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Abstract
The discriminative correlation filter-based tracking algorithms cannot correctly track the target if the target is occluded or out
of view and reappears in the field of vision, and they cannot ensure the tracking model is updated correctly if the tracking
information is not correct. In this paper, a robust correlation tracking algorithm is proposed. Here, a failure detection strategy,
which is based on the maximal confidence score and peak-to-sidelobe ratio to detect or measure the reliability of the tracking
result, is integrated into the tracker. Moreover, the redetection module based on the keypoints matching method for consensus
voting is introduced into the proposed tracking algorithm to redetect objects in case of tracking failure. In addition, an
adaptive high-confidence updating method is proposed to avoid error model information introduced into the tracker caused by
occlusions, out-of-view or illumination changes, where the learning rate is determined by the change rate of the confidence
map. The OTB-2015 dataset and VOT-2016 dataset are used to evaluate the performance of the proposed tracking algorithm.
The experimental results show that the proposed tracking algorithm performs better than most of the state-of-the-art trackers,
and it has higher accuracy and robustness than the DSST tracker.

Keywords Correlation filter · PSR · Confidence degree · Consensus voting · Keypoints matching

1 Introduction

Visual tracking is defined as the problem of finding the
motion of a target given a sequence of images based on
different frames in a video, and it is widely used in com-
puter vision applications such as surveillance, security and
motion analysis. Though many visual tracking algorithms
have been proposed, there are many challenges in the practi-
cal applications to solve the problems caused by occlusion,
out of view, deformation, illumination variation, fast motion,
motion blurring, background clutters, out-of-plane rotation,
in-plane rotation, and scale variation [1,2]. Therefore, it is
desired to have a robust visual tracking method solving the
above-mentioned problems.
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Visual tracking algorithms can be generally classified into
two categories: the generative methods [3–5] and discrimi-
nativemethods [6–8]. For the generativemethods, tracking is
formulated as searching for the most similar region to the tar-
get within a neighborhood, for example, the scale-adaptive
mean-shift tracking method of [5]. This kind of algorithm
focuses on the description of the target itself, ignores the
background information, and is prone to drift when the target
is similar to the background color or occluded [9]. Different
from generative trackers, the discriminative methods regard
tracking problem as a classification problem, which aims at
finding decision boundaries that can distinguish the target
from background, and does not need to establish a complex
model to describe the object. This kind of algorithm usu-
ally takes the target area as positive sample in the initial
frame and the background area as negative sample to train
the classifier. The next frame uses the trained classifier to
find decision boundaries between the object and the back-
ground. The main difference between the discriminative and
generative methods is that the classifier of the discrimina-
tive method adopts machine learning, and the discriminative
model is trained to use background information. Since the
classifier of the discriminative methods can distinguish fore-
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ground and background accurately, its tracking performance
using discriminative model is generally better than the gen-
erative method. Kalal et al. [7] proposed the TLD tracker that
decomposes the tracking task into three sub-tasks: tracking,
learning and detection, and the TLD tracker can be used to
build a long-term tracking system based on the P-N learning.
Hare et al. [8] considered the spatial distribution of samples
within a search space and proposed a framework of adaptive
visual object tracking method based on the structured output
prediction algorithm that is used to predict the object loca-
tion, and the algorithmwas proved to have goodperformance.
Zhang et al. [10] proposed a real-time compressive tracking
method that formulated the task as a binary classification in
the compressed domain.

Over the past 5 years, visual tracking algorithms based
on correlation filter have become a research hotspot due
to its fast speed and high accuracy. In 2010, Bolme et al.
[11] firstly used the correlation filter for visual tracking,
and designed a Minimum Output Sum of Squared Error
(MOSSE) filter. Using the fast Fourier transformation (FFT),
the MOSSE tracker becomes more efficient. Recently, many
tracking algorithms based on correlation filters have been
proposed, including circulant structure kernel (CSK) tracker
[12], kernelized correlation filter (KCF) tracker [13], color
name tracker (CN) [14], discriminative scale space tracker
(DSST) [15], large margin correlation filter tracker (LMCF)
[16], and spatially regularized correlation filters (SRDCF)
tracker [17], and other improved algorithms [18,19] have
been proposed, the tracking effects of which are getting bet-
ter and better.

Although the correlation filter-based tracking algorithms
are efficient, they are not robust enough, and the target can-
not be tracked correctly when the target is occluded or out of
view and reappears in the field of vision [2,11]. Moreover,
the model cannot be properly updated online if the track-
ing information is not correct in these tracking algorithms.
Hence, in the long-term tracking process, if the training
tracker is updated with unreliable model information, some
erroneous model information will be inevitably introduced
into the tracker, causing the tracker to continuously accumu-
late errors, and eventually lead the tracking to fail.

To solve the problems of correlation filter-based tracking
algorithms, a robust tracking algorithm based on redetec-
tion module and high-confidence updating is proposed. The
main contributions of this study can be summarized as fol-
lows: (1) We proposed a robust tracking algorithm which
absorbs the strong discriminative ability from DSST tracker;
(2) to detect or measure the reliability of the tracking result,
a failure detection module, which is based on the maximal
confidence score and peak-to-sidelobe Ratio (PSR), is intro-
duced to detect the confidence of the tracking results; (3)
to prevent tracking failures, an online detector based on the
keypoint matching method for consensus voting is used to

relocate the target if the confidence of the tracking result is
low; (4) to avoid erroneous model information being intro-
duced into the tracker, a high-confidence updating method
is proposed to select reliable target model. The experimental
results on OTB-2015 and VOT-2016 datasets show that the
proposed method performs better than most of the state-of-
the-art trackers, and it can achieve promising performance
on visual tracking especially there are occlusion and out of
view in the video sequences.

The rest of the paper is arranged as follows. The related
work is given in Sect. 2. Section 3 introduces the proposed
algorithm in details. We give the experimental results and
analysis of the proposed method in Sect. 4. Conclusions are
made in Sect. 5.

2 Related work

MOSSE (Minimum Output Sum of Squared Error filter)
algorithm is the first one using correlation filtering in target
tracking. Since it uses gray features, it is much faster than
other algorithms, but the accuracy is lower. There are some
variants of correlation filter-based tracking algorithms in the
studies. CSK tracker introduces the concepts of cyclic matrix
and core on the basis of MOSSE to improve tracking accu-
racy. Themain purpose ofCSK tracker is to solve the problem
of sample redundancy caused by sparse sampling in tradi-
tional algorithm. The CN tracker extends the CSK tracker
with color attributes and uses PCA to reduce the dimension
of Color Name with less redundant information. Henriques
et al. applied HOG (histogram of oriented gradient) feature
to nuclear correlation filters on the basis of MOSSE. A KCF
(kernelized correlation filter) tracker was proposed in 2014,
and it can effectively solve the problem of redundancy of
training data using cyclic matrix and discrete Fourier trans-
form, which can greatly reduce its computational complexity
and improve the tracking performance. DSST tracker uses
HOG feature to learn adaptive multi-scale correlation filter
to dealwith the scale variation of target object. Scale-adaptive
with multiple features tracker [20] (SAMF) integrates HOG
feature and CN feature on the basis of KCF and uses scale
pool technology to obtain the optimal scale of target in scale
variation.

Spatially regularized discriminative correlation filters
(SRDCFs) based on KCF adds penalties to the loss func-
tion, improves the edge effect, and achieves a breakthrough
in the effect, but its computation cost is high. CSRDCF
[21] is a tracking method that combines filtering and color
probability; it can achieve good tracking precision, but its
computation cost is relatively high. Moreover, the spatial
and channel reliability were proposed in [21]. DeepSRDCF
tracker [22] replaces HOG feature with CNN feature on
the basis of SRDCF algorithm, which greatly improves
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the tracking performance, but introduces CNN feature that
increases the computation cost and reduces the tracking
speed. Continuous-convolution operator tracker (C-COT)
[23] uses depth neural networkVGGNet tomap featuremaps
with different resolution to continuous space domain through
cubic interpolation algorithm, and obtains sub-pixel preci-
sion target location. Although the tracking accuracy of these
methods is improved, their computation cost is also increased
and cannot be applied to real-world scenarios.

Moreover, these visual tracking algorithms are prone to
drift when the target is occluded or beyond the field of view,
and the target cannot be continuously tracked when the tar-
get appears again in the field of view. In addition, these
tracking algorithms update tracking models at each frame
without considering whether the tracking result is accurate
or not. If the target is severely occluded or out of view, the
tracking result will be unreliable, and it may cause the track-
ing to fail. To void the problem of tracking failure, Chao
Ma et al [24] introduced an online random fern classifier to
redetect objects in case of tracking failure, and the proposed
algorithm performs well. To avoid the problem of erroneous
samples for online model update, Wang et al [16] proposed
a model update strategy to avoid model corruption by the
high-confidence selection from tracking results, which can
effectively avoid the model corruption problem. To suppress
the effects of background clutters, Chenglong, Li et al [25]
proposed a tracking method of via dynamic graph learning,
which decomposes the problem of target state estimation into
the three sub-problems of Patch-based graph learning, struc-
tured SVM tracking, and Model update.

Based on the above analysis, a new robust tracking is
proposed in next section. We proposed the tracking method
that mainly includes four parts: discriminant DSST tracking,
failure detection, redetection and high-confidence updating
strategy. Compared with [16] and [25], although the frame-
work of the proposed method looks similar, the methods of
each component are different.

3 The proposedmethod

To solve the mentioned problems in Sect. 2, a new robust
visual tracking method is proposed. Firstly, this new method
estimates the target position by using the discriminant DSST
tracker. Secondly, a failure detection scheme is used to find
the confidence of the tracking result of the current frame, and
the detector is started to relocate the target if the confidence
of the tracking result is low. Moreover, in order to reduce the
error information accumulated during the tracking process,
an adaptive high-confidence updating strategy is proposed
to improve the robustness of the tracker. Finally, OTB-2015
dataset [2] andVOT-2016 dataset [26] are used to evaluate the
comprehensive performance of the proposedmethod. Hence,
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Fig. 1 The flowchart of the proposed method

the new method mainly includes four parts: correlation fil-
ter tracker, failure detectionmodule, redetectionmodule, and
high-confidence updating module. The flowchart of the algo-
rithm is shown in Fig. 1.

3.1 Correlation filter tracking

As the basis of the proposed tracker, the DSST filter is used
to predict the target location. Let f be a rectangular patch of
the target, extracted from the feature map. The target sample
f consists of a d-dimensional feature vector f (n) ∈ Rd ,
at each location n in a rectangular domain. We denote the
feature dimension number l ∈ {1, 2, . . . , d} of f by f l . The
objective is to find an optimal correlation filter h, consisting
of one filter hl per feature dimension. This can be achieved
by minimizing the cost function:

ε =
∥
∥
∥
∥
∥

d
∑

l=1

hl ∗ f l − g

∥
∥
∥
∥
∥

2

+ λ

d
∑

l=1

∥
∥
∥hl

∥
∥
∥

2
(1)

Here, g is the desired correlation output associated with
the training example f ; ∗ denotes the circular correlation; and
λ denotes regularization parameters (λ > 0) that controls the
impact of the regularization term. The solution to (1) is:

Hl = GFl

∑d
k=1 F

k Fk + λ
, l = 1, . . . , d. (2)
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Fig. 2 The confidence map for the “Girl2” image sequences

Here, Hl , Fl and G denote the discrete Fourier transforms
(DFT) hl , f l and g, respectively; G represents the complex
conjugations of G.

To obtain a highly robust tracker, we update the numerator
Al
t and denominator Bt of the correlation filter of (2) as:

Al
t = (1 − η) Al

t−1 + ηGt Ft
l (3)

Bt = (1 − η) Bt + η

d
∑

k=1

Ft k Ft
k (4)

Here, the scalar η is a learning rate parameter.
Let zt correspond to an image patch centered around the

predicted target location, and Zl
t denotes the discrete Fourier

transforms zt . The new target state is then found by maxi-
mizing the score yt .

yt = F−1

{∑d
l=1 A

l
t Z

l
t

Bt + λ

}

(5)

To cope with the scale variation, we follow the scheme of
DSST. The scale filter is trained and then used to estimate
the scale. For each n ∈ {[− S−1

2

]

, . . . ,
[ S−1

2

]}

, we extract an
image patch In of size an P×an R centered around the target.

Here, P × R denotes the target size in the current frame, S
is the size of the scale filter, and a is the scale factor. More
information can be found in the DSST tracker [8].

3.2 Tracking failure detection scheme

For many existing correlation filter trackers, it is very diffi-
cult to detect or measure the reliability of the tracking result.
However, for trackers, it is important to detect the confi-
dence degree of the tracking result or to determine whether
the target is occluded or totally missing in the current frame.
When the tracking failure is detected, the update of the target
model and the training of the classifier should be stopped,
and if the target appears again in the field of view, the rede-
tection module is used to relocate the target. In view of the
above-mentioned problems, a novel failure detection method
is proposed to detect the confidence degree of the tracking
result and then determine whether the tracking result is accu-
rate.

As shown in Fig. 2, when the tracking result is accurate,
the confidence map should have only one sharp peak, which
is similar to the ideal two-dimensional Gauss distribution,
as shown in the first line of Fig. 2. In general, when the tar-
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Fig. 3 The most challenging section of a video can be located by finding low points in the PSR

get is suddenly partially occluded, the confidence map still
conforms to a two-dimensional Gaussian distribution and the
maximal confidence score will suddenly decrease. However,
there are multiple peaks in the confidence map, and the max-
imal confidence score can still represent the target as shown
in the second row of Fig. 2. When tracking fails, especially
when there are challenges such as occlusion, out of view, and
background clutters, and so on, the confidence map will fluc-
tuate intensely. At this time, the maximal confidence score is
not for the target as shown in the third line of Fig. 2.

The maximal confidence score and the fluctuation of the
response map can reflect the confidence degree about the
tracking performance to some extent. The ideal responsemap
should have only one sharp peak and be smooth in all other
areas when the detected target is extremely matched to the
correct target. The larger themaximal confidence score is, the
more accurate the tracking result is. Otherwise, if the tracking
result is inaccurate or tracking fails, the maximal confidence
score will suddenly decrease, and the confidence map will
fluctuate intensely. Therefore, we propose a new confidence
degree detection method to detect whether the tracking result
is accurate. The following two indicators are used to detect
the confidence degree of the tracking result.

The first one is the maximal confidence score for the con-
fidence map, which is defined as:

ymax = maxF−1

{∑d
l=1 A

l
t Z

l
t

Bt + λ

}

(6)

In the process of tracking, if themaximal confidence score
ytmax of the t th frame is less than a threshold Tth, the tracking
result of the current frame is considered unreliable.

The second indicator is called the peak-to-sidelobe ratio
[11], which is a measure of peak strength. To compute the
PSR the correlation output y is split into the peak, which is
the maximum value and the sidelobe which is the rest of the

pixels excluding an 11 × 11 window around the peak. The
PSR is then defined as:

PSR = ymax − μ

σ
(7)

where ymax is the maximal peak value, μ and σ are the mean
and standard deviation of the sidelobe, respectively.

PSR can reflect the fluctuation degree of the confidence
map to some extent. As shown in Fig. 3, the change of PSR
value is relatively stable if the target is visible in the detection
range. Otherwise, the PSRwill be significantly reduced if the
target is occluded or tracking fails.

In this paper, we set a threshold TPSR . When the PSR
value of t th frame is less than TPSR, the confidence degree
of the tracking result of the current frame is considered to be
low.

Therefore, we use two thresholds Tth and TPSR to deter-
mine whether the tracker is failed to track the target based
on the change in the maximal peak value ymax and PSR. If
ymax > Tth and PSR > TPSR, the tracking result is consid-
ered to be relatively reliable, that is, the tracking is accurate.
Otherwise, the confidence degree of tracking result is low,
that is, tracking fails.

3.3 Redetectionmodule

When the target is long-term occluded or beyond the field of
vision, many correlation filter trackers will not work prop-
erly. When the target appears in the field of vision again, the
tracker cannot track the target continuously. Therefore, it is
necessary to have the redetection module for a robust tracker.
In this subsection, we design a detector for the redetection
module based on consensus-based matching of keypoints. In
the process of tracking, when the tracking failure is detected,
the detector is used to relocate and track the target.
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3.3.1 Keypoint matching

Firstly, a set of key points is set up based the target model.

O = {(ri , fi )}NO

i=1 (8)

where each keypoint denotes a location ri ∈ R2 in template
coordinates and a descriptor fi . We initialize O by detecting
and describing key points in I1 that are inside the initializing
region I1.

To match keypoints, the candidate keypoints in the image
I1 can be expressed as follows:

P = {(ai ,mi )}NKP
i=1 (9)

where a refers to the keypoint position in absolute image
coordinates and is the index of the corresponding keypoint
in O.

For each candidate keypoint, the Hamming distance
between its descriptor and all the keypoints descriptors found
in I1, including the background keypoints, is calculated.

d
(

f 1, f 2
)

=
d

∑

i=1

XOR
(

f 1i , fi
2
)

(10)

According to the ratio ρ that the nearest neighbor must be
larger than the second nearest neighbor, we match candidate
keypoints in P to keypoints in I1 [27]. The set of matched
keypointsM consists of the subset of keypoint locations in P
that match O. So the candidate keypoints match with back-
ground keypoints are removed fromM [28].

3.3.2 Consensus voting

In order to find the location the object center, each keypoint
(a,m) inM casts a vote h(a,m) → R2 for the object center
as follows:

V = {h (ai ,mi )}KP
i=1 (11)

Here, the translation transformation of the target is consid-
ered.

hT (a,m) = a − rm (12)

where rm is the relative position of the corresponding key-
point in O.

No matter whether the coordinate a or the model index m
is wrong, the voting result will not be the object center, but
will be randomly pointed to a certain position in the image.

Before calculating the object center C, the outlier key-
points need to be identified and removed by looking for

δ

cV cV

Fig. 4 Finding consensus in voting behavior

consensus in the voting behavior, as shown inFig. 4. Finally, a
hierarchical agglomerative clustering method [28,29], which
uses Euclidean distance as similarity measure, is applied to
cluster the voting results V. This clusteringmethod organizes
the data into a hierarchical structures according to a proxim-
ity matrix, which constitutes a dendrogram that is then cutoff
at a certain threshold δ. Thus,V is partitioned into the disjoint
subsets V1, . . . , Vm−1 and Vm . The subset Vc containing the
largest number of elements is considered to be the consensus
cluster [30].

If Vc contains elements less than θ · |O|, we assume the
object is not visible. Otherwise, we turn the votes in the con-
sensus cluster into an estimate for the object center.

C = 1

n

n
∑

i=1

V i
C (13)

where n = |Vc|. It should be noted that the object center C
and the scale s define the pose of the object of interest.

3.4 High-confidence update scheme

For highly robust trackers, high-confidence update is very
important. Most existed trackers update tracking models
[13,15,16,31] at each frame without considering whether the
detection is accurate or not. Actually, the tracking result is
unreliable when the target is severely occluded or out of
view. To avoid error model information being introduced
into tracker, a high-confidencemodel update method is intro-
duced to control the frequency of model updates.

As mentioned in Sect. 3.2, the simple measurement of
peak strength is called the peak-to-sidelobe ratio (PSR). The
larger the PSR value is, the higher the confidence degree
of the tracking result is. As shown in Fig. 5, in the “Suv”
sequence, from the 670th to 695th frames, the moving vehi-
cle is occluded by trees. It can be clearly seen that when
the moving vehicle is completely occluded, the confidence
map fluctuate intensely, and the PSR value decreases from
19.0528 to 3.5585. In this case, the tracking model is unreli-
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Fig. 5 Changes in the confidence map of the Suv image sequence

able, and it is necessary to stop updating the tracking model
during this period to avoid erroneous model information
being introduced into the tracker. When the PSR value of a
certain frame is greater than the historical average, the track-
ing result of the current frame is considered to be highly
reliable.

However, PSR only reflects the confidence of current
frame tracking result, so it cannot be used as the learning
rate for model update. In this paper, we use the ratio of PSR
between adjacent frames to represent the relative margin of
confidence of trackingmodel. The learning rate is defined as:

η = b
(

I PSRt /I PSRt−1

)

(14)

Here, I PSRt−1 denotes the PSR value of the t − 1th frame, I PSRt
denotes the PSR value of the t th frame, and b is a propor-
tional parameter used to adjust the weight of I PSRt /I PSRt−1 . Let
β = I PSRt /I PSRt−1 , usually β belongs to 0 to 2, which reflects
the ratio of the confidence of the tracking result between
adjacent frames. When β is greater than 1, the confidence of
the tracking result is higher; otherwise, the confidence of the
tracking result is lower.

4 Experiments

4.1 Experiment setup

In the experiments, the regularization parameter λ is set to
10−2, the size of the translation estimation search window is

set to 1.5 times the target size, the learning rate η ranges from
0 to 0.3, the scale series S is 33, the scale factor a is 1.02,
and the parameter b is 0.15. For the detection and description
of keypoints, we employ BRISK [32] with a dimensionality
d = 512. For matching candidate keypoints to the model, the
ratio threshold ρ is set to 0.8, the cutoff threshold δ = 20,
and the parameter θ is 0.1.

The experiments are carried out using Matlab 2016a and
Visual Studio 2013+OpenCV 3.1.0 on a computer with Intel
(R) Core (TM) i5-4590 CPU@3.30GHz+RAM 4GB whose
operating system is Windows 10.

4.2 Experiment datasets

To evaluate our approach,we perform comprehensive experi-
ments on two benchmark datasets: OTB-2015 [2], VOT-2016
[26]. In the following sections, the proposed tracker is
denoted as “RHCT”.

4.2.1 OTB-2015 dataset

We evaluate the proposed tracking method on the OTB-2015
benchmark dataset and compare it with the state-of-the-art
methods.

The OTB-2015 benchmark dataset provides 100 video
sequences with ground-truth object locations and attributes
for performance analysis. All these sequences are annotated
with 11 attributes which cover various challenging factors,
including scale variation (SV), occlusion (OCC), illumina-
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tion variation (IV), motion blur (MB), deformation (DEF),
fast motion (FM), out-of-plane rotation (OPR), background
clutters (BC), out of view (OV), in-plane rotation (IPR)
and low resolution (LR). Each sequence includes several
attributes.

It uses precision and success plots to evaluate the perfor-
mance of the algorithm. The success plot shows the fraction
of frameswith the overlap between the predicted and ground-
truth bounding box greater than a thresholdwith respect to all
threshold values. The precision plot shows similar statistics
on the center error.

4.2.2 VOT-2016 dataset

For further validating the effectiveness of the proposed
method, we also compare with other tracking approaches on
the VOT-2016 challenge dataset.The VOT-2016 dataset con-
sists of 60 challenging videos. The VOT-2016 benchmark
contains results of 70 state-of-the-art trackers evaluated on
60 challenging sequences. For each sequence in the dataset,
a tracker is evaluated by initializing it in the first frame and
then restarting the tracker whenever the target is lost. The
tracker is then initialized a few frames after the occurred
failure. The overall performance is evaluated using expected
average overlap (EAO) which accounts for both accuracy
and robustness, and the equivalent filter operations (EFO)
is used to evaluate the tracking speed of the algorithm. We
refer to [26] for a detailed description of the VOT evaluation
methodology.

Table 1 The tracking performance and processing speed of DSST,
RHCT-v1, RHCT-v2, and RHCT on OTB-2015 dataset

Trackers F&R HCU Mean DP Mean OP Mean FPS

DSST NO NO 71.2 60.6 25.1

RHCT-v1 NO YES 76.8 68.4 28.5

RHCT-v2 YES NO 84.5 73.7 20.1

RHCT YES YES 88.2 78.6 22.4

The Bold font denote the best results

4.3 Analyses of RHCTmethod

In this section, in order to analyze the contributions from
failure detection and redetection module, high-confidence
update strategy to the final tracking performance, the OTB-
2015 and VOT-2016 datasets are used to evaluate the
performance of the algorithm.We denoteRHCTwithout fail-
ure detection and redetection (F&R) as RHCT-v1, without
high-confidence update strategy (HCU) as RHCT-v2.

The tracking performance and processing speed on OTB-
2015 dataset are shown in Table 1. As shown in Table 1,
RHCT demonstrates the best tracking accuracy and the sec-
ond fastest speed. Without both of F&R and HCU, DSST
reaches the last one in distance precision(DP) and overlap
precision(OP), but the tracking speed of DSST is relatively
high. Without F&R, RHCT-v1 gets poor performance. That
is because of tracking failure caused by occlusion or out of
view, resulting in poor performance. But the tracking speed
ofRHCT-v1 is the best one.WithoutHCU,RHCT-v2 updates
the tracking model in each frame, thus the tracking speed is
the lowest. However, the failure detection and redetection
module are introduced into the algorithm, so RHCT-v2 has
high tracking accuracy. In addition,we also provide a compar-
ison of RHCT tracker with DSST, RHCT-v1, and RHCT-v2
on VOT-2016 benchmark dataset. The tracking performance
of overlap, accuracy, EAO, and EFO are shown in Table 2.
As shown in Table 2, RHCT achieves the best performance
of overlap, accuracy, EAO, and EFO is the second highest.

As shown in Tables 1 and 2, although the proposed
method increases the amount of computation, the proposed
method can achieve promising performance on visual track-
ing. The experimental results show the effectiveness of
failure detection and redetection module, high-confidence
update strategy.

4.4 Experimental results and analysis

4.4.1 Experiment 1: threshold setting analysis

As mentioned before, the tracking result of each frame has
its corresponding confidence score ytmax (t denotes the image
of the t th frame of the video sequence). In the case of suc-
cessful tracking, the confidence score ytmax can represents the

Table 2 The tracking
performance of DSST,
RHCT-v1, RHCT-v2, and
RHCT on VOT-2016 dataset

Trackers F&R HCU Overlap Accuracy EAO EFO

DSST NO NO 0.5146 0.5037 0.1806 9.7141

RHCT-v1 NO YES 0.5263 0.5172 0.2347 10.4623

RHCT-v2 YES NO 0.5431 0.5283 0.2864 7.8345

RHCT YES YES 0.5593 0.5385 0.3320 8.2962

The bold font denotes the best results
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Fig. 6 The maximum confidence score curve of “Girl2” Sequence
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Fig. 7 Distribution of the minimum ymax for each video sequence in OTB-2015 dataset: a The minimum ymax distribution of each video sequence,
b The Gauss distribution curve of the minimum ymax of the video sequence with failed tracking

credibility of tracking result to a certain extent. The larger
ytmax is, the more accurate the tracking result is. However,
we need pay attention to some specific cased, for example,
as shown in Fig. 6, when the target is occluded at the 110th
frame, the tracking failure occurs, resulting in tracking an
erroneous target object. Although the subsequent maximum
confidence score will continue to increase, the maximum
confidence score has no practical significance because the
following tracking is an erroneous target object.

In this section, the OTB-2015 dataset is used to evalu-
ate the proposed method. As shown in Fig. 7, a confidence
interval is put forward based on Eq.(15). When the confi-
dence TRt

con of the tracking result of the t thframe belongs
to the set (0, 0.15), the confidence of the tracking result is
considered to be low.

TRt
con =

{

High ytmax ≥ 0.3
Low 0 ≤ ytmax ≤ 0.15

(15)

Figure 7a shows the minimum ymax distribution of each
video sequence tested by the DSST tracker on the OTB-2015
dataset. The red asterisks indicate the minimum ymax distri-
bution of the sequence that was successfully tracked. The
green asterisks indicate the minimum ymax distribution of
the video sequence with failed tracking, and the blue aster-
isks indicate the minimum ymax distribution of the sequence
with poor tracking effect. Figure 7b shows the Gauss dis-
tribution curve of the minimum ymax of the video sequence
with failed tracking. As shown in Fig. 6, when the maximal
confidence score is less than the threshold Tth = 0.15, the
tracking result is considered unreliable.
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(a)

(b)

Fig. 8 Bar plots of 50 video sequence practical difference: a Bar plots of PSR of 25 video sequences with better tracking result, b bar plots of PSR
of 25 video sequences with failed tracking

For the OTB-2015 dataset, Fig. 8a shows that under the
condition of successful tracking, the PSR is usually between
10.0 and 50.0, which means that the tracking result is with
high confidence. As shown in Fig. 8b, we find that the mini-
mum PSR is less than 5.0 for sequences with failed tracking,
and we can set the threshold TPSR = 5.0.

First, according to the change of ytmax, the reliability of
the tracking result is initially determined. When ytmax satis-
fies the unreliable confidence interval, then the PSR value is
further calculated. If T t

max is less than 5.0, the target track-
ing is considered to have failed. When the tracking failure
occurs, the redetection module is activated to relocate and
track the correct target.

4.4.2 Experiment 2: evaluation on out-of-view dataset

In theOTB-2015 dataset, the dataset that out of view includes
14 image sequences, among which have challenging charac-
teristics such as occlusion, illumination variation, rotation,
and deformation.

The precision and success plots of on out-of-view dataset
are shown in Fig. 9. From Fig. 9, it can be seen that the
proposedmethod performs favorably against the state-of-the-
art trackers on out-of-view dataset.

In addition, we also provide further experimental evalu-
ation on 14 out-of-view videos in the OTB-2015 dataset. In
“Appendix” (as shown in Table 5), we give the average accu-
racy of the proposed method and the state-of-the-art trackers
on out-of-view dataset. It is obvious to see that our method
has achieved the best performance in OV.

As shown inTable 5, it shows the average overlap accuracy
of the proposedmethod for each sequence and is compared to
seven (7) state-of-the-art trackers. The best results are high-
lighted in bold. Compared with the existing trackers, the
proposed method performs better, with an average overlap
precision of 67.9% , which is 23.7% higher than the DSST
algorithm. The Board, Box, and Liquor sequences mainly
have occlusion challenges. The DSST tracker fails to track
on Board, Box and Liquor. When the target appears in the
field of vision again after the failed tracking, it cannot track
the target continuously. The proposed method combines the
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Fig. 9 The precision and success plots on out-of-view dataset
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Fig. 10 The precision and success plots over 100 sequences on the OTB-2015 benchmark dataset

Table 3 Comparisons of the
proposed method and
state-of-the-art trackers on the
OTB-2015 dataset

RHCT DeepSRDCF SRDCFdecon Staple LCT MEEM DSST KCF

Mean DP 88.2 86.5 84.3 82.8 80.4 75.3 71.2 70

Mean OP 78.6 77.4 76.7 70.2 64.5 63.2 60.6 54.8

Mean FPS 22.4 0.36 0.9 29.6 26.4 18.7 25.1 84.2

Bold values denote the best results

redetection module and the high-confidence updating mod-
ule and can conquer the challenges of these sequences.

4.5 Experiment 3: evaluation on OTB-2015 dataset

To validate the comprehensive performance of the pro-
posed method, the proposed method is compared with seven

state-of-the-art trackers including DeepSRDCF, SRDCFde-
con [33], LCT [24], Staple [31], MEEM [34], DSST, KCF
based on the OTB-2015 benchmark datasets [2].

The precision and success plots are shown in Fig. 10,
which shows our tracker is superior comparing to state-of-
the-art trackers on the OTB-2015 dataset. And the proposed
method is compared quantitatively with seven state-of-the-
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Fig. 11 Tracking results of three approaches (DeepSRDCF, SRDCFdecon and Staple) and our approach on six challenging sequences (from left
to right and top down are Box, DragonBaby, FaceOcc2, Liquor, Suv, and Tiger2)

art trackers as shown in Table 3. From Table 3, it is obvious
that the proposed method is superior to the existing meth-
ods in distance precision (DP) and overlap precision (OP).
Among the tracking methods, DeepSRDCF achieves better
results; the average DP andOP are 86.5% and 77.4%, respec-
tively. However, the proposed method achieves the best test
results. The average DP and OP are 88.2 and 78.6%, respec-
tively, which are 1.7 and 1.2% higher than DeepSRDCF. The
processing speed of the trackers in measured in mean FPS is
also compared. The processing speed of the proposed track-
ing method is lower than that of DSST, but it is higher than
most of the existing methods.

Figure 11 shows the tracking results of oursmethod,Deep-
SRDCF,SRDCFdecon, andStaple on challenging sequences.

Figure 11 shows that the proposed method can track the
object target accurately. The proposed method not only has
high tracking accuracy, but also has good adaptability to the
challenges of occlusion, out of view, and deformation.

The frame-by-frame comparisons of center location errors
and overlap rate on the three challenging sequences are
provided in Fig. 12. As shown in Fig. 12, the proposed
method achieved the smallest center location error on most
challenging sequences, which means the proposed method
outperforms the other compared trackers remarkably.

In addition, in “Appendix” (as shown in Fig. 15), we give
the averageprecision for eachof the 11 challenging attributes.
It is obvious that our tracker can achieve the best performance
if there are occlusion, illumination variation, and out of view.
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Fig. 12 Frame-by-frame comparison of center location errors and overlap rate on the 3 challenging sequences
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Fig. 13 Expected average overlap (EAO) curve on VOT-2016 dataset

Moreover, our tracker can performwell in theDEF, SV,OPR,
and IPR. However, the performance of the proposed tracker
is poor in FM, MB, LR, and BC. The main reason is that our
method introduces a detector based on Keypoint matching,
and the detector cannot be able to accurately locate the posi-
tion of the target, resulting in low tracking precision if there
are fast motion, motion blurring and so on.

4.6 Experiment 4: State-of-the-art comparison on
VOT-2016 dataset

We also provide a comprehensive comparison of our trackers
with nine state-of-the-art trackers on VOT-2016 benchmark
datasets [26]: C-COT [23], DeepSRDCF [22], DeepC-
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Table 4 The top-performing trackers on the VOT-2016 benchmark
dataset

Overlap Accuracy EAO EFO

RHCT 0.5593 0.5385 0.332 8.2962

C-COT 0.5296 0.5125 0.3294 0.5023

DeepCSRDCF 0.528 0.5086 0.3294 0.3294

CSRDCF 0.5073 0.5014 0.302 4.6428

Staple 0.5104 0.5346 0.2942 10.9754

DeepSRDCF 0.5221 0.5245 0.2757 0.1286

SRDCFdecon 0.5259 0.5291 0.2459 0.3214

MEEM 0.4765 0.4722 0.1976 6.6786

KCF 0.4916 0.5084 0.1935 40.7412

DSST 0.5146 0.5037 0.1806 9.7141

Bold values denote the best results

SRDCF [21], SRDCFdecon [33], CSRDCF [21], Staple [31],
DSST [15], KCF [13], and MEEM [34].

Figure 13 shows the EAO (Expected average overlap)
plots with the proposed method and the nine state-of-the-
art approaches. As shown in Fig. 13a, it shows the expected
overlap scores rank of RHCT and other nine state-of-the-art
method on VOT-2016 dataset. The proposed method outper-
forms all trackers and achieves the top rank. And Fig. 13b
shows that with the increase in video frames, the expected
overlap rate of each tracking algorithm will continue to
decrease, but RHCT method has achieved the best results.

Table 4 shows the results reported by the VOT-2016. The
first two columns contain the mean overlap score and accu-
racy over the VOT-2016 dataset. The remaining columns
report the expected average overlap (EAO) and Equivalent
Filter Operations (EFO) for each tracker. RHCT achieves the
best final rank on this dataset. The RHCT outperforms the
other nine state-of-the-art trackers with the EAO score equal
to 0.332. Among the compared methods, RHCT achieves
favorable results in terms of EAO, the mean overlap score
and accuracy, at the cost of an EFO.

5 Conclusions

In this paper, a robust tracking algorithm was proposed. This
tracking algorithm is based on a redetection module and
high-confidence updating the proposed tracking algorithm
is divided into four parts: translation and scale estimation,

failure detection, redetection module, and high-confidence
update module. The correlation filter is used to estimate the
translation and scale of the target, and the maximal confi-
dence score and PSR are used to detect the confidence degree
of the tracking result. When the confidence of tracking result
is below a set threshold, an online detector is used to redetect
the target. In addition, in order to reduce the errormodel infor-
mation introduced during the tracking process, an adaptive
high-confidence update method is used to select a reliable
tracking model to train classifier. The experimental results
show that the proposed method can achieve promising per-
formance on visual tracking especially there are occlusion
and out of view in the video sequences. This will further
improve the performance of our object tracking framework.
Another research direction is to incorporate deep features
into our framework.
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Appendix

This appendix contains additional experimental results.

Analyze the effectiveness of PSR

Here, we added some experiment to analyze the effectiveness
of PSR in Sect. 3.2. As shown in Fig. 14, the experimental
results show that the maximal confidence score and the PSR
can reflect the confidence degree about the tracking perfor-
mance to some extent. Therefore, the maximal confidence
score and PSR are used as reference for judging whether the
tracking result is reliable.
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Fig. 14 The changes in the confidence map of the 5 image sequences
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Fig. 14 continued

Additional results on out-of-view dataset

Here, we provide further experimental evaluation on 14 out-
of-viewvideos in theOTB-2015dataset.As shown inTable 5,

it shows the average overlap accuracy of the proposedmethod
for each sequence and is compared to seven state-of-the-art
trackers.
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Table 5 Average overlap
accuracy (OP) for each sequence
on the out-of-view dataset (%)

RHCT DeepSRDCF SRDCFdecon LCT Staple MEEM KCF DSST

Biker 33.4 52.4 31.0 33.8 23.7 24.5 22.4 26.8

Bird1 17.2 19.2 4.6 23.2 18.8 4.9 5.4 6.6

Board 91.4 82.1 83.0 67.3 55.7 59.4 63.3 84.1

Box 84.6 46.3 71.4 9.9 35.6 52.3 28.9 39.6

ClifBar 92.4 51.4 59.0 53.0 43.5 37.1 24.6 88.6

DragonBaby 52.3 64.4 17.9 27.4 45.9 53.1 30.4 6.3

Dudek 100.0 82.5 79.8 85.7 70.9 67.6 97.4 98.6

Human6 58.4 64.4 36.7 23.3 82.1 19.2 20.4 45.6

Ironman 21.7 19.5 6.7 9.7 14.3 40.1 15.1 13.3

Lemming 85.4 70.3 75.1 70.1 23.2 66.0 44.2 27.2

Liquor 92.8 84.3 8.7 57.4 68.2 75.1 83.9 41.0

Panda 65.2 15.4 11.0 25.2 31.2 50.3 16.8 13.3

Suv 100.0 54.9 71.8 76.1 80.9 63.9 87.7 98.4

Tiger2 55.3 53.9 62.4 61.1 68.7 53.7 36.4 29.6

Mean OP 67.9 54.4 49.7 44.5 47.3 47.7 41.2 44.2

Bold values denote the best results

Additional results on OTB-2015 dataset

Here, as shown in Fig. 15, we give the average precision for
each of the 11 challenging attributes.
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Fig. 15 The average precision over the eleven challenges on the OTB-2015 dataset
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