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Abstract
Recent advanced deep learning studies have shown the positive role of feedback mechanism in image super-resolution task.
However, current feedback mechanism only calculates residual errors of images with the same resolution without considering
the useful features that may be carried by different resolution features. In this paper, to explore the potential of feedback
mechanism, we design a new network structure (progressive up- and downsampling back-projection units) to construct a
generative adversarial network for single image super-resolution and use progressive growing methodologies to train it.
Unlike previous feedback structure, we use progressively increasing scale factor to build up- and down-projection units,
which aims to learn fruitful features across scales. This method allows us to get more meaningful information from early
feature maps. Additionally, we train our network progressively; in the process of training, we start from single layer network
structure and add new layers as the training goes on. By thismean, the training process can be greatly accelerated and stabilized.
Experiments on benchmark dataset with the state-of-the-art methods show that our network achieves 0.01dB, 0.11dB, 0.13dB
and 0.4dB better PSNR results than that of RDN+, MDSR, D-DBPN and EDSR on 8× enlargement, respectively, and also
achieves favorable performance against the state-of-the-art methods on 2× and 4× enlargement.

Keywords Back-projection · Progressive growing · Generative adversarial networks · Single image super-resolution

1 Introduction

Machine vision, as one of the most significant research-
ing field of deep learning has already obtained substantial
achievements [1–6]. Recently, this trend has also occurred in
image super-resolution (SR) field, wheremany extraordinary
works have shown up [7–12]. Our design draws significant
lessons from thoseworks,makinggooduseof their ideas, the-
ory and methodology to make a new generative network that
achieves even better performance on image super-resolution
task.

Single image super-resolution (SISR) is designed to gen-
erate visually pleasing high-resolution (HR) images through
its degraded low-resolution (LR) input. SISR is used for vari-
ety of computer vision tasks such asmedical [13] and security

B Wenhong Tian
tian_wenhong@uestc.edu.cn

Tingsong Ma
201811090811@std.uestc.edu.cn

1 University of Electronic Science and Technology of China,
Chengdu, China

image [14]. The biggest problem of SISR is that there are
tremendous possible choices existing for the given LR image
to generate a HR image, and we do not know which option is
right. To address this problem, plenty of image SR resolution
have been proposed, some of which are based on interpola-
tion [15] and some are based on reconstruction [16]. But the
most popular and best approaches are learning-based meth-
ods [10,17–23]. These learning-based approaches compute
a sequence of feature maps from LR image, increasing res-
olution by going through one or multiple upsampling layers
and finally generate the HR image.

Christian et al. [24] firstly introduce a generative adver-
sarial network for single image super-resolution problem and
achieve significant improvement over conventional methods.
After this, Kim et al. propose DRCN [25] and VDSR [10] by
increasing the network’s depth and using gradient clipping,
RNN, skip connection and recursive supervision to ease the
difficulty of training deep network. DRCN also learns the
difference between a HR image and a LR image, that is, to
restore the high-frequency portion of the image, which helps
DRCNget better performance. Lim et al. propose a verywide
network EDSR [26], which uses residual blocks and scaling.
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They also propose a very deep networkMDSR [27]. Further-
more, Yulun et al. propose a novel residual dense network
RDN [28], which uses residual dense block to extract local
features through dense connected convolutional layers, and
utilize global feature fusion to jointly and adaptively learn
global hierarchical features in a holistic way. All of these
methods are purely feed forward. However, some researches
[29,30] have shown that human visual system is likely to use
a feedback connection to complete the task. Based on this
theory, Muhammad et al. propose a feedback-based network
DBPN [31], which is an end-to-end trainable architecture
based on the idea of iterative up- and downsampling. The
core idea of DBPN is to compute the reconstruction error of
every up- and downsampling layers, and then fuse the errors
back to the output to improve image quality.

Inspired by DBPN [31], we find that in every up- and
down-projection units, DBPN uses the same scaling factor,
which is set according to a hyper parameter (e.g., 2, 4 and
8). As a result, some of the low-resolution features might be
missed, which could lead a negative impact on the final out-
put. Therefore, according to this observation, in this paper,
we propose a newCNN-basedmethod for SISRwhich is able
to exploit more information and feature maps from different
scaling contexts. To achieve this goal, the back-projection
module is improved by using a progressive amplification
structure, insteadof taking all the same scaling factor.And the
progressive training strategy is adopted for fast training and
convergence. The experiments on several benchmarks veri-
fied the effectiveness of proposedmethod.Ourwork provides
the following contributions.

Progressive projection units We propose new up- and
down-projection units, where their scaling factors are not
affected by hyper parameter setting and can calculate both
up- and down-projection errors in different scaling contexts.
Detailed explanations can be seen in Sect. 3.1. Furthermore,
our network takes projection block as basic unit, and every
block contains several projection units with different scal-
ing factors. This structure allows the block to produce output
with target size by gathering features from different scal-
ing contexts. Besides that, each block is connected by dense
connection, and by which mean, the network can share fea-
tures from each block, making training smooth and improve
network’s performance.

Progressive growing For the generator network, we use
progressive growing methodology to train it. The training
progress can be seen in Fig. 3, where our generator’s train-
ing process starts from only one projection block, and then,
the network’s structure progressively grows via adding new
blocks. Before adding a new block into the network, we use a
similar strategy as in [32] that inserts the newblock smoothly,
in case it disrupts the previous well-trained blocks.

The remainder of this paper is organized as follows:
In Sect. 2, we review some related state-of-the-art deep

learning-based approaches.Theproposedmethod is described
in Sect. 3. Section 4 shows experimental results, and Sect. 5
concludes this paper.

2 Related work

2.1 GAN for image SR

SRGAN [24] is the first proposed generative adversarial
network for single image super-resolution, where a deep
convolutional network with residual blocks is introduced
as its generator, and another deep convolutional network
is regarded as its discriminator. SRGAN utilizes a percep-
tual loss function to generate more human visual system
oriented HR pictures. SRGAN performs outstanding results
compared to conventional network, and after that, more and
moreGAN-based SRmethods are proposed [33–35]. Among
them, ESRGAN [34] obtains the best results by replacing
batch normalization (BN) layers of generator in SRGANwith
residual dense block and using new loss function and training
methodology.

2.2 Deep back-projection networks

Deep back-projection network (DBPN) [31] is a super-
resolution networks which is based on the theory of iterative
back-projection (IBP) [36]. According to IBP algorithm, the
efficient iterative procedure can minimize the reconstruction
error and improve the quality of SR image.

Usually, deep super-resolution networks learn a feature
first and then map low-resolution (LR) image space to high-
resolution (HR) image space with the help of its powerful
nonlinear mapping ability. But in DBPN, the author thinks
that the conventional operation may not be effective for min-
ing the mutual dependencies between LR and HR images.
Therefore, the author constructs a network with continuous
up- and downsampling stages for error feedback. Its idea is
similar to IBP algorithm, and its output achieves state-of-the-
art standard.

Let Ih ∈ R
M×N and Il ∈ R

M ′×N ′
be HR and LR images,

where M ′ < M , N ′ < N . DBPN’s main building block
is the projection unit, which is trained to map either an LR
feature map to an HR map or an HR map to an LR map. The
up-projection unit is defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

scaleup: Ht
0 = (Lt−1 ∗ pt ) ↑s,

scaledown: Lt
0 = (Ht

0 ∗ gt ) ↓s,

residual: elt = Lt
0 − Lt−1),

scaleresidualup: Ht
1 = (elt ∗ qt ) ↑s,

outputfeaturemap: Ht = Ht
0 + Ht

1,

(1)
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where ∗ is the spatial convolution operator, ↑s and ↓s are
the up- and downsampling operators with scaling factor s,
respectively, and pt , gt , qt are the (de)convolutional layers
at stage t .

The up-projection unit tries to make the generated HR
map back to LR map and then calculates the residual error
between the original input LR map and the back-projected
LR map. Subsequently, it uses the residual error to generate
another HR map. Finally, the output is obtained by summing
the two intermediate HR maps.

As for down-projection unit, it has a similar definition,
which is shown as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

scaledown: Lt
0 = (Ht−1 ∗ g′

t ) ↓s,

scaleup: Ht
0 = (Lt

0 ∗ p′
t ) ↑s,

residual: eht = ht0 − ht ),

scaleresidualdown: Lt
1 = (eht ∗ g′

t ) ↓s,

outputfeaturemap: Lt = Lt
0 + Lt

1,

(2)

To further acquire improved features, DBPN adopts dense
connections between those up- and down-projection units. In
the improved version of DBPN (D-DBPN), up-projection
unit has connection with each down-projection unit, and
down-projection unit has connectionwith each up-projection
unit.

2.3 Progressive upsampling

LapSRN [11] is a recently SISR approach which utilizes pro-
gressive upsampling method to reconstruct HR image from
a given LR input. LapSRN progressively reconstructs sev-
eral LR images with different scales and then concatenates
all the LR images to generate HR result. However, LapSRN
is just a simple feed-forward network, and only limited fea-
tures and information from LR input are exploited. Due to
this fact, we adopt the progressive upsampling idea and apply
it to back-projection background, with the purpose of getting
more features from different scaling contexts. Then, we can
make good use of them to calculate residual error fromoutput
of each projection unit. Finally, the residual error will play a
positive role in the final output of our network.

2.4 Progressive growing of GANs

The author of PG-GAN [32] uses a progressive growing
method to train their generative adversarial networks, in order
to both speed up the training and greatly stabilize it. Their
core idea is to start with a shallow network which could only
generate low-resolution images and then progressively add
new layers to the network to increase the resolution. During
this phase, each new layer will be faded in smoothly to make
good use of previous training results and avoid sudden shocks

to the already well-trained, smaller-resolution layers. Other
than this, PG-GANs use standard deviation of feature as a
measure to estimate variation and give new normalization
method to stabilize training and reduce collapse situation.
Furthermore, it also balances the generator and discrimina-
tor by adding noise to real sample to ease the mode collapse.
The author proposes the following way of adding noise:

noisestrength = 0.2 ∗ max(0, dt − 0.5)2 (3)

where dt = 0.9 ∗ dt−1 + 0.1 ∗ d is an exponential moving
average of the discriminator output d.

2.5 Other recent works

Juncheng et al. [23] first make deep insight into some clas-
sical SR models, such as SRCNN, EDSR and SRResNet,
according to their observation, and they claim that thesemod-
els are: (a) hard to reproduce (training skills have a great
impact); (b) insufficient function utilization (LR image fea-
tures are not fully utilized, and they gradually disappear with
thee increase of depth); (c) poor expansibility (it is difficult
to adapt to any upgrade, only tiny adjustment can be made).
Thus, they propose a multi-scale residual network (MSRN),
which includes two parts: (a) multi-scale feature fusion; (b)
and local residual learning. In their work, different bypasses
use different convolution kernels to adaptively detect image
features of different scales. Additionally, they have shown
that using residual learning makes the network more effi-
cient. Yunlun et al. [22] propose a residual channel attention
networks (RCAN) which allows researchers to build deeper
CNN (includes 10 residual groups and 20 residual channel
blocks). The authors claim that depth of network matters,
although EDSR and MSDR have made a splash, simply
stacking of residual blocks to build a deeper network cannot
get better improvement. Therefore, they propose residual-
in-residual structure. And another highlight in their work
is the channel attention mechanism. This channel attention
mechanismcan adaptively readjust the characteristics of each
channel and focus onmore useful channels. Li et al. [37] pro-
pose an image super-resolution feedback network to refine
low-level representations with high-level information. They
utilize hidden states in a RNN with constraints to achieve
such feedback manner. The feedback block is designed to
handle the feedback connections and to generate powerful
high-level representations, which makes their model good
at reconstructing SR image at early layers. Furthermore,
they also propose a channel attention mechanism, which can
adaptively scale the features of each channel by modeling
the interdependence between feature channels. Experiments
show that this mechanism allows the network to focus on
more useful channels and enhance discrimination learning
ability.
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Fig. 1 Architecture of generator G and discriminator D, where k denotes the kernel size, n denotes the number of feature maps, and s denotes the
stride for each convolutional layer

3 Method and architecture

In this paper, we aim to propose a generative adversarial net-
work which possesses both back-projection and progressive
growing mechanism as well as some other helpful tricks to
achieve great image super-resolution (SR) achievement. Our
network’s architecture is shown in Fig. 1. For convenience,
we use conv( f , n, s) to refer to f × f convolutional layer,
n refers to the number of filters and s refers to stride number,
and deconv( f , n, s) refers to f × f deconvolutional layer,
n is the number of filter, and s is the stride number.

3.1 Architecture

Feature extraction In generator network, feature extraction
phase includes a conv(3, 256, 1) and a conv(1, nR, 1) layer,
where nR is the number of filters used in each projection
unit in the following projection blocks. The output of fea-
ture extraction phase will be transmitted to the next series of
modules as input (with the size of w × h × nR , where w and
h denote width and height of input LR image).

Projection units Then, we adopt the same method as [31],
using up- and down-projection units to map either a LR fea-
ture to HR feature (up-projection) or a HR feature map to
a LR map (down-projection). Subsequently, we use the dif-
ference between each generated map to update and improve

the final output. Up- and down-projection units are defined
as Eqs. (1) and (2), respectively.

The difference is that in [31], they use all the same scaling
factor to up- and downsampling the feature maps. But in our
research, we found that directly up- and downsampling an
image to target size with a scaling factor (e.g., 8) could lose
plenty of low-resolution details (details in image that is just
2 or 4 times the size of original source). By collecting those
information may further help us to improve the final qual-
ity of outputs. Therefore, we consider to use a progressive
amplification structure, as shown in Fig. 1. In our generator,
up- and down-projection units have a fixed scale factor, and
the structure of the network is dynamic. For example, if we
want to enlarge an image 8 times, the projection block would
be just exactly the same as shown in Fig. 1. In addition, if
we only want to 4 times enlarge an image, in the block there
will only be one up- and down-projection with scaling factor
2 and another one with scaling factor 4. As a result of this
structure, we can extract more feature from different scaling
contexts.

Details of projection units are shown in Fig. 2.
[
L1, . . . ,

Lt−1
]
and

[
H1, . . . , Ht−1

]
denote the feature maps of all

preceding down- and up-projection units, respectively. The
first conv(1, nR, 1) is used to reduce the dimension from
nc = t − 1 ∗ nR to nR before entering projection step, where
nR is the number of filters used in each projection unit, and
t − 1 × nR is the sum of channels from all preceding units,
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Fig. 2 Structure of densely connected up- and down-projection units

t is serial number of current units. In each projection unit, it
uses deconv( f , nR, s) to upsample the input to target size,
where s refers to scaling factor, and then uses conv( f , nR, s)
to downsample the output of preceding deconv layer to LR
size again. For up-projection unit, it gets input with size of
w × h× nc (where w and h denote width and height of input
LR image, and nc = t − 1 ∗ nR), and outputs W × H × nR

(whereW and H refer to width and height of HR image). The
shape of down-projection unit’s input and output is exactly
the opposite of that of up-projection unit’s (W × H × nR for
input and w × h × nc for output).

Projection blocks Besides, as shown in Fig. 1, we take
every one (2× up- and down-projection) or two (2× and 4×
up- and down-projection) or three (2×, 4× and 8× up- and
down-projection) couple of up- and down-projection units
as a projection block. And dense structure happens in every
block. In each dense block, every up-projection unit is asso-
ciated with all subsequent down-projection unit. In addition,
before the concatenation of every up-projection unit, there
is a X up-projection unit, where X represents the magni-
fied multiple the output of each preceding up-projection unit
needs to hit the target size, since up-projection unit has mul-
tiple scale factors.

Reconstruction Finally, the target HR image is recon-
structed as I SR = R(

[
H1, H2, . . . , Ht

]
), where R uses

conv(9, 3, 1) as reconstruction and [H1, H2, . . . , Ht ]
refers to the concatenation of the feature maps produced by
each up-projection unit.

Implementation details The filter size of conv layer in
every projection unit is various with respect to the scaling
factor. For 2× enlargement, we set f = 6, nR = 32, s = 2
and w = h = 96. For 4× enlargement, we set f = 8,
nR = 64, s = 4 and w = h = 48. Finally, the 8× enlarge-
ment task uses f = 12, nR = 128, s = 8 and w = h = 24.
The discriminator is identical to SRGAN [24], and the archi-
tecture is shown in Fig. 1. It contains 8 convolutional layers
with an increasing number of 3 × 3 filter kernels, increas-
ing by a factor of 2 from 64 to 512 kernels. As suggested
by WGAN-GP [38], we adopt LayerNorm after every con-

volutional layer instead of Batchnorm and use LeakyReLU
activation (α = 0.1) and avoid max-pooling throughout the
network. The output of final convolutional layer with 512
feature maps is followed by two dense layers and a final sig-
moid activation function to obtain a probability for sample
classification.

3.2 Loss function

For generator network, we define loss function LG as:

LG = lmse + 10−3lGen (4)

where lmse is a pixel-wise MSE loss, which is formulated as:

lmse = 1

r2WH

rW∑

x=1

r H∑

y=1

(IHRx,y − GθG (ILR)x,y)
2 (5)

where W and H denote the width and height of image, r is
the scaling factor when we apply a Gaussian filter and down-
sampling operator to HR image IHR, by which mean we
generate LR image I SR as input. GθG is our CNN generator
G parameterized by θG , where θG = {W1:L ; b1:L}, which
denotes the weights and biases of the Lth layer.

And lGen is calculated by:

lGen = CE(Sig(DθD (I SR)), O(DθD (I SR))) (6)

where CE is cross-entropy function, Sig is sigmoid function
and DθD is our discriminator parameterized by θD , where
θD = {W1:L ; b1:L}, which denotes the weights and biases of
the Lth layer; I SR = GθG (ILR); O(DθD (I SR) is a matrix
which has the same shape as DθD (I SR) with all elements set
to 1.

For discriminator, the loss function LD is defined as:

LD = CE(DθD(IHR), E(DθD(IHR)))

+ CE(DθD(I SR), Z(DθD(I SR)))
(7)

where Z(DθD(I SR)) is a matrix which has the same shape
as DθD(I SR) with all elements set to 0.

Here, we do not adopt a VGG loss as SRGAN [24] does,
becauseourmodel utilizes back-projectionunits,whichhelps
the model acquire deeper features to reconstruct numerous
LR and HR features, and finally guides the reconstruction
for making better results. As a result of that, our loss is not
a perceptual loss function, since we do not get SR image
and HR image features from a pre-trained VGG network.
Therefore, the output of our model is not that comfortable
from the perspective of human, but it gets higher PSNR and
SSIM results, and its visual effect is just slightly poorer, and
we believe this is an acceptable trade-off.
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Fig. 3 The procedure of progressive training

Fig. 4 The process of how we add new layer smoothly

3.3 Progressive growing

3.4 Model analysis

In our research, we also adopt a new training methodology
from PG-GAN [32], with the purpose of improving train-
ing efficiency, avoiding to learn all layers simultaneously.
One of the biggest differences from PG-GAN is that this
training method is only applied to generator, instead of both
generator and discriminator, since our goal is to generate
super-resolution images, we need the discriminator to guide
the generator to train in the right direction. Otherwise, the
discriminator may not be powerful enough to provide gener-
ator with proper guidance in early stage of training process.

Another difference is that at each time, we do not just
insert a new layer but a complete projection block as visu-
alized in Fig. 3. As the training advances, we progressively
add a new projection block to generator and keep discrim-
inator structure unchanged. Before the training, there is a
hyper parameter T , which decideswhen the training progress
needs to stop adding new block to generator. Other than that,
parameter K means during training, the network will add a
new block every K training iterations. When T blocks are in
place, the training will turn to be an ordinary training.

Each time we add a new block in the network, in order to
avoid shocks to the already well-trained layers, we also fade
them in smoothly like what PG-GAN does as illustrated in
Fig. 4. The difference is that after each smooth fading oper-
ation, we create dense connections between each projection

blocks; as a result, the output from all previous blocks can
be concatenated, enabling us to generate the feature maps
effectively.

4 Experiment

4.1 Implementation and training details

As shown in Fig. 1, some details have already been illus-
trated. Before entering the project block, we apply one 3× 3
convolution layer (stride is 1 and the number of filters is 256)
and one 1 × 1 convolution layer (stride is 1 and the number
of filters is nR , where nR is the number of filters used in each
projection unit in the following projection blocks) to initially
extract features and reduce the dimension. In the proposed
network, the kernel size of convolution and deconvolution
layer in each projection unit is various with respect to the
scaling factor, like what they do in [31]. For 2× enlarge-
ment, kernel size is 6 × 6 with 2 striding and nR = 32. 4×
enlargement projection unit has 8×8 filter size and 4 striding
and nR = 64. Then, 8× enlargement uses 12 × 12 convolu-
tional layer with 8 striding and nR = 128. Besides, we also
set different numbers of projection blocks (T ) according to
different scaling factor, which are set to 8 (2×), 6 (4×) and
4 (8×), respectively.

We initialize the weight using a zero-mean Gaussian dis-

tribution, where std =
√

2
nl

[39]. Setting nl = f 2t nt , ft is

the filter size, and nt is the number of filters. The bias is
initialized to zero. Every convolutional and deconvolutional
layers in projection units are followed by parametric rectified
linear units (PReLUs).

In model analysis phase, to make a quick compari-
son we train our method by using images from DIV2K
[40] (800 images) and part of ImageNet [41] (about 65K
high-resolution images) without any augmentation. When
compared with other methods, we use DIV2K [40] and about
125K pictures collected from ImageNet [41] to train and test
them on Set5 [42], Set14 [43], BSD100 [44], Urban100 [45]
and Manga109 [46]. We apply a Gaussian filter and down-
sampling operator to HR image IHR to obtain LR image I SR

as input with size 32 × 32. We use batch size of 32 for 2×
enlargement task, 16 for 4× enlargement and 8 for 8×, and
learning rate is set to 1e−3 for all layers and decreased by a
factor of 10 for every 4 × 104 iterations for total 2 × 105

epochs. For optimization, we use Adam with momentum
to 0.99 and weight decay to 0.001. All experiments were
conducted using Tensorflow (version 1.10.0) and MATLAB
R2016a on a workstation with 32GB memory, a NVIDIA
GTX 1080Ti GPU and a 3.70GHz i7-8700K CPU.

Depth analysis To have a deep insight into the struc-
ture we adopt for 2×, 4× and 8× super-resolution tasks,
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Fig. 5 The depth analysis of proposed network compared to other net-
works (D-DBPN [31], SRCNN [8], LapSRN [11], DRRN [12] and
RDN+ [28]) on Set5 dataset for 2× enlargement

we construct multiple networks structures for those tasks,
respectively. And it should be noted that only normal train-
ingmethod is used in this experiment, andwe use T to refer to
the number of projection block we use in network structure.
For 2× task, T = 2, 4, 8. As for 4× and 8× enlargement,
T = 2, 3, 6 and T = 1, 2, 4, respectively. According to
different number of T , the network will be referred as S,
M and L , respectively. Before the first projection block, we
use conv(3, 256), followed by conv(1, 128). Then, we use
conv(9, 9) for the reconstruction. The input and output image
are luminance only.

The results on 2× enlargement are shown in Fig. 5. The
proposed network outperforms the state-of-the-art methods.
The S (T = 2) network performs better PSNR results than
that of SRCNN and LapSRN and also gives similar perfor-
mance to DRRN. The S network only uses 16 convolutional
layers, much less than LapSRN and DRRN. In addition,
with extra convolutional layers, the proposed network could
obtain even better results. The M and L network both have
shown excellent reconstruction effects. M (T = 4) network
achieves 38.22dBat best performance,which is 0.12dB, 0.48
dB, 0.7 dB and 1.56 dB better than that of D-DBPN, DRRN,
LapSRNandSRCNN.AndM network totally uses 32 convo-
lutional layers, slightlymore than LapSRN (24 convolutional
layers) but much less than DRRN (56 convolutional layers).
As for the L (T = 8) network, its performance exceeds all
four existing state-of-the-art methods (D-DBPN, SRCNN,
LapSRN, DRRN and RDN+). At the best performance, L
network can achieve 38.40 dB which is 0.1 dB, 0.3dB, 0.66
dB, 0.88 dB and 1.74 dB better than that of RDN+, D-DBPN,
DRRN, LapSRN and SRCNN, respectively.

The results on 4× enlargement are shown in Fig. 6. We
do not achieve the best performance at 4× enlargement task.
At the best performance, the L (T = 6) network can achieve
32.37 dB, 0.38 dB, 0.69 dB, which are 0.83 dB and 1.07 dB
better than that ofD-DBPN,DRRN,LapSRNandVDSR, but
0.24 dB less than that of RDN+. However, RDN+ uses over
120 convolutional layers to get the best performance, the L

Fig. 6 The depth analysis of proposed network compared to other
networks (VDSR [10], LapSRN [11], DRRN [12], RDN+ [28] and
D-DBPN [31]) on Set5 dataset for 4× enlargement

Fig. 7 The depth analysis of proposed network compared to other net-
works (VDSR [10], LapSRN [11], and D-DBPN [31]) on Set5 dataset
for 8× enlargement

network only uses 96 convolutional layers, which shows the
effectiveness of our proposed network.

The results on 8× enlargement are shown in Fig. 7. S,
M and L networks have similar best performance (26.73
dB, 26.87 dB, respectively) to D-DBPN (26.86 dB). S and
M have already exceed most of the current state-of-the-art
approaches (VDSR and LapSRN), while they only use 24
and 48 convolutional layers, respectively, compared to Lap-
SRN (24 conv layers) and D-DBPN (48 conv layers). And L
network’s best performance is up to 27.03 dB, 0.17 dB and
1.34 dB better than that of D-DBPN and VDSR. However,
the L network is only 0.3 dB and 0.16 dB better than that of
S and M network, and the gap among these three networks
narrows significantly. Therefore, as for 8× enlargement task,
the benefit obtained from extra projection blocks is limited
and extra technology is needed to boost its performance.

Loss analysis. In order to verify that we should use
cross-entropy (CE) in our loss function, we compare the per-
formance of the model with different loss functions. One
of the experimental object is our proposed method, and its
detail can be seen in Sect. 3.2. As for the contrast object, we
remove CE from the proposed loss function. Therefore, the
new function is formulated as lGen = − log DθD (I SR), and
LD = − log DθD (IHR) + lGen. The experimental results can
be observed in Fig. 10. We can easily observe that PSNR
and SSIM results drop rapidly when we remove CE from
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Fig. 8 a The impact of progressive growing on training convergence
and speed; b training progress, measured in number of real images
shown to the discriminator

our loss function. Besides that, without CE the image gen-
erated by our model will contain more blurry boundaries.
In the proposed loss function, CE can clearly describe the
distance between the model and the ideal model, enhancing
the learning ability and thus leading our model to produce
more accurate images. Therefore, removing CE from our
loss function will have a tremendous impact on the effect of
reconstruction.

Progressive training analysis In this experiment, we want
to explore the effect of progressive growing on training speed
and convergence. The results are shown inFig. 8.As shown in
Fig. 8a, we can observe two primary benefits the progressive
training method could bring to the network: (1) It converges
way better than that without progressive growing; (2) it also
helps the network accelerate training progress. By gradually
building the network layers, it can get an increasing learn-
ing capacity, which could explain the improved convergence.
Other than that, with progressive growing methodology, pre-
vious layers are more likely to have converged already;
therefore, the network only need to optimize the new intro-
duced layers, which improves training efficiency and reduces
training time.

Number of parameters We show the trade-off between
performance and number of network parameters from our
network and some existing SR methods in Fig. 9. In this

Fig. 9 Set5 dataset is used to test the trade-off between accuracy of 4×
(a) and 8× (b) enlargement reconstruction and the number of parame-
ters they used

experiment, we adopt progressive growing methodology for
all the proposed networks. We can observe that both on 4×
and 8× enlargement tasks, our S,M and L models have com-
parable PSNR results. It can be observed that our S network
has about 56% and 140% more parameters than that of Lap-
SRN on 4× and 8× enlargement, and PSNR results are 0.2
dB and 0.4 dB better, respectively. Additionally, although we
do not get the best PSNR performance on 4× and 8× task
(about 0.2dB and 0.1dB less) asRCAN+dose, the parameters
our model needs are about 50% less than that of RCAN+ on
4× task, and almost the same on 8×. In particular, RCAN+
consists of 10 residual groups, 20 residual blocks and initial
features are set to 64, and uses self-ensemble strategy. Due
to residual-in-residual (RIR) structure and channel attention
(CA) mechanism RCAN+ adopts, it is able to build a very
deep network (up to 400 layers), which is why it needs more
parameters than most SR algorithms. Because we adopt sim-
ilar structure to D-DBPN, parameters we need will increase
with magnification factor, and that causes our performance
less than that of RCAN+ on 8× enlargement task.

Dense projection blocks Between each projection block,
we implement dense connections. In this experiment, we
want to show the positive role of dense-connections between
projection blocks in our network. Thus, we utilize L and L-
Dense networks as our experimental object which have 4, 3
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Table 1 Comparison of L and L-Dense network on 2×, 4× and 8×
enlargement

Model Scale Set5 Set14

PSNR SSIM PSNR SSIM

L 2 38.4 0.954 33.80 0.911

L-Dense 2 38.51 0.958 34.89 0.912

L 4 32.38 0.897 28.88 0.781

L-Dense 4 32.51 0.899 28.98 0.783

L 8 26.85 0.772 24.88 0.641

L-Dense 8 27.04 0.773 24.99 0.645

Bold indicates the best performance

Fig. 10 Compare the effect of reconstructed image using different loss
functions [4× upscaling]. CE refers to cross-entropy function

and 2 projection blocks for 2×, 4× and 8× task, respectively.
Andbetween L and L-Dense dense-connections is the unique
variable. In their structure, before the first projection block,
we use conv(3, 256), followed by conv(1, 128). Then, we
use conv(9, 9) for the reconstruction layer. The input and
output images are luminance only. And training details keep
the same as described in Sect. 4.1. The results can be seen in
Table 1. We can observe that on 2× enlargement, L-Dense
has 0.11 dB and 0.08 dB better than that of L on Set5 and
Set14, respectively. And on 4× enlargement, the numbers
become 0.13 dB and 0.1 dB. As for 8× enlargement, this gap
between L and L-Dense has further expanded, reaching 0.19
dB and 0.11 dB. Thus, we can claim that dense-connections
brings positive impact on the network’s performance, and this
enhancement increases as the scale factor increases (Fig. 10).

Structure design analysisTo clearly demonstrate the effect
of network structure we designed (e.g., dense connection in
each projection unit, progressive projection unit), we com-
pare our full model with other two special models (one has
no dense connection in each projection units and the other
onewithout progressive projection unit). Figure 11 shows the
convergence curves in terms of PSNR on the set14 dataset
for 8×SR. The performance of the ’non-dense’ network con-
verges (pink curve) much harder than the other models and
fluctuates significantly. And in Table 2 we can observe that

Fig. 11 Convergence analysis on the progressive projection structure
and dense connection in every projection block on the Set14 for 8× SR.
Our full model converges very fast and achieves improved performance

Table 2 Study of progressive projection units and dense connection in
each projection units

Dense Progressive Set5 Set14

� � 27.08 25.03

× � 26.83 24.86

� × 26.71 24.62

× × 26.23 24.18

We replace each component with the one used in existing methods, and
observe performance (PSNR) drop on both Set5 and Set14 for 8× SR

removing dense connection in each projection unit obviously
reduces model’s performance; however, due to the progres-
sive design, the network still provides comparable results.
Furthermore, as illustrated in Fig. 11, by removing the pro-
gressive projection design, our model falls back to a network
similar to D-DBPN but with a GAN structure. The quan-
titative results in Fig. 11 show that the network without
progressive projection units (blue curve) although converges
faster than the full model (yellow curve), it gives less perfor-
mance (about o.4 dB less than that of D-DBPN and 0.8 dB
less than that of the full model). The same phenomenon can
been seen in Table 2, where the PSRN results drop rapidly on
both Set5 and Set14 dataset when we remove the progressive
projection design from our proposed method.

Besides that, we also give qualitative comparison in
Fig. 12, where we can observe that removing either progres-
sive projection design or dense connection in each projection
unit, our model suffers from a dramatic performance drop-
ping. What is more, we can find that progressive projection
design plays a much more significant role in our method,
since after removing dense connection, our model can still
contain relatively clear edge and sharp details. On the con-
trary, Fig. 12d shows that without progressive projection
design, the boundary of the image generated by our model
will become very blurred, and has more ringing artifacts.

Summary and analysis According to the previous experi-
ments, we have separately shown the positive role played by
all parts of the network structure. The core of our network is
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Fig. 12 Contribution of different components in the proposed network.
a HR image; b full model; c network without progressive projection
structure; d network without dense connection in each projection unit

the projection units, where residual errors of reconstructed
images at each amplification and narrowing stage are calcu-
lated to gradually optimize the final output. What makes our
method unique is that we calculate residual errors of recon-
structed images with different resolution. Errors obtained
by this method will contain both low- and high-frequency
features; therefore, abundant useful features can be gath-
ered together to optimize output, generating high-quality
images. In terms of overall structure of the proposed net-
work,we adopt theway of dense connection,which alleviates
the problem of gradient disappearance, strengthen feature
propagation, encourages feature reuse and greatly reduces
the number for parameters. Furthermore, densely connected
structure also makes the network deeper, more accurate and
more effective for training. As for training method, we first
train our network with only one projection block, and as the
training advances,we gradually add new layers to extract new
features. It should be noted that new layers will be added only
after the current training effect is stable. Therefore, by using
this method our network can be stably trained and produce
high-quality images.

4.2 Comparison with state of the art

To precisely evaluate the proposed network, we imple-
ment several experiments and analysis to compare our
model with other state-of-the-art approaches. The SR algo-
rithms involved in our experiment include A+ [17], SRCNN
[8], FSRCNN [47], VDSR [10], EDSR [26], D-DBPN
[31], MemNet [48], MDSR [27], RDN+ [28], MSRN [23],
SRFBN+ [37] and RCAN+ [22]. In particular, RCAN+ con-
sists of 10 residual groups, 20 residual blocks and initial
features are set to 64, and uses self-ensemble strategy. We
test all of the models on Set5 [42], Set14 [43], BSD100
[44], Urban100 [45] and Manga109 [46]. We adopt PSNR
[49] and SSIM [50] to quantitatively compare the proposed
method with other state-of-the-art approaches. It should be
noted that the PSNR results of D-DBPN are calculated by
dividing the input into four parts.

Our final network uses conv(3, 256) and then conv(1, 128)
for the initial feature extraction. For 2× enlargement, t = 7

for the number of projection blocks. As for 4× and 8×
enlargement task, t = 6 and 4, respectively. In the recon-
struction phase, we use conv(3, 3). RGB color channels are
used for input and output images. It takes about 3 days to
train. Some of the method like RDN+ and MemNet did not
perform 8× enlargement. Therefore, we retrained the exist-
ing networks by using the published codes.

We show the quantitative results in Table 3. Generally
speaking, our method outperforms the existing methods on
2×, 4× and 8× enlargement except RCAN+. According to
the table, we must admit our model has many shortcomings
comparedwith RCAN+. RCAN+ adopts residual-in-residual
structure, where several residual blocks are stacked in each
residual group. By this mean, RCAN+ can obtain long short
span layer connection, and this linking method in the resid-
ual block allows to bypass rich low-frequency information.
The advantages of this approach can be seen in the last
two columns of Table 3, where the gap between our model
and RCAN+ is clearest. Because urban100 and Manga109’s
images have more sharp edges, which need the model to
obtain as many high-frequency information as possible for
better reconstruction effect. Due to RCAN+’s structure, it is
able to get informationmuch easier than ours; thus,RCAN+’s
output can carrymore texture and details. Andwhen there are
not that many texture or details to reconstruct, our model’s
performance can be closer to that of RCAN+ (see in the first 6
columns of Table 3). On the other hand, from Fig. 13 we can
observe that RCAN+ is slightly faster than our model (about
0.02 second); however, if we reduce the number of layers,
the operation speed will be greatly improved, while main-
taining a relatively competitive reconstruction performance.
In addition, compared with other methods our algorithm has
obvious advantages.

Besides that, occasionally our PSNR and SSIM results
are worse than that of RDN+. Compared to our dense struc-
ture, RDN+ uses local feature fusion to adaptively learnmore
effective features from preceding and current local features
and stabilize the training process of wider network. Further-
more, residual dense blocks in RDN+ concatenate previous
features few more times than our dense structures. On the
other hand, Table 3 also shows that our proposed models
are likely to have better reconstruction effect on Set5, Set14,
BSD100 and urban100 than that on Manga109. Because we
train our network on ImageNet and DIV2K, where most of
the images are natural images. Even though, our performance
on Manga109 also has 24.88 dB PSNR which is 0.01 dB and
0.22 dB better than that of RDN+ and MDSR. Eventually,
we can observe that the second-best performance we get is
just slightly (e.g., 0.03 dB) worse than the best performance.

The results of our mode in Figs. 14 and 15 have shown
softer pattern compared to D-DBPN, EDSR, RDN and
MDSR as well as more harder edge. However, on the other
hand, the output of our model is brighter than the ground
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Table 3 Average PSNR/SSIM for scale factors 2×, 4× and 8×
Algorithm Scale Set5 Set14 BSD100 urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 2 33.65 0.930 30.34 0.870 29.56 0.844 27.39 0.841 31.05 0.935

A+ [17] 2 36.54 0.954 32.40 0.906 31.22 0.887 29.23 0.894 35.33 0.967

SRCNN [8] 2 36.65 0.954 32.29 0.903 31.36 0.888 29.52 0.895 35.72 0.968

FSRCNN [47] 2 36.99 0.955 32.73 0.909 31.51 0.891 29.87 0.901 36.62 0.971

VDSR [10] 2 37.53 0.958 32.97 0.913 31.90 0.896 30.77 0.914 37.16 0.974

MemNet [48] 2 37.78 0.959 33.28 0.914 32.08 0.8978 31.31 0.919 37.72 0.974

EDSR [26] 2 38.11 0.960 33.92 0.919 32.32 0.901 32.93 0.935 39.33 0.977

D-DBPN [31] 2 38.09 0.960 33.85 0.919 32.27 0.900 33.02 0.931 39.32 0.978

MSRN [23] 2 38.08 0.961 33.74 0.917 32.23 0.901 32.22 0.933 38.82 0.987

MDSR [27] 2 38.11 0.962 33.85 0.918 32.29 0.900 32.84 0.934 38.96 0.976

SRFBN+ [37] 2 38.18 0.961 33.90 0.920 32.34 0.902 32.80 0.934 39.28 0.979

RDN+ [28] 2 38.30 0.961 34.10 0.922 32.40 0.902 33.09 0.937 39.38 0.978

RCAN+ [22] 2 38.33 0.962 34.23 0.923 32.46 0.903 33.54 0.940 39.61 0.978

Ours 2 38.33 0.963 34.05 0.919 32.44 0.901 33.12 0.938 39.33 0.976

Bicubic 4 28.42 0.810 36.10 0.704 25.96 0.669 23.15 0.659 24.92 0.789

A+ [17] 4 30.30 0.859 27.43 0.752 26.82 0.710 24.34 0.720 27.02 0.850

SRCNN [8] 4 30.49 0.862 27.61 0.754 26.91 0.712 24.53 0.724 27.66 0.858

FSRCNN [47] 4 30.71 0.865 27.70 0.756 26.97 0.714 24.61 0.727 27.89 0.859

MemNet [48] 4 31.74 0.889 28.26 0.772 27.40 0.728 25.50 0.763 29.42 0.894

EDSR [26] 4 32.46 0.897 28.80 0.788 27.71 0.742 26.64 0.803 31.02 0.915

D-DBPN [31] 4 32.47 0.898 28.82 0.786 27.72 0.740 27.08 0.795 31.50 0.914

MSRN [23] 4 32.07 0.890 28.60 0.775 27.52 0.727 26.04 0.789 30.17 0.903

MDSR [27] 4 32.50 0.897 28.72 0.785 27.72 0.741 26.67 0.804 31.11 0.914

SRFBN+ [37] 4 32.56 0.899 28.87 0.788 27.77 0.741 26.73 0.804 31.40 0.918

RDN+ [28] 4 32.61 0.900 28.92 0.789 27.80 0.743 26.82 0.806 31.39 0.918

RCAN+ [22] 4 32.73 0.901 28.98 0.791 27.85 0.745 27.10 0.814 31.65 0.920

Ours 4 32.63 0.898 28.90 0.790 27.77 0.741 26.82 0.805 31.44 0.915

Bicubic 8 24.39 0.657 23.19 0.568 23.67 0.547 20.74 0.516 21.47 0.647

A+ [17] 8 25.52 0.692 23.98 0.597 24.20 0.568 21.37 0.545 22.39 0.680

SRCNN+ [8] 8 25.33 0.689 23.85 0.593 24.13 0.565 21.29 0.543 22.37 0.682

FSRCNN+ [47] 8 25.41 0.682 23.93 0.592 24.21 0.567 21.32 0.537 22.39 0.672

VDSR [10] 8 25.72 0.711 24.21 0.609 24.37 0.576 21.54 0.560 22.83 0.707

LapSRN [11] 8 26.14 0.738 24.44 0.623 24.54 0.586 21.81 0.582 23.39 0.735

EDSR+ [26] 8 26.97 0.775 24.94 0.640 24.80 0.596 22.47 0.620 24.58 0.778

D-DBPN [31] 8 27.21 0.784 25.13 0.648 24.88 0.601 23.25 0.622 25.50 0.799

MSRN [23] 8 26.59 0.725 24.88 0.596 24.70 0.541 22.37 0.597 24.28 0.751

MDSR [27] 8 27.23 0.778 25.10 0.644 24.86 0.599 22.54 0.620 24.66 0.780

RDN+ [28] 8 27.33 0.788 25.18 0.649 24.90 0.603 22.74 0.622 24.87 0.783

RCAN+ [22] 8 27.47 0.791 25.40 0.655 25.05 0.607 23.22 0.652 25.58 0.809

Ours 8 27.34 0.787 25.20 0.651 24.93 0.605 22.75 0.621 24.88 0.786

Bold indicates the best and italic indicates the second-best performance

truth, while RDN and MDSR’s outputs’ colors are subjec-
tively closer to the ground truth. For the boy image, our
model shows similar reconstruction pattern with the ground
truth, while others tend to reconstruct some other regular pat-

tern. Additionally, we also can easily conclude that RCAN+
obtains more high-level information and can reconstruct pic-
tures with better visual effects. Compared with that, our
model although has similar PSNR and SSIM results, the out-
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Fig. 13 Speed and accuracy trade-off. The average PSNR and the aver-
age inference time for upscaling 8× on Set5

Fig. 14 Qualitative comparison of our models with other state-of-the-
art works on 2× super-resolution task

Fig. 15 Qualitative comparison of our models with other state-of-the-
art works on 4× super-resolution task

puts are too smooth and lack of sharp boarders. The results
of 8× enlargement are visually shown in Fig. 16, and our
network outperforms all of the existing methods. In the first
line, the image is randomly selected from BSD100 dataset,
and the second line comes from urban100 dataset. It shows
that either on natural images or urban pictures, our model
is able to perform the best reconstruction effects. Also, it
shows that our model is good at extracting features and can
make good use of LR features with different scaling factor to
generate HR components in the case of large scaling factors
(e.g., 8× enlargement).

Fig. 16 Qualitative comparison of our models with other state-of-the-
art works on 8× super-resolution task

5 Conclusions

Wehave proposed newgenerative adversarial networks using
back-projection and progressive growing methodologies for
single image super-resolution. Unlike the previous back-
projection image SR network (DBPN) which uses the same
scaling factor in every up- and downsampling stage. We
build the projection units with progressive scaling factors,
with the purpose of making good use of differently scaled
features. Besides, we use multiple up- and down-projection
units to combine into one projection block, and dense con-
nection happens in every projection unit and block. And
that structure helps us to learn richer features and improve
model’s efficiency. Other than that, we adopt progressive
growing methodology to train our model, which stabilizes
and accelerates the training progress. The results show the
effectiveness of the proposed network compared to other
state-of-the-art methods. Even on large scaling factors such
as 8× enlargement, our model can achieve the best per-
formance compared to other existing approaches. However,
some recent researches have shown even better results than
ours (e.g., RCAN+), and in our future work, we will take
these methods as our goal and strive to catch up with them.
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