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Abstract
This paper presents a skyline-based approach to enhance the visualization of a new construction project in augmented reality.
We propose to process the video stream acquired with a mobile phone to register the real buildings with a 3D city model. We
first combine the data acquired with the device’s instruments to estimate a rough user’s pose in the world coordinates system.
Then, we use this estimated pose to generate a synthetic image of the user’s view from which we calculate a virtual skyline. In
parallel, we extract a real skyline from the real-time video stream. Finally, we match these real and virtual skylines to correct
the user’s pose (six degrees of freedom) and thus generate a more realistic augmented reality view. We evaluate the precision
and the processing time of our approach using 2D and 3D registration algorithms, as well as with a novel double 2D strategy.

Keywords Mobile augmented reality · Image to geometry registration · 3D city models · Skyline matching · Urban landscape

1 Introduction

In recent years, the development of virtual reality and
augmented reality technologies has automatically turned
augmented reality to be the reference technology in terms
of landscape simulation. Such systems appeared in the last
decades with the development of Smart Cities. Furthermore,
preserving a good visual landscape is important for inhabi-
tants and can enhance their well being [17]. This can be done
by allowing inhabitants to be involved in a city construc-
tion process, right from the design step. They can become
acquainted with a building project by visualizing it as realis-
tically as possible, integrating it into their living environment.
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Several augmented reality systems are already proposed,
requiring innovative approaches and technologies.With aug-
mented reality systems (AR), a user can achieve a more
precise evaluation of the new surrounding environment with
its new buildings and can also visualize the influence of new
constructions on the global skyline.

On the other hand, devices available today in AR domain
are mainly head-mounted displays (HMD) with augmented
reality support. Such devices are expensive for individuals.
Nowadays, new devices emerge at much more reasonable
costs and users already own them (like smartphones or
tablets).

The main challenge of our research is to propose an aug-
mented reality system in urban context for smartphones. The
idea is to merge real city images, acquired by the device’s
camera with virtual three-dimensional (3D) city model in
order to position and insert a new building project.

In the literature, three main approaches exist: first,
approaches relying on artificial visual features, namely
“fiducial markers”. In our context, it is very constrain-
ing, sometimes impossible, to place specific markers visible
everywhere in the city. They are more suitable for indoor
environments, taking into account short distances and con-
trolled conditions (luminosity, etc.). Second, solutions rely-
ing on device’s embedded instruments. Such approaches are
not very satisfying due to the presence of noise in outdoor
environments, as shown in [9,10] or [25] (magnetic fields
causing deviations of accelerometers andmagnetic compass,
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GPS errors, etc.). Finally, with the growth of mobile devices
performances, some solutions based on natural visual fea-
tures have appeared [8] where theAR system rely on textured
surfaces or specific points of interest.

In this paper, we propose a hybrid approach: we use the
skyline (visual geometric feature) as a marker to register the
real view acquired by the smartphone’s camera and the vir-
tual view of dynamically rendered 3D environment. For this,
we use an estimated camera pose based on the smartphone’s
embedded instruments further refined by using the skyline.
Our method was implemented and the proposed application
was evaluated in the city of Lyon in France, with a basic
hardware and software system, consisting in an iPhone 6
with integrated positioning system (GPS, barometer) and atti-
tude sensors (gyroscope, accelerometer, magnetic compass).
For software development, we used OpenGL-ES, Swift and
OpenCV frameworks.

The remaining paper is organized as follows: In Sect. 2,we
propose a literature review of skyline extraction, augmented
reality on mobile in urban context and skyline matching
approaches. In Sect. 3, we give an overview of the proposed
approach. In Sect. 4, we briefly detail our skyline extraction
method and in Sect. 5 our data fusion and pose estimation
process. Then, in Sect. 6, we propose a refinement process
allowing to correct the user’s pose by using the skyline as a
geometric feature. Finally, in Sect. 7 we present and discuss
our results, propose conclusions and future works.

2 Related works

2.1 Augmented reality approaches

Augmented reality was well defined in [3] and [20], as the
technology that can superimpose the present real surrounding
landscape acquired with device’s camera and a 3D object.
Much of the research was conducted in the field of landscape
preservation as [21,22,25] or [10].

The common goal of all these approaches is to estimate
the camera pose, i.e., the six degrees of freedom (3 in transla-
tions, 3 in rotations), assuming that the camera is calibrated,
i.e., its intrinsic parameters are known (focal distance, dimen-
sions and resolution of the camera’s retina).

The first family of methods, relying on specific artifi-
cial markers, is appropriate for indoor environments, where
placing a QR-Code or any other specific artificial marker is
possible. Added that, most image acquisition conditions can
be controlled, as luminosity, reflections, shadows, etc.

On the one hand, the advantages of such methods are
mainly computing times and accuracy. In fact, recognizing
a marker is a very simple task, due to very specific shape
and colors that are not easily found in unconstrained envi-
ronments. These traditional methods follow three steps: first,

Fig. 1 Different AR approaches. a, b and cArtificial marker-basedAR;
d Natural markers AR-based; e sensor-based AR

a binarization of the image using a threshold allows to obtain
a binary edge map. Then, square contours are detected using,
for example, the Hough transform [13]. Finally, corners are
detected using for example the Harris detector.

On the other hand, a constraint has to be considered: arti-
ficial markers must always be present in the image, which
considerably limits the user’s mobility. Then, as in [26] or
[31], the further the marker is placed, the larger it has to be,
in order to be easily detected and to achieve high precision.
We illustrate in Fig. 1a–c examples of such markers.

A second family of methods, the algorithms rely on
device’s embedded instruments to estimate the user’s pose.
During the last decades, to realize a highly precise registra-
tion, this kind of method required expensive hardware, as
[6], or [29]. Using such methods made it unusable by the
general public because it requires specific equipment that is
not always available for most of users. Nowadays, hand-held
devices (smartphone, tablets) include a multitude of sensors,
allowing to estimate the user’s pose (orientation, angular
acceleration, GPS position, altitude, etc.). All of these capa-
bilities allow to estimate the user’s position (x , y, z), viewing
direction (β) and orientation (α and γ ) and augment the real
visualized scene with synthetic 2D or 3D objects according
to user’s pose.
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Fig. 2 Instruments-based AR [10]

In the third family of methods, instead of having artificial
markers (QR-Code), algorithms try to find natural mark-
ers in images. In fact, urban images are generally textured
and contain a lot of information. These methods involve
the extraction of feature points from images , such as SIFT,
SURF, etc. These points are then matched with those found
in reference images, as in [30]. We give an example of such
methods in Fig. 1d.

The problem is that the instruments of a smartphone are
not always reliable, especially in urban environment. In [16],
the C2B1 AR system allows to establish how construction
processes could be improved with the use of new and inno-
vative technologies, especially AR systems.

In [10], authors propose a landscape simulation system
that position the user in the virtual world and achieves geo-
metric consistency by merging the real image of a building
with its 3D virtual wire model. The user’s pose in virtual
world is obtained by the fusion of all embedded instruments
data for rotations and a map or GPS for lateral position.
The authors evaluate the influence of each pose param-
eter (Longitude, Lati tude, Alti tude, Roll, Pitch, Y aw)
on the system accuracy. Several experiments were conducted
to evaluate the influence of each parameter on the system pre-
cision. In Fig. 2b, an illustration of instruments reprojection
is compared to the ground truth, Fig. 2a.

In City 3D-AR system [9], authors present a system that
allows architecture experts and urban planners to move
around the city and project virtual 3D buildings on the real
captured environment in a real-time video stream.

The problems in such methods are precision and the sta-
bility of the augmentation. In fact, the image is augmented

1 Pronounced “see to be”.

with the 3D virtual building with amismatch on bothX and Y
axis, also called residual error or reprojection error. Added
to that, the augmentation stability is not satisfying and the
added object appears to hover and float with the user’s move-
ments.

2.2 Skyline-based geolocalization

Weoriented our research on the use of the skyline as a natural
marker in urban context. Our goal is to propose a hybrid AR
system for real-time video stream augmentation on mobile
platforms using geometric features identified and extracted
from the camera’s images: the skyline. In this section, we
propose an overview of skyline extraction and matching
methods.

In the literature, we find several works studying the sky-
line in different disciplines. In Computer Science, a lot of
interest has been shown in finding algorithms to extract the
skyline from images. These approaches are clearly classi-
fied as image segmentation problems, using either traditional
image processing techniques or more recent machine learn-
ing and deep learning approaches.

In [28] and [4], authors propose an approach based on
SVM (Support Vector Machine), where the descriptors are
essentially based on edges characteristics: color, location
information and statistical features. This approach is well
suited for images where just one skyline exists in an image.
In fact, as in [1], several skylines at multiple depth levels may
exist, as illustrated in Fig. 3, according to one of these two
definitions:

1. The one-dimensional contour that represents the bound-
ary between the sky and the ground objects [15];

2. The artificial horizon that a city’s overall structure cre-
ates2;

In [18], a neural network approach is used to extract the
skyline. First, a neural network assigns to each pixel a score
in [0..1]. Then, using a threshold, the algorithm keeps only
pixels that have a score greater than a certain threshold.

Other works using the skyline for geo-spatial localization
were carried out in [19], [24] or [23]. Authors propose a
method to user’s geolocalization in urban canyons, where
skyscrapers block satellite signals causing GPS errors. Sev-
eral tests were conducted in Fujisawa city, where an upward
omni-directional camera is placed in the middle of the street
delivering omni-directional images and the skyline forms a
closed curvewhose shape is a signature of the placewhere the
picture is taken. Hence, sky pixels are located in the middle
of the image. Skyline segments are computed from a coarse

2 Wikipedia: https://en.wikipedia.org/wiki/Skyline.
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Fig. 3 Multiple skylines on the horizon

3D city model and the extraction step relies on a graph cuts
algorithm.

In [32], authors propose an approach for video / GIS regis-
tration to determine the camera’s orientation from an overall
synthetic panoramic skyline generated at the same position.
The real skyline is compared to all its possible locations in the
panoramic one (as a slidingwindow).Then, a cross-similarity
function determines the user’s orientation.

3 Proposed approach

Our 3D Augmented Reality system merges the real city
images with a 3D modelization of the surrounding build-
ings using the skyline as a marker for user’s pose refinement.
In this section, we present our contributions. The flow of the
developed system is illustrated in Fig. 4 and described as
follows:

1. First, the smartphone’s sensors are initialized in order
to roughly estimate the user’s pose. The system acti-
vates multiple sensors: the GPS, the accelerometer, the
gyroscope, themagnetic compass and the barometer.We
retrieve each data separately.

2. Then, a combination of all these values allows to obtain
a rough estimation of the user’s pose in the world’s coor-
dinates system:

– user’s position defined by longitude, latitude and alti-
tude coordinates.

– user’s attitude defined by roll, pitch and yaw angles;

Depending on the smartphone’s capabilities, the user’s
altitude is either an absolute measure given by the
DEM (Digital Elevation Model) or relative given by the
smartphone’s barometer by measuring the atmosphere
pressure and then determining altitude. In the latter case,
a calibration step is necessary to initiate the altitude at

the beginning of the experiment assuming that the atmo-
spheric condition do not vary during the experiments.
Then, a request to a local database (embedded in smart-
phone) allows to find the 3D neighborhood’s virtual
model.

– The caching mechanisms allow to ovoid the reload
of geometric data that has already been downloaded;

– Otherwise, a request (with the GPS position) is sent
to the server, in order to retrieve 3D data.

3. By using the device’s rendering support, a virtual image
is generated from the 3D rendered data (buildings), the
camera’s intrinsic parameters and the previously esti-
mated pose (example of a virtual image in Fig. 7b).

4. A live video stream is acquired by the device’s embed-
ded camera. Real images from the live video stream
and virtual generated ones are separately processedwith
the same skyline extraction algorithm to, respectively,
obtain a real and a virtual skyline. The user interacts
with the app to set skyline extraction process parame-
ters, as explained in Sect. 4.

5. A registration/matching process between the virtual and
real skylines allows to refine either the user’s pose or the
user’s attitude and thus improve the video’s augmen-
tation according to two criteria: precision (geometric
consistency) and stability of the video augmentation.
Note that this process is very memory consuming and
thus is not always compatible with available computing
performance on smartphone.

6. If the pose refinement is applied, a new user’s pose
is obtained. If the attitude refinement process is cho-
sen, two main approaches are developed: 2D or 3D
matching. The 3D matching is operated in the world’s
coordinate system to obtain a new user’s orientation and
viewing direction. If the 2D matching is chosen, a fur-
ther step of 2D/3D conversion is applied to obtain the
three rotational angles correcting the user’s directions
of observation.

7. Finally, occlusion treatments are applied to obtain only
visible parts of the inserted 3D virtual building. The
final augmented video shows more precision and stabil-
ity than instrument-based one.

4 Skyline extraction

For the remainder of the paper, we assume the following
assumptions:

– The sky is located in the upper part of the image.
– The skyline is defined, in our case, as the imaginary curve
composed of edge points separating the ground objects
and the sky;
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Fig. 4 System flow

In the following sub-sections, we present the skyline
extraction steps: edge detection, upper envelope extraction
and discontinuities connections.

4.1 Edge detection and upper envelope

First, the original image is transformed to grayscale color
space and we detect edges by using the Canny edge detector
[7], with its two parameters: high and low thresholds, set by
the user depending on the version of the skyline he wants
to obtain (see Fig. 3). This eliminates for instance, errors
caused by clouds or cables that may appear in the image and
disrupt the skyline detection. This edge detection step brings
out only candidate pixels to be part of the skyline.

From this binary edge map, we extract an upper envelope:
for each column of the image, from top to bottom, we keep
the first point belonging to the edges. Once the entire image
processed, we obtain an initial set of points called upper
envelope, illustrated by the green segment pixels in Fig. 5a or
b. This set of disconnected points certainly reflects the shape
of the visualized scene but cannot be considered as the final
skyline which is a continuous line. For this, a discontinuity
connection step is needed.

4.2 Connecting discontinuities

From the previous edge detection and upper envelope step, an
upper envelope is obtained from which we construct a multi-
stage graph. Results are shown in Fig. 5. The upper envelope
pixels have to be connected together. We represent the upper
envelope pixels as graph nodes, thus obtaining a continuous
curve representing the final skyline. This step connects the
disconnected segments of the upper envelope using a path-
finding optimization algorithm, as shown with red pixels in

Fig. 5 Skyline extraction results

Fig. 5a, b. For more information on graph building approach,
see [1].

The proposed skyline extraction algorithm is used to
extract a real skyline from real images and a virtual sky-
line from the virtual city model, that have to be matched. To
obtain the virtual skyline, we need a synthetic image corre-
sponding to what the user virtually sees at a specific pose
(position and orientation). In the following section, we detail
our synthetic image generation process and the sensor fusion
method for pose estimation.

5 Instrument-based augmented reality

The main goal of our hybrid AR system is 3D object place-
ment in real video stream.We qualify it hybrid due to the use
of:

– First, smartphone’s embedded instruments to initialize
the rendering process;
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– A vision-based algorithm to refine the user’s pose and
correct and stabilize video augmentation;

In the following,wedetail the 3Ddata used in our test cam-
paigns (Sect. 5.1), our rendering process, the camera model
construction and our pose estimation process (Sect. 5.2)

5.1 Dataset

Our data is the 3D city model of Lyon’s city in France,
which is an open source model provided by the Metropolitan
Lyon services, representing about 550 square kilometers in
CityGML format.

As of today,many cities around theworld own their virtual
double [11]: NewYork,3 Brussels4 or Lyon,5 and become
more and more available to users. For Lyon’s city model,
the CityGML format is used 6. However, whole city data are
about 400 GB, which obviously cannot be stored on a mobile
device.

To overcome this problem, we set up a client-server
mechanism allowing the user to retrieve the 3D data of
the neighborhood, in case this data is not present in the
phone’s cache. In fact, a mechanism of cache management
is implemented, to verify that the data are not yet present in
smartphone’s local database.

5.2 Rendering process and pose estimation

The rendering process is essentially based on the camera
model construction and sensor’s data retrieving and fusion.
Before proceeding to the pose estimation step, we go through
several intermediate stages. First, the real camera is cal-
ibrated using OpenCV framework to obtain its intrinsic
parameters. Then, the camera model is constructed to be
able to render 3D object on the screen. Finally, different
OpenGL-ES buffers are supplied with 3D data: normal’s
buffer, textures buffer, geometry’s buffers and texture images.
Using various OpenGL-ES directives and contexts (for ren-
dering), specific content is drawn and different images are
built: virtual or augmented ones (see Fig. 13a–c, etc.). Note
that the texture data are not explicitly used by our matching
algorithm, but rather visualization and augmentation pur-
poses.

Basically, the pinhole camera model allows to project 3D
object coordinates in the WCS (World Coordinate System)
on the smartphone screen in the ICS (Image Coordinate

3 https://www1.nyc.gov/site/doitt/initiatives/3d-building.page, 2019.
4 https://cirb.brussels/fr/nos-solutions/urbis-solutions/urbis-data/
urbis-adm-3d , 2019.
5 http://data.grandlyon.com, 2019.
6 http://www.opengeospatial.org/standards/citygml, 2019.

Fig. 6 Smartphone’s axis

System), obtaining its 2D coordinates [14]. The projection
matrix can then be written as follows:

P = K ∗ R∗T , where K is the camera intrinsic parameter
matrix, R is the rotationmatrix andT is the translationmatrix.

The goal here is to position a virtual camera in the 3D
city’s model with the same user’s attitude. The user’s attitude
is estimatedwith the smartphone’s instruments and described
as:

– A position (x, y, z);
– A sight direction (or viewing direction: Roll (β));
– An orientation (pitch (α) and yaw (γ ));
– A moment (real-time augmentation).

The user’s position (x, y, z) is acquired with the smart-
phone’s GPS feature, where (x, y) is directly acquired by the
GPS (longitude, latitude) in the WGS84 referential, that will
be later converted in RGF93-CC46 referential.7 The altitude
(z) is retrieved from a DEM or from the barometer.

We go over all projection and rotation matrices definitions
on each axis (RX (α), RY (β) and RZ (γ )) (detailed in the
supplementary material ). We illustrate in Fig. 6 the smart-
phone’s axis, where the Roll angle (β) is directly retrieved
from the magnetic compass. The Yaw (γ ) and Pitch α angles
are determined using the tri-axial accelerometer. The output
of the accelerometer can be modeled as follows:

−→a =
⎛
⎝

aX

aY

aZ

⎞
⎠

where: aX , aY , aZ are acceleration along the X , Y and Z
axis.

We consider the user’s attitude to be unconstrained. In this
case, the three rotations are performed successively obtain-
ing the user’s posture in real-time. Then the RX (α), RY (β)

7 https://proj4.org/about.html.

123

https://www1.nyc.gov/site/doitt/initiatives/3d-building.page
https://cirb.brussels/fr/nos-solutions/urbis-solutions/urbis-data/urbis-adm-3d
https://cirb.brussels/fr/nos-solutions/urbis-solutions/urbis-data/urbis-adm-3d
http://data.grandlyon.com
http://www.opengeospatial.org/standards/citygml
https://proj4.org/about.html


A skyline-based approach for mobile augmented reality 795

Fig. 7 Instrument-based rendering. Real skyline in red; Virtual skyline in green; Areal = (154, 184), Avir tual = (259, 176); Error in pixel:
(Δx ,Δy) = (−95, 8); Error in degree: (8.54, 0.67)

and RZ (γ )matrices have to be multiplied together. A choice
has then to be made for the multiplications order, because
matrix multiplication is not commutative. In fact, from the
six possibilities, only RXY Z and RY X Z are exploitable solu-
tions (depend only on α and γ ) and all others are unsolvable.
We give in the supplementary material all the combinations
results. This gives us the following result:

α = tan−1

⎛
⎝ −aX√

a2
Y + a2

Z

⎞
⎠ γ = tan−1

(
aY

aZ

)

where: γ (yaw) and α (pitch) are, respectively, the rotational
angles around the Z and X axis.

At this step, the cameramodel is built with its intrinsic and
extrinsic parameters. The city visualization based on instru-
ments augmentation can then be done in real-time (see video:
InstrumentalAR.mov in the supplementary material).

Limitations:
We illustrate in Fig. 7a the real image acquired by the

smartphone’s camera, and in Fig. 7b the corresponding vir-
tual image generated from 3Dmodel and the user’s estimated
pose using only instruments (GPS, accelerometer, compass).

From each of these images, we extract the real and virtual
skylines.

Due to instruments measuring errors, we notice that the
real image (Fig. 7a) is different from the virtual one: the user’s
pose is not 100% accurate and thus we notice errors in terms
of geometric consistency. We annotate the same point A on
the two images to better illustrate this error.

To overcome these drawbacks, we propose to add preci-
sion to the video augmentation process and increase system
precision by using the skyline as a marker for user’s pose
refinement.

6 Skylinematching

In this paper, we situate our contributions in the registra-
tion methods based on geometric features. The proposed
approach is described as a complementary process, where
the skyline matching step is engaged under the assumption
that significant sky regions exist in the real image and a 3D
model of the visualized scene exists.However, the augmented
reality system relies on instruments to augment the scene.

We allow the user to place himself at any position and any
orientation (six degree of freedom), as explained in Sect. 6.2.
In the following,wepresent thematching process as an exten-
sion to [2], where different similarity metrics were proposed.

This process is divided in three main steps:

– First a skyline pre-processing step to eliminate outliers
in the real skyline, that might come from the extraction
process (Sect. 4).

– Then, we apply a polygonal approximation of the sky-
lines to keeponly significant geometric features and avoid
unnecessary details hampering the matching process.

– Finally, an optimization algorithm search for the best
user’s pose while minimizing the distance between the
virtual and real skylines.

The typical scenario is that the user is moving while visu-
alizing the augmented video stream with the future building.
We investigate two main approaches that are treated as min-
imization problems according to different variables.

The first approach discussed in Sect. 6.2 refines the user’s
position and orientation.We try to find the real user’s position
and orientation while having a first rough estimation from
the instruments. The minimization algorithm’s variables are:
Longitude, Lati tude, Alti tude, Roll, Pitch and Y aw.

The second approach is discussed in Sect. 6.3, where the
user is fixed at an a priori known position, either directly
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retrieved by the GPS or given by the user (using a map cen-
tered on his actual position). In this approach, our system
refines only the user’s attitude (three rotational angles). This
time, theminimization algorithm’s variables are: Roll, Pitch
and Y aw.

6.1 Matching process

6.1.1 Skyline pre-processing

We noticed, in many examples of our database, that extracted
skylines contain a lot of straight lines artificially created dur-
ing the skyline extraction step, causedbynoises in images and
skyline’s extraction failures. Added to that, the original sky-
line’s size is proportional to image’s width. Initializing the
matching process with such size compromise the process,
the real-time constraint is no longer respected. To bypass
this constraint, we add two pre-processing steps: skyline
simplification and polygonal approximation. This allows to
significantly reduce the skyline’s size within a few dozen
points, while reflecting the shape of the scene and keeping
only important geometric features, while avoiding unneces-
sary geometric details.

The skyline simplification step is detailed in Algorithm 1,
where:

– “input” is the original skyline vector;
– “output” is the resulting vector;
– “precision” is a parameter reflecting the magnitude of
allowed vertical jump between two consecutive pixels.

Algorithm 1 Aberrant pixel removal
for i = 1, to si zeof (input) do

if |input[i +1].y + input[i −1].y −2∗ input[i].y| < precision
then

output .append(input[i])
end if

end for

Once the outliers removed, we apply a polygonal approx-
imation on the skyline obtaining a new curve Sapprox with
less vertices, where the distance between the original sky-
line Sorig and Sapprox is less than the precision parameter.
The polygonal approximation used in this paper is based
on the Douglas–Peucker algorithm which implementation
is inspired from OpenCV framework.8

Thepurposeof this polygonal approximation is to decrease
the size of the skyline vector. The idea here is to obtain a
vector whose size is proportional to the complexity of the
visualized scene rather than to the resolution of the image.

8 https://github.com/opencv/opencv/blob/master/samples/cpp/contou
rs2.cpp.

In other words, we only keep from the skyline a description
of the most robust geometric features and eliminate the very
fine details that could hamper the registration process.

Note that all illustrations in Fig. 10 are the polygonal
approximations of both real and virtual skylines.

As it will be discussed in Sect. 7.1, all images, videos
and intermediate results are available under CC-BY creative
commons license. An example of images of skylines before
and after simplification process is given in Fig. 8.We present,
in Table 2 of the supplementary material, a comparison of
vectors size before and after this pre-processing process for
different values of the precision parameter.

The registration process is impacted when the precision
parameter changes. If the precision parameter is zero, no sim-
plification is performed and the original real skyline is kept
as is. In this case, aberrant pixels, small architectural details
or small indentations in the skyline are taken into considera-
tion and the real skyline will differ a lot from the virtual one
: the registration process then fails and high-frequency oscil-
lations in the augmenting model are observed. Otherwise
(precision parameter is not null), we get a skyline in which
the aberrations are deleted (isolated pixels, etc.). Thus, the
registration process behaveswell as the two skylines are quite
similar and the user’s pose refinement succeed.

6.1.2 Minimization algorithm

The minimization algorithm used here is the downhill sim-
plex algorithm.9 We have to define a comparison metric that
determines the distance between the real skyline S1 and the
virtual one S2. Thismetric should beminimumwhen the sky-
line of the estimated camera pose yields the skyline of the
real user’s pose. In this paper, we focus on different strategies
using the same similarity distance, L1, which represents the
area between the two curves S1 and S2, as shown in Equation
1. Several distance functions were tested in [2].

L1(S1, S2) =
∫

x
| (S1(x) − S2(x)) | dx (1)

Then, we adopt a strategy where the algorithm’s variables
are dynamically changed along the process. Then we have
multiple and different steps for each variable in the parameter
space to prevent theminimization algorithm frombeing stuck
in local minimas. Finally, steps decrease along the whole
process, thus converging to the global minimum. For each
step, thewhole process is restarted from the previous solution
until convergence.

In the following, we detail each investigated approach:
refining the user’s pose or refining the user’s attitude, both in
terms of precision and in terms of computation time.

9 http://en.wikipedia.org/wiki/Ramer-DouglasPeuckerAlgorithm.
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Fig. 8 Skyline simplification: image 17

Table 1 Results table Video Error (pixels) Processing time (ms)

Average iPhone 6 iPhone 7 Plus

instr 2D 2×2D 3D instr 2D 2×2D 3D instr 2D 2×2D 3D

Video 1 49.62 24.88 6.34 4.24 10.33 53.43 99.74 5083 8.90 35.09 63.48 1860

Video 2 26.55 13.19 5.85 5.22 10.21 58.72 103.76 5705 8.89 29.33 62.87 2125

Video 3 17.37 11.32 5.23 4.89 11.32 58.96 98.11 5178 9.79 37.18 62.95 1940

Video 4 28.87 8.33 4.92 4.23 10.11 59.14 96.12 4932 9.07 37.21 63.13 1880

6.2 Pose refinement

This first approach is to refine the six degrees of freedom. At
the beginning, the user localization is based on the gps sig-
nal and the orientation on device’s instruments. To correct
the user’s pose (position and attitude), the optimization algo-
rithm has to explore a parameter space of six dimensions:
Longitude, Lati tude, Alti tude, Roll, Pitch and Y aw.

Our first experiments show that the most unstable param-
eter is altitude based on the GPS, with sudden 30 m changes,
giving a starting point too far from the real one. Since our
experiments were performed on a quite lat are, we decided to
fix the altitude and to let only the five other parameters vary.

As explained in Sect. 3, this approach cannot be estab-
lished in real-time. In fact, when exploring the parameters
space, the virtual image has to be regenerated for each new
user’s pose. This process is re-iterated until the algorithm
converges to its globalminimum, considered as the real user’s
pose.

For instance, we illustrate in Fig. 9, the parameter space
for image 200 of video 5 in our database. Corresponding real,
instrument-based and skyline-based images are given in the
associated supplemental material. We explore this domain
exhaustively, with a step of 50 cm, on each Longitude and
Lati tude axis. For each position, we search for the best

Fig. 9 Exhaustive domain exploration: image 200 of video 5

user’s viewing direction and orientation that minimizes the
measure between the real and the virtual skyline. Note that
the domain is regular and thus the algorithm is able to con-
verge to the real user’s pose.

6.3 Attitude refinement

In the following, we detail the user’s attitude refinement
approach with its two variants:
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Fig. 10 2D and 3D matching approaches (error in pixels)—video 1. In red: real skyline; in green: instrument-based virtual skyline; in blue: virtual
skyline after matching process

1. A matching process in the world’s coordinates system,
called 3D Matching, with three variables: α, β and γ

corresponding to the user’s viewing direction and orien-
tation. The optimization algorithm tries to find the best
triplet so that the virtual skyline looks the most like the
real one. This approach will be presented in Sect. 6.3.1.

2. A matching process in the image coordinates system,
called 2D Matching. The principle of this method is to
move or translate the virtual skyline in the image plane
along X or Y axis and rotate it around image’s center.
The final solution is then ΔX , ΔY pixels and Δθ radi-
ans. Knowing the camera’s intrinsic parameters and the
device’s screen size, we can convert this transformation
(ΔX , ΔY , Δθ ) into three rotational angles (Δα, Δβ

and Δγ ) that correct the user’s viewing direction and
orientation. This conversion is an approximation which
is valid only for small angles for which the transforma-
tion induced by rotations of the viewing direction can
be assimilated to translations.

6.3.1 3Dmatching

The minimization algorithm explores the parameter space to
find the best user’s orientation (triplet of α, β and γ ) while
minimizing the distance between the two skylines. In this
approach, for each iteration of the optimization algorithm,
the virtual image corresponding to that pose is regenerated.
This regeneration takes about 10 ms on an iPhone 6 or 8 ms
on an iPhone 7 Plus. This approach is accurate but is very
time-consuming. As discussed in Sect. 7, the algorithm finds
the best solution (Pf inal ) in about 100 iterations in average.
The entire process of skylines extraction, pre-processing and
matching takes then 1.8 seconds on an iPhone 7 plus, which

is suitable for still images or photo-realistic augmentation
but not for real-time video augmentation. We illustrate in
Fig. 10f the results of this algorithm,where the virtual skyline
is perfectly alignedwith the real one and the distance between
the two skylines is 2, 77 pixels. This approach which is faster
but less precise will be described in Sect. 6.3.2.

6.3.2 2Dmatching

In this approach, the optimization algorithm tries to find the
best:

– Translation of ΔX along the X-axis;
– Translation of ΔY along the Y -axis;
– Rotation of Δθ around image’s center;

As in [12], small pitch and yaw rotations can be considered
as translations in the image plane. The Roll angle is a rotation
around the image’s center. This approximation is available
under two assumptions:

– We consider that instrument’s data are imprecise but not
totally aberrant. Thus, the rotational error is not very
important as compared to the camera’s field of view
(about 34 degrees in portrait mode).
For instance, the magnetic compass gives an estimation
of the magnetic north with a precision of about 15◦. For
instance, in video 1 of our database, the horizontal aver-
age error is 5.37◦ and the maximum is 11.78◦.

– The observer’s distance to the visualized objects (d) has
to be significantly larger than the positioning error (ε):
d >> ε. In fact, this assumption is verified since we
have:
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Fig. 11 Comparison of different
approaches (video 3)
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– The gps positioning error is about 5–10m in urban
context (except in urban canyons cases where it can
be larger)

– The use case of our AR application is to assess the
effect of a new construction projet on the urban land-
scape and thus, the user has to position himself at a
certain distance of the visualized objects.

We illustrate in Fig. 7, an example where the virtual sky-
line (Fig. 7b) has to be moved by 95 pixels along the X-axis,
8 pixels along Y -axis and rotated by 2.12◦ around Z-axis.

The 2D matching process starts with the two skylines of
Fig. 10a to obtain a sub-skyline in Fig. 10b, where the skyline
was moved by 36 pixels along X-axis, 39 pixel along Y -
axis and rotated by 1.16◦ around image center. Note that
we do not obtain a complete skyline, but only the part that
matches the virtual to the real one. The distance between
the real skyline and this sub-skyline is about 2.90 pixels. We
visually observe that the skylines are almost perfectly aligned
with little differences due to geometric imprecision of the 3D
virtual model.

From this 2D transformation, the 2D / 3D conversion pro-
cess (step 8 in flowchart of Fig. 4) consists in finding the three
rotation angles (α, β and γ ) allowing to generate the vir-
tual image corresponding to the refined user’s pose. A naive
approach would be to operate a linear conversion on these
translation vectors obtaining the result as shown in Fig. 10c,
where the distance between the two skylines is 11.7 pixels.
This approximation can be defined as follows:

β = Δx

w
· FOVx .

wherew is the image’swidth, FOVx is the field of view on the
X axis; Δx the translation vector along the image X-axis; β
the rotation angle around Y -axis in world coordinate system.

A more rigorous approach is to use the camera’s field
of view (FOV) and screen’s size. Results are shown in
Fig. 10d, where the distance between the two skylines is
8,66 pixels. This approximation is defined as follows: β =
arctan( Δx

w·tan(F OVx )
).

On the one hand, the 3Dmatching approach is very precise
but cannot be computed in real-time. On the other hand, the
2D approach is real-time but its precision is lower. For this,
we propose the double 2D matching process denoted 2×2D
(see Fig. 10e).

6.3.3 Double 2Dmatching

We investigate a double 2D matching process (2 × 2D),
where a first 2D matching allows to estimate the user’s pose
(P1), from which a virtual image is generated. Then, the pro-
cess is re-iterated starting from P1, to obtain the final user’s
refined pose (Pf inal ). We notice, compared to Fig. 10c, d,
that this strategy gives better results, as illustrated in Fig. 10e
where the distance between the two skylines is 2,77. These
results are comparable to the 3D matching results (discussed
above) of Fig. 10f.
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Fig. 12 Matching results. Line 1: frame 48 video 1; Line 2: frame 17 video 4

7 Results and discussion

Asmentioned in the introduction, the first version of our sys-
tem was realized on iPhone 6 that includes support for high
performance 2D and 3D graphics based on the OpenGL-ES
(Embedded Systems) API. For software developments, we
used iOS-SDKandXCode. For image processing algorithms,
we developed our proper algorithms for skyline extraction
based on the OpenCV framework. For AR visualization,
two OpenGL-ES context panels are used to overlay multi-
ple views in the same time in full screen mode: in bottom,
we depict data acquired from live-video stream and above
the 3Dmodel data. We deployed our system on iPhone 6 and
iPhone 7 Plus and tested it in the city of Lyon, France. In
the following, we present the dataset constructed during this
research project and our results.

7.1 Matching database

In this subsection, we detail the constructed databases during
this research. This database was used to evaluate our system
performances.

In fact, given that no dataset exists with the information
required by our system which are, the real image with its
GPS coordinates and an estimation of camera’s orientations
parameters, we created our proper databasewhich is publicly

available.10 To create this dataset, we developed a smart-
phone application allowing to record a real-time video of the
visualized scene and meanwhile records instrument’s data.
From retrieved data, the instrument’s pose Pinstr is calcu-
lated as detailed in Sect. 5.2. Then, once our registration
process applied, the user’s refined pose is calculated and the
final distance between the two skylines Errreg is compared
to the initial one Errinstr . This database is available under
CC-BY creative commons license and allows further works
in different communities.

Then, for each of the acquired videos, we associate
instrument-based synthetic images, the registered images
using our 2Dor 3Dmatching process and the final augmented
videos for each of the proposed approaches. Consequently,
we created a database containing about 2000 images.

Finally, for the video augmentation and demonstration,
we propose to use the Crayon Tower 3D model from Lyon’s
business district, and add it to our testing area (neighborhood)
where database was created. Using the actual 3D city model,
the real image and the future construction building, we cal-
culated occlusions and augmented the scene with only the
visible part of the 3D building model. Examples are shown
in Fig. 13f, e.

10 https://perso.liris.cnrs.fr/mayadi/LyonGeoTagged.
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Fig. 13 Augmented images
with Crayon tower

7.2 Results

We present in Fig. 11 the results of our registration process
for video 3 in our database, where absciss value corresponds
to the frame number and the ordinate is the L1 measure
between the two skylines. We notice that, for each frame,
the instrument-based approach curve has an important error
as compared to the registered ones. We calculate for each
video the average error of each approach: instrument base
approach, 2D, 2×2D and 3D matching (Table 1). As dis-
cussed above, the 3Dmatching approachgives the best results
as compared to the 2D or 2×2D ones.

The first column (left) in Fig. 12 corresponds to the real
images. The other columns correspond to the virtual images
generated using the our approaches described above.We note
that the error between the system projection error decreases
from instrument-based approach to the 3D matching one.

Figure 13a–c presents examples where the image is aug-
mented using the instrument-based approach. We note that
the tower is inserted in a wrong location. Then, respectively,

in Fig. 13d–f, the tower is registered using the 3D matching
process in a much more precise location.

For the real-time constraint, the 2D matching process is
compatible on both platforms (iPhone 6 or iPhone 7 Plus).
In fact, the whole process with skyline extraction, simplifi-
cation, polygonal approximation and registration step can be
operated in real time. On the contrary, the 3D matching pro-
cess cannot be established in real time. A good compromise
between processing time and video augmentation precision
is the 2×2D matching approach, where we can obtain a pre-
cision that is comparable to the 3D matching process while
respecting the real-time constraint.

Table 1 presents the average processing time in milli-
seconds for the whole process for each approach.

To evaluate our system, we compared our results to the
instrument-based approach. This comparison allows us to
clearly notice the advantages of the skyline-based registra-
tion in terms of robustness and precision. To the best of our
knowledge, no othermethods combined, in real time and on a
general public device (smartphone), both “a sensors-based”
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and “a vision-based” system at the same time. Moreover,
our approach is robust to observation conditions especially
when the real and virtual skylines present some differences
due to: missing data, jagged skyline, too much vegetation,
etc.

8 Conclusion and future works

We presented a hybrid augmented reality system that reg-
isters the real-time video stream with 3D models of urban
scenes. This hybrid approach allows to first estimate the
user’s pose using the smartphone’s embedded instruments,
which is not accurate. We combine this sensor-based system
with a vision-based one, based on geometric characteristics
of the scene. These geometric characteristics are skyline pix-
els. We then show that the skyline can act as a marker for
an augmented reality application in urban context. We pro-
posed a parametric skyline extraction algorithm, followed by
a skyline matching process with different approaches. Our
system is fully functional for real-time video augmentation
with algorithms running efficiently on an iOS platform. We
proposed multiple expandable databases of real and virtual
skylines, 3D models and meta-data taken in city of Lyon,
France. All database are publicly available.

The experiments made in this paper consist in differ-
ent cases where vegetation is either present or not in the
real environment. If that is the case, the matching pro-
cess fails. We currently investigate two solutions: the first
is based on deep learning. A neural network is pre-trained
on our dataset and used in real time on smartphone to
extract the skyline with a better precision than edge-based
method. The second is to consider a discontinuous skyline
where the parts of the skyline corresponding to vegetation
are not taken into account in the registration process. For
this, we have the opportunity to use the results of the-
sis work of [27] to characterize the visualized scene using
the skyline. Indeed, this approach allows to say which part
of the skyline is drawn by a natural or artificial element.
Other perspectives are to find a solution where the pose
refinement process could be optimized with different strate-
gies that can be established in real time on smartphone.
To finish with, we investigate a spatio-temporal strategy
where we initialize the optimization algorithm at previous
frame’s pose (Pt−1) rather than processing all frames inde-
pendently.
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