure 2 shows the percentage of different deep-learning
architectures in recently published works for object detec-
tion, recognition, and tracking. We can easily observe that
the CNN technique is used in 66% of the applications [100].

The CNNs are composed of a multi-layered artificial neu-
ral network architecture. Each layer contains several neurons.
During the first step, the convolutional layers apply a con-
volution operation between filters and patches of the input
image, outputting a feature map. In the second step, each
convolutional layer feeds into a layer that applies a nonlinear
function to the feature map. The third step is to down-sample
the feature map to decrease its features. Down-sampling can
be done in several ways, such as minimum, average, or maxi-
mum pooling. Based on the application, these three steps are
continuously iterated until the desired high-level feature map
is extracted. Finally, the fully-connected output layer gener-
ates a certain number of class outputs. The main advantages
of the CNN are that it is simple to train, and less dependent
on earlier iterations of the model and on human knowledge
compared to other methods. It directly receives the 2D input
data structure, and can also receive the 3D input. Ta
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Fig. 3 Precision and success plots of compared trackers on the basis of the OPE manner over 13 video sequences for challenging attributes, a FM,
b MB, c IV, and d BC
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Fig. 4 Qualitative comparison of selected trackers on the a Deer, b Tiger1, c Toy, and d BlurCar1 sequences

The CNN-based tracking techniques are either generative
or discriminative, similar to conventional trackering tech-
niques. The generative techniques use a similarity metric to
estimate object template matching within a certain search
area. The discriminative techniques apply binary classifica-
tion in the CNN scheme to effectively distinguish the object
from its background. To utilize a CNN-based tracker, a con-
venient and simple approach is to substitute hand-crafted

features with deep features, captured from the CNN using a
popular tracking method, such as the CF.

4.3 CNN-based classification tracking

The spatial information in the last convolutional layer cannot
accurately determine the object position. In contrast, earlier
CNN layers define an accurate position, but have less robust-
ness from the appearance model perspective. Therefore, Ma
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Fig. 5 Qualitative comparison of selected trackers on the a BlurFace, and b Box sequences

et al. [101] used a visual geometry group network (VGGNet)
[102] to capture the features of the last convolutional layer.
These features represent the semantic resolution that com-
petes with coarse appearance changes. They introduced
three different convolutional layers (Conv3–4, Conv4–4, and
Conv5–4) with three CFs and then collected their associated
output maps to derive the object.

Hong et al. [103] extracted discriminative saliency maps
using the CNN, then embedded them into an online SVM
to update and account for appearance variations. Moreover,
the deep layers are implemented not only to capture features,
but also to classify them. The deep spatially regularized dis-
criminative CF (DeepSRDCF) [104] approach exploits the
featuremap from the CNN layer to the framework of SRDCF
[105]. Zhu et al. [106] applied the CNN layers in a similar
manner to a faster region CNN (FR-CNN) to create object
patterns, which are combined into an online SVM to com-
pute the object appearance. The CCOT [107] and the ECO
[108] form a tracker based on a continuous convolution filter.
In the CCOT, the tracker adopts features from three convolu-
tional layers by applying a pre-trainedVGGNet and updating
a discriminative continuous convolution operator to increase
robustness. The ECO incorporates deep features: along with
handcrafted featuresHOGandCN, and the convolution oper-
ator is factorized to improve the number of parameters. The

UPDTmodel [109] developed the fusion of shallow and deep
features to fully exploit the benefits of CNNs.

4.4 CNN-basedmatching tracking

Recently, the Siamese neural network has gained attention in
the area of object tracking. Many researchers have utilized
the CNN architecture to learn robust matching methods. In
one previous study [110], the developers of the GOTURN
modified the Siamese neural network to carry out object
tracking for pairs of consecutive frames and adopted a feed-
forward network without online training through regression.
The developers of SINT [111] introduced a Siamese neural
network architecture to compute the similarity between an
object pattern in the first frame and candidates in the next
frame. This method performs visual tracking as a validation
task, which determines the optimal conditions based on the
maximum matching score. Bertinetto et al. [112] proposed
a fully-connected Siamese model to correlate the object pat-
tern with the recent search region in a CNN. Chen et al.
[113] developed a generic framework using an efficient two-
flow CNN model to combine two inputs, one for the object
image patch and the other for the search region patch. The
method estimates the appearance of the object within a cer-
tain area. Valmadre et al. [114] applied CFs to the different
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Fig. 6 Qualitative comparison of selected trackers on the a Skating1, b Crowds, and c Basketball sequences

output features of a layer within the Siamese architecture.
The FlowTrack [115] introduces rich traffic information in
successive frames to increase feature coding and tracking
performance.

The developers of SiamFC [116] were the first to adopt
CFs to the Siamese network. The developers of CFNet
[117] enhanced SiamFC by applying a CF to the exemplar
branch to learn the template representation, which makes
the Siamese network more robust to appearance variations.
Kuai et al. [118] used target object and target template
models to improve the efficiency of SiamFC. The develop-
ers of Re3 [119] introduced a recurrent network to extract
enhanced features created by exemplar branches. In DSiam
[120], appearance changes in the target and background can
be updated and learned from previous frames online. Dong
and Shen [121] adopted a triplet loss operation to increase

the robustness of SiamFC and CFNet. The developers of
SiamRPN [122] used a Siamese region proposal network
(RPN) to compute the bounding boxes of targets.

Deeper and wider Siamese networks [123] depend on a
deeper and broader CNN to improve the efficiency of track-
ing. This method reduces the negative effects of padding,
while managing perceptual domain size and network stride.
The architecture of this design is very lightweight, and the
output is enhanced while ensuring real-time performance.
The developers of SiamMask [124] used a simple frame-
work that is able to perform both tracking and segmentation
simultaneously in real time. This method improves the full
convolutional Siamese neural network by adding a mask
branch for target tracking and segmentation.
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Fig. 7 Qualitative comparison of selected trackers on the a David3, and b Football1 sequences

5 Experiments and analysis

In this section, we evaluate popular benchmark OTB [125]
and highlight advantages of using different visual trackers.
We outline the trackers used, and then analyze, compare, and
discuss the experimental output. Finally, we summarize our
conclusions. All trackers were run inMATLABon aDesktop
PC with 2.9 GHz CPU and a GTX 1080 Ti GPU.

5.1 Tracking algorithm

We considered 13 visual trackers: TLD [63], MEEM [66],
CSK [68], KCF [69], SAMF [72], DSST [73], CSRDCF [74],
STAPLE [75], CF2 [101], CNN-SVM [103], DeepSRDCF
[104], CCOT [107], and ECO [108], all of which have dis-
played good performance with popular benchmarks. We ran
the source codes published by the authors and used track-
ing results for experimental comparisons. The trackers were
compared in the presence of fast motion (FM), motion blur
(MB), illumination variation (IV), background clutter (BC),
and occlusion (Figs. 4, 5, 6, 7, 8). Table 1 displays these
results quantitatively, with the results of different tracking

algorithms listed for different sequences. Figure 3 presents
the precision and success plots of the one-pass-evaluation
(OPE) measurement.

Trackers using deep learning-based clearly outperformed
the traditional trackers. The ECO, CNN-SVM, CF2, and
CCOT trackers did much better than the others. Based
on these results, we conclude that the utilization of
deep-learning features substantially improves tracking over
human-developed methods. This may be related to the
CNN layers, which depend on parameters sharing local
connectivity make the image feature extraction more use-
ful.

Many deep-learning-based methods utilize convolu-
tional features from a single layer, while others, such
as trackers, utilize a combination of multiple convolu-
tional layers. The deep-learning models for the track-
ers in this study were pre-trained prior to tracking, and
were not updated during the tracking process. An impor-
tant benefit of this process is that the deep-learning
models do not require additional computation and mem-
ory space. Therefore, research into improving the per-
formance of combining pre-training and online learning
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Fig. 8 Qualitative comparison of selected trackers on the a Rubik, and b DragonBaby sequences

within the deep-learning models could be extremely valu-
able.

5.2 Qualitative comparison on different attributes

Fast motion. Qualitative comparison results on the fast
motion sequences: the challenging Deer, Tiger1, Toy, and
BlurCar1 sequences, are presented in Fig. 4.

Motion Blur. Qualitative comparison results on the
motion blur sequences: the challenging BlurFace, and Box
sequences, are presented in Fig. 5.

Illumination variation. Qualitative comparison results on
the illumination variation sequences: the challenging Skat-
ing1, Crowds, and Basketball sequences, are presented in
Fig. 6.

Background clutter. Qualitative comparison results on
the background clutter sequences: the challenging Skating1,
Crowds, and Basketball sequences, are presented in Fig. 7.

Occlusion. Qualitative comparison results on the occlu-
sion sequences: the Rubik, and DragonBaby sequences, are
presented in Fig. 8.

5.3 Discussion and analysis

It is clear that the deep-learning trackers have much smaller
average central errors than traditional trackers, for most of
the sequences (Table 1), and the ECO tracker performed the

best overall in terms of central error. As shown in Table 1,
to test each tracker, we considered Deer, Tiger1, Toy, Blur-
Car1, BlurFace, Box, Skating1, Crowds, Basketball, David3,
Football1, Rubik, and DragonBaby sequences, which have
various challenges as outlined in the following.

DeepSRDCF enhances tracking outputs using convolu-
tional features and spatial regularization penalties. However,
it did not successfully tackle deformation (Basketball) or
occlusion (DragonBaby). The CF2 utilizes different convo-
lutional layers to train multiple CFs. However, it did not
successfully handle an object with FM and in-plane rota-
tion (BlurFace). The CCOT tracked objects in most of the
selected video sequences

The objects in Deer (Fig. 4a) and Tiger1 (Fig. 4b) have
abrupt motions, along with appearance changes caused by
motion blur, which makes them difficult to track. Nonethe-
less, most trackers handled the Deer sequence with some
drift, but the TLD tracker did not perform well. Due to the
weak re-initialization mechanism in the TLD, it may detect
a non-target object with a similar shape as the target (Deer
43). For the Tiger1 sequence, the deep trackers (ECO, CF2,
and CNN-SVM) tracked well, whereas the other trackers
(MEEM, CSK, KCF, SAMF, DSST, CSRDCF, and STA-
PLE) did not. This is attributed to the repetitive motion in
the sequence, along with the fact that the latter trackers do
not have a re-initializationmechanism, and hence they cannot
locate a target after failure.
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Table 2 Comparison of trackers speeds

Trackers Speed (FPS)

TLD [63] 12

MEEM [66] 17

CSK [68] 151

KCF [69] 141

SAMF [72] 11

DSST [73] 20

CSRDCF [74] 15

STAPLE [75] 43

CF2 [101] 10

CNN-SVM [103] 9

DeepSRDCF [104] 5

CCOT [107] 8

ECO [108] 7

Figure 6 shows the results from three complicated
sequences where illumination is variable. In the Skating1
sequence, a drastic lighting change occurs when the skater
moves around the lights. As a result, MEEM, CSK, KCF,
and SAMF suffered from severe drift at frames 180 and 379,
while the CNN-SVM, DeepSRDCF, CCOT, and ECO track-
ers performed well.

5.4 Tracking speed analysis

Several parameters influence the computational speed of
trackers, aside from different user platforms. These include
the bounding box size of the target object, the number of fea-
tures, the searching bounding box, the number of iterations,
and the type of the classifier. As an example, classification
trackers perform faster thanmatching trackers.Most existing
deep-learning trackers adopt a CNN to model the varia-
tions in appearance. Some use a CNN to separate the object
from its background, while others use it to match candidates
with the object. Classification of positive features with neg-
ative ones is faster and simpler than matching two features.
Therefore, CNN-based classification trackers have faster per-
formance than CNN-based matching trackers, because most
CNN-based trackers adopt the Siamese neural network to
represent prior information, instead of fine-tuning online. In
the MIL tracker, when the number of Haar features becomes
larger, the frame rate is lower, but the robustness increases.
The average speeds of all the 13 trackers are listed in Table 2.

6 Conclusion

In tracking, the main critical issue is appearance variations
that prevent the tracker from localizing the object efficiently

and correctly. Therefore, online learning techniques are being
developed to combat sharp appearance variations during
tracking. In this paper, the milestone visual object tracking
methods basedononline learningwere discussed considering
generative and discriminative methods. The main concepts
and features of these frameworks have been presented at the
beginning of Sect. 3. To summarize, generativemethods con-
sider only the object appearance without background details.
In contrast, the discriminative methods compute a boundary
region to differentiate the object from its surroundings by
considering details on both the object and the background.

In the visual tracking community, the number of
successfully-tracked objects and the error of the average
position are used to quantitatively assess the tracking result.
Generally, discriminative methods have better results than
generative ones, if they have sufficient instances. However,
if the number of samples embedded in the training step is
small or inadequate, generative methods often have better
performance than discriminative ones. Finally, the issue of
finding an innovative framework that combines effectiveness
and precision or adaptation and balance is still an open and
vital issue in visual tracking.With the large improvement that
CNNs have provided in recent years, impressive CNN archi-
tectures can be applied to perform the visual tracking tasks. It
is hoped that this presentation of tracking frameworks, which
are dependent on online updating, will provide a valuable ori-
entation to new-comers and researchers in related domains.
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