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Abstract
In this paper, we propose a new real one-dimensional cosine polynomial (1-DCP) chaotic map. The statistical analysis of
the proposed map shows that it has a simple structure, a high chaotic behavior, and an infinite chaotic range. Therefore,
the proposed map is a perfect candidate for the design of chaos-based cryptographic systems. Moreover, we propose an
application of the 1-DCP map in the design of a new efficient image encryption scheme (1-DCPIE) to demonstrate the new
map further good cryptographic proprieties. In the new scheme, we significantly reduce the encryption process time by raising
the small processing unit from the pixels level to the rows/columns level and replacing the classical sequential permutation
substitution architecture with a parallel permutation substitution one. We apply several simulation and security tests on the
proposed scheme and compare its performances with some recently proposed encryption schemes. The simulation results
prove that 1-DCPIE has a better security level and a higher encryption speed.

Keywords Image encryption ·One-dimensional chaotic map ·Chaos theory · Secure real-time communication ·Cryptography

1 Introduction

Nowadays, the number of digital images is exponentially
growing due to the fast development of information tech-
nologies. As a consequence, a large number of images are
stored and transmitted every second, where a significant
part of these images is considered as private content [56].
To guarantee privacy and security, many researchers and
security experts developed several types of algorithms, such
as steganography [40,53,58], watermarking [3,5,10,29,34],
data hiding [9,28,52], and image encryption [19,21,30,38].
Unlike the former types, which tend to hide the secret infor-
mation into a public image, the image encryption transforms
the whole private image into an unrecognized random-like
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one. Recently, many image encryption schemes have been
proposed using various theories and technologies like chaotic
maps [19,25,31,41,55], DNA encoding [7,12], quantum the-
ory [13,27], optical systems [24,46,54], etc [14,44]. Among
these technologies, chaotic maps are the most popular due to
the natural chaos proprieties such as unpredictability, ergod-
icity, high sensitivity, and a random-like and deterministic
behavior. These features perfectly respond to cryptography
systems’ needs.

In chaos theory, depending on the number of vari-
ables, chaotic maps are divided into two categories: low-
dimensional and high-dimensional chaotic maps. Low-
dimensional chaotic maps have a simple structure and
are more easy to implement. However, most of the low-
dimensional maps are proved to be predictable due to their
small chaotic range [8,22,51]. In contrast, high-dimensional
chaotic maps have a more extensive chaotic range but are
more complex and consequently more difficult to imple-
ment. Discovering some new sources of chaos with better
randomness, higher unpredictability, larger chaotic range,
and simple structure becomes the main focus of many secu-
rity researchers [16,17,42,43]. Borgia et al. [2] presented a
new one-dimensional chaotic map using a combination of
sin and arcsin functions and then apply the proposed map
in the design of a real-time image encryption algorithm.
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The proposed encryption scheme has a fast speed,yet the
used map is topologically conjugated with the logistic map,
which has been proved to be easily predictible [23,39]. In
[15], the authors generated a new two-dimensional chaotic
map by adjusting the logistic map using the sine map (2D-
LASM) and then use the generated map to implement a new
encryption system. Unfortunately, the proposed scheme was
cryptanlyzed by Feng et al. [11]. In [45], Wang et al. pro-
posed a new color image encryption scheme using a globally
customized coupled map lattice. Although the system has a
good security level, its encryption speed is too slow.

Motivated by these issues, we propose a new one-
dimensional cosine polynomial 1-DCP chaotic map. This
new map has a simple mathematical definition and exhibits
a high chaotic behavior over an infinite range of its real con-
trol parameter values which makes it a perfect candidate for
the design of image encryption schemes thanks to its simple
structure, high chaotic behavior, and infinite chaotic range.
We apply several chaos theory tests to demonstrate the good
chaotic performances of the 1-DCPmap. Besides, we design
a novel efficient image encryption 1-DCPIE scheme based on
the proposed map. In 1-DCPIE scheme, we raise the small
encryption unit from the pixels level to the rows/columns
level which highly increases the encryption speed. Further-
more, we adopt an alternative to the substitution permutation
network architecture, where the permutation and substitu-
tion phases are merged. This new architecture makes the
1-DCPIE scheme able to withstand separate attacks [47]
when only one encryption round is applied and enhances
its security and speed. We perform several simulation tests,
such as histogram, information entropy, secret key analysis,
image sensitivity, and correlation analyses, to prove the high
performances of 1-DCPIE.

The rest of the paper is organized as follows. Section 2
presents the 1-DCP chaotic map and evaluates its chaotic
behavior. Section 3 describes in detail the proposed 1-DCPIE
scheme. In Sect. 4, we simulate the 1-DCPIE scheme and
evaluate its performances. Finally, Sect. 5 concludes the
paper.

2 The proposed chaotic map

Here, we introduce a new one-dimensional cosine poly-
nomial chaotic system (1-DCP) defined by the following
equation (Eq. 1):

{
f : [−1; 1] −→ [−1; 1]

xn+1 = f (xn) = cos(μ(x3n + xn))
(1)

where μ is a real control parameter. Since the new map is
bounded by the even function cosine, the sign of μ is not
significant. Hence we ignore the negative values of μ. The

Fig. 1 Bifurcation diagram of 1-DCP using different scales

1-DCP map exhibits an extremely high chaotic behavior for
most of μ values. That makes its chaotic region as large as
the infinite space of positive real numbers. Therefore, the
1-DCP map fits more the needs of cryptography in terms
of large keyspace, complexity, and unpredictability. In the
following section, we analyze the performances of the new
map through several dynamical systems tests.

2.1 Bifurcation and trajectory analysis

The long-term behavior of a dynamical system (stabil-
ity, instability, periodicity, or chaos) is visually described
through the bifurcation diagram as a function of the parame-
ter values. Figure 1 shows the bifurcation diagram of 1-DCP
using different scales. The map first settles into one fixed
point when 0 ≤ μ < 0.56, and then it enters into a period-
doubling phase for 0.56 ≤ μ < 1.05, and finally gets into
the chaos beyond the point μ∗ = 1.05. A few numbers of
periodic windows exist in the bifurcation diagram. Figure 2
projects the trajectory of 1-DCP in 2D and 3D phase space.
It is seen from the phase diagram that the newmap trajectory
has a sinusoidal waveform where its periodicity tends to get
smaller as the parameterμ gets bigger. As a consequence, the
trajectory of 1-DCP looks random-like for the high values of
μ.

2.2 Approximate entropy

The approximate entropy (ApEn) [32,33] is a statistical test
to calculate the complexity and irregularity of dynamical sys-
tems. A positive value of the ApEn test reflects the absence
of repetitive patterns among the generated orbits. A higher
ApEn value means more complexity and unpredictability
of the system. As shown in Fig. 3, the ApEn value of 1-
DCP map is positive for μ ∈ [0, 1000] . Therefore, the
generated time series by the new map present no repetitive
patterns.Compared to other well-known chaotic maps, the
1-DCP ApEn values are mostly better than the Circle map
ApEn values and are comparable to those obtained by the
Chebychev map.
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Fig. 2 Phase diagram of 1-DCP
using different values of μ

1-DCP map
Circle map
Chebychev map

Fig. 3 Approximate entropy analysis and comparison

2.3 Initial state sensitivity

The sensitivity to the initial values, which is one of the most
important characteristics of chaotic systems, is expressed
when orbits with infinitesimally close initial values expo-
nentially diverge after a finite number of iterations. The rate
of divergence is usually quantified using the Lyapunov expo-
nent(LE) [Eq. (2)] where a positive LE reflects the system’s
sensitivity to the initial state and can be comprehended as
the existence of a chaotic behavior if the system is bounded.
In Fig. 4, we calculate the LE of 1-DCP using Wolf et al.
[49] algorithm and plot it against the parameter μ. As shown
in Fig. 4, the 1-DCP map has a large positive LE value for
most of μ values. In Comparison with some other chaotic
maps, the LE of the proposed map is quite better than the
LE of the Chebychev and Circle chaotic maps. Besides, to
further analyze the sensitivity of the proposed map, we plot
two orbits with a 10−16 difference between their initial val-
ues in Fig. 5a and two orbits with a 10−12 difference between
their parameter values in Fig. 5b. As shown in these plots,

1-DCP
Circle map
Chebychev map

Fig. 4 Lyapunov exponent analysis and comparison

(a) (b)

Fig. 5 Sensitivity of 1-DCP to tiny changes At: a initial value x0; b
parameter value μ

the orbits diverge after only five or six iterations due to the
map’s high chaotic behavior.

λ = lim
N→∞

1

N

N∑
n=0

ln | f ′(xn) | (2)
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Fig. 6 Flowchart of the proposed image encryption scheme 1-DCPIE

3 Image encryption scheme

Here, we propose a new fast image encryption scheme 1-
DCPIE based on the 1-DCP chaotic map. Unlike most of
the existing encryption schemes, we combine the permu-
tation and the substitution stages to significantly increase
the encryption speed by reducing the number of loops over
the pixels. Besides, the combination of these two phases
makes the new scheme able to withstand the separate attacks.
Assuming a plain image P , the encryption process is divided
into two modules: a row phase followed by a column phase.
To encrypt the image rows, we iterate over the image rows Pi
starting from the first to the last row wherein each iteration
we encrypt the row Pi and another row PEP(i) indicated by a
key stream EP. Indeed, we mask these two rows values using
the predecessor row, a pseudo-random numbers sequences
generated from the 1-DCP chaotic map, and the modulo
operation. Then, we scramble the row Pi pixels using the
circular shifting operation. Finally, we encrypt the columns
by transposing the obtained image and reapplying the rows
encryption phase. Figure 6 shows the encryption flowchart.

The encryption steps

The detailed encryption steps of the proposed scheme are
described as follows

(1) Read the plain image P , round keys xir , μir where i ∈
{1, 2, 3, 4}, r ∈ {1, 2, . . . , T }, and T is the total number
of encryption rounds.

(2) Set the round counter r = 1.
(3) Set M as the total number of rows and N as the total

number of columns.
(4) Use the 1-DCP map to generate encryption positions

sequence EP of length M using x1r and μ1r as initial
conditions and then apply Eq. 3 to normalize EP values.

EP = {EPi |EPi = (EPi × 107) mod M} (3)

(5) Calculate x5r using the following equation:

x5r = x1r + mean(P/{P1, PEP(1)})

where mean(P/{P1, PEP(1)}) is the average pixels
value of the image P excluding the first and the EP(1)
row.

(6) Generate sequences Y , Z of length N with the 1-DCP
map using x3r , x5r and μ3r , respectively, as initial con-
ditions. Then, apply Eqs. 4 and 5 to normalize the
generated sequences.

Y = {Y j |Y j = (Y j × 107) mod 256} (4)

Z = {Z j |Z j = (Z j × 107) mod 256} (5)

(7) Starting from the first to the last row, encrypt in each
iteration two rows Pi and PEP(i) as follows.

{
Pi =circshift((Pi + f (i)+pred(i)) mod 256,EP(i))
PEP(i) = (PEP(i) + f (i) + pred(i)) mod 256

The circshift(Pi , n) function is a circular shifting oper-
ation of the row Pi to the right n times, and the
f (i), pred(i) functions are defined as follows

f (i) =
{
Y if i �= 1
Z if i = 1

pred(i) =
{
PM if i = 1
Pi−1 else

(8) Transpose the obtained image matrix P = Pt to
encrypt the columns and then repeat steps 3–7 using
x2r + mean({Xir }), x4r , μ2r , μ4r instead of x1r , x3r ,
μ1r , μ3r where i ∈ {1, 2, 3, 4} and mean({Xir }) is the
average of round key parts.

(9) Transpose back the cipher image P = Pt .
(10) Increment the rounds counter r = r + 1 and repeat

steps 3–9 until r > T .

The decryption steps

The decryption of cipher images is easily achieved by invert-
ing the encryption steps as follows.

(1) Read the cipher image P , round keys xir , μir where
i ∈ {1, 2, 3, 4}, r ∈ {1, 2, . . . , T }, and T is the total
number of encryption rounds.

(2) Set the round counter r = T .
(3) Transpose the cipher image matrix P = Pt to decrypt

the columns.
(4) Set M as the total number of rows and N as the total

number of columns.
(5) Use the 1-DCP map to generate encryption positions

sequence EP of length M by setting x2r + mean(Xr )
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and μ2r as initial conditions and then apply Eq. 3 to
normalize EP values.

(6) Generate sequence Y of length N with the 1-DCPmap
using x4r and μ4r , respectively, as initial conditions.
Then, apply Eq. 4 to normalize the obtained sequence.

(7) Starting from the last to the second row, decrypt in
each iteration two rows Pi and PEP(i) as follows.

{
Pi = (circshift(Pi ,EP(i)) − Y − pred(i)) mod 256
PEP(i) = (PEP(i) − Y − pred(i)) mod 256

(8) Calculate x5r using the following equation:

x5r = x1r + mean(P/{P1, PEP(1)})

(9) Generate sequence Z of length N with the 1-DCP map
using x5r and μ4r , respectively, as initial conditions.
Then, apply Eq. 5 to normalize the obtained sequence.

(10) decrypt the first row P1 and the row PEP(1) using the
following equation:

{
P1 = (circshift(C1,EP(1)) − Z − PM ) mod 256
PEP(1) = (CEP(1) − Z − PM ) mod 256

(11) Transpose the obtained image matrix P = Pt to
decrypt the rows and then repeat steps 4–10 using
x1r , x3r , μ1r , μ3r instead of x2r + mean({Xir }),
x4r , μ2r , μ4r .

(12) Decrement the encryption rounds counter r = r − 1
and repeat steps 3–11 until r < 1.

4 Experimentation and security analysis

In this section, we perform a set of image encryption secu-
rity tests to analyze the security and performances of the
1-DCPIE scheme. The experimentation environment is pow-
ered by an Intel I7-7700HQ processor, 16GB RAM and
MATLAB 2018. Besides, we choose the simulation plain
images from the well-known ‘Miscellaneous’ USC-SIPI
dataset.

4.1 Histogram analysis

In the statistical attacks, an illegitimate person can hack
the scheme by discovering any eventual relation between
plain and cipher images pixels’ intensity level. Therefore,
the encryption scheme must produce cipher images with a
uniform equal distribution. Figure 7 shows the pixels inten-
sity levels histogram of plain/cipher images of grayscale and
color ‘Lena’ image. We can notice that the histogram of the
cipher images is flat and equally distributed. Hence, it does
not leak any useful information to the attacker. Besides, we

Fig. 7 Grayscale intensity histogramsof plain and cipher ‘Lena’ images

use the Chi-square test to prove the cipher image’ histogram
uniformity further. The Chi-square is calculated as follows.

χ2 =
255∑
i=0

(Oi − Ei )
2

Ei

where i is the gray-level intensity, Oi is the observed occur-
rence frequency of the gray level i , and Ei is the expected
occurrence frequency of the gray level i . Assuming a signif-
icance level α = 0.05, the critical value for 8-bit grayscale
image is equal toχ2(255, 0.05) = 293.2478. TheChi-square
test value of the generated cipher image by 1-DCPIE is equal
to 218.5039 which is lower than the critical value and hence
implies that the generated cipher image has a uniform distri-
bution.

4.2 Information entropy analysis

The Shannon entropy [35] can quantify the information
uncertainty in a given message m. In image encryption, we
apply Shannon entropy to measure information randomness
in the produced cipher image C . The theoretical ideal value
of information entropy is equal to 8, and the closest is the
resulted entropy to the ideal value, the better is the scheme
security. The information entropy is calculated as follows

H(C) = −
255∑
i=0

p(Ci ) log2 p(Ci )

where p(Ci ) is the occurrence frequency of the pixel value
intensity i in the image C . We apply the entropy test 1000
times using random secret keys to encrypt ‘Lena’ image by
the 1-DCPIE and some recent state of the art schemes, and
thenwe report the results in Table 1. The results show that the
new scheme produce cipher images with high entropy using
only one encryption round.

In a recent study,Wuet al. [50] proposed the local Shannon
entropy (LSE) , which is a new information randomness test
more strict and more suitable for image encryption. Unlike
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Table 1 Entropy test comparison

Min Mean Std Max

1-DCPIE (1 round) 7.9991 7.9993 0.000062 7.9996

Ref. [37] (1 round) 7.9976 7.9980 0.000122 7.9984

Ref. [26] (2 round) 7.9991 7.9993 0.000063 7.9995

Ref. [18] (4 round) 7.9980 7.9993 0.000074 7.9995

Ref. [43] (2 round) 7.9991 7.9993 0.000061 7.9995

traditional Shannon entropy, the LSE test measures the aver-
age entropy value of k non-overlapping random local blocks.
The LSE is calculated as follows

Hk,TB (C) =
k∑

i=1

H(Ci )

k

where Ci , i ∈ {1, 2, . . . , k} are k randomly selected blocks,
TB is the block size, and the function H(Ci ) calculates

the entropy of block Ci . According to the authors, the
accepted interval of the LSE test for 8-bit grayscale images
is [7.901901; 7.903037]. Table 2 shows the results of the
LSE test of the 1-DCPIE and some other schemes applied
to the USC-SIPI image database. As one can see, the new
scheme achieves an acceptable LSE score in most of the
dataset images.

4.3 Plain image sensitivity

The chosen plain text attacks (CPA) are very common and
effective attacks against encryption schemes having low sen-
sitivity to the plain image [6,48,57]. Hence, a secure image
encryption scheme should always have an avalanche effect
for minor changes in the plain images. To test the plain
image sensitivity, we use the Number of Pixels Change Rate
(NPCR) and the UnifiedAverage Changing Intensity (UACI)
measures. These tests quantitatively evaluate the difference

Table 2 Local Shannon entropy
test results

Image name Ref. [37] Ref. [26] Ref. [18] Ref. [43] 1-DCPIE
(1 round) (2 rounds) (4 rounds) (2 rounds) (1 round)

5.1.9 7.899176 7.900580 7.903561 7.902670 7.900877

5.1.10 7.902988 7.902470 7.903468 7.902930 7.902561

5.1.11 7.900314 7.901817 7.901932 7.900260 7.902094

5.1.12 7.902894 7.902437 7.903253 7.901841 7.902069

5.1.13 7.899601 7.902051 7.902108 7.902954 7.901226

5.1.14 7.902881 7.900493 7.901315 7.902243 7.902006

5.2.08 7.876082 7.902264 7.902890 7.902576 7.902629

5.2.09 7.865113 7.903199 7.901146 7.903387 7.902055

5.2.10 7.887348 7.902912 7.902251 7.902899 7.902886

5.3.01 7.894821 7.901544 7.901716 7.902310 7.903266

5.3.02 7.871267 7.902522 7.900810 7.902043 7.902620

7.1.01 7.857684 7.903668 7.902888 7.902522 7.905016

7.1.02 7.820918 7.902807 7.893779 7.901637 7.902879

7.1.03 7.845253 7.902931 7.902349 7.902441 7.901359

7.1.04 7.860630 7.902478 7.902560 7.901043 7.901906

7.1.05 7.874394 7.9058365 7.902604 7.905103 7.901969

7.1.06 7.870690 7.902099 7.902744 7.902917 7.902519

7.1.07 7.849089 7.902971 7.909817 7.901422 7.903090

7.1.08 7.837632 7.902930 7.901911 7.902774 7.902433

7.1.09 7.866492 7.901604 7.902666 7.902589 7.902402

7.1.10 7.855740 7.900875 7.902547 7.903738 7.902364

7.2.01 7.818208 7.902100 7.902280 7.901167 7.904283

Boat.512 7.876833 7.902474 7.901965 7.901181 7.901929

Gray21.512 7.902961 7.901099 7.906956 7.902815 7.904195

Ruler.512 7.788990 7.904014 7.904462 7.901054 7.902020

Pass/All 4/25 14/25 14/25 14/25 17/25

Std 0.030400 0.001136 0.001345 0.001016 0.000940

Mean 7.869100 7.902407 7.902559 7.902340 7.902506

The values written in bold are in the accepted interval of LSE test
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between the cipher images C and C ′ generated from two
identical plain images having only a slight difference. The
NPCR and UACI are defined as follows

NPCR(C,C ′) =
∑M

i=1
∑N

j=1 Di j

M × N

UACI(C,C ′) =
∑M

i=1
∑N

j=1 |Ci j − C ′
i j |

N × M × F

where Di j = 0 if Ci j = C ′
i j and Di j = 1 if Ci j �= C ′

i j and F
is the biggest possible pixel value. According toWu et al. [4],
theNPCRandUACI valueswith regard to a significance level
α must be greater than N∗

α for the NPCR and should belong
to [U∗−

α ,U∗+
α ] for the UACI. The NPCR/UACI thresholds

values are calculated as follows

N∗
α = F − φ−1(α)

F + 1
×

√
F

M × N{
U∗−

α = μu + φ−1(α
2 ) × σu

U∗+
α = μu − φ−1(α

2 ) × σu

where

μu = F + 2

3F + 3
, σ 2

u = (F + 2)(F2 + 2F + 3)

18(F + 1)2 × F × M × N

andφ−1(.) is the inverse cumulative density function. Table 3
contains theNPCR/UACI thresholds for different image sizes
where the significance level is set to α = 0.05. We apply the
NPCR and UACI tests on the 1-DCPIE scheme, where we
slightly modify one random pixel. Figures 8 and 9 show the
NPCR/UACI scores obtained by the proposed scheme and
some other encryption methods. Figures 10 and 11 show the
NPCRandUACI values evolution as a function of the encryp-
tion round number r . Besides, since the proposed scheme
uses the average function, we reapply the NPCR and UACI
tests on ‘Lena’ image by adding one to a random pixel and
subtracting one from another to get the same average value.
The results are reported in Table 4. In comparison, we can
notice that the proposed scheme has quite similar results as
theothermethods.However, theminimumnumber of encryp-
tion rounds is remarkably fewer.

Table 3 Expected NPCR and UACI values

Image size NPCR N∗
α (%) UACI U∗−

α (%) UACI U∗+
α (%)

256 × 256 99.5693 33.2824 33.6447

512 × 512 99.5893 33.3730 33.5541

1024 × 1024 99.5994 33.4183 33.5088
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Fig. 11 UACI evolution over encryption rounds number

4.4 Secret key analysis

In cryptography, the keyspace should be as large as possi-
ble to resist brute-force attacks where an illegitimate person
can decrypt a cipher image by trying all the possible keys.
In the 1-DCPIE scheme, we set the combination {xir , μir }
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Table 4 NPCR/UACI values when changing two pixels

Pixels average NPCR UACI

1-DCPIE (1 round) Used 99.6407% 33.4386%

Ref. [37] (1 rounds) Used 0.00076% 0.00013%

Ref. [26] (2 rounds) Used 0.00076% 0.000002%

Ref. [18] (4 rounds) Not used 99.6067% 33.3741%

Ref. [43] (2 rounds) Not used 99.6071% 33.4692%

Obtained NPCR values
N*

U*+

Obtained UACI values
U*-

Fig. 12 NPCR andUACI analysis results of 1-DCPIE encryption secret
key sensitivity

(i ∈ {1, 2, 3, 4}, r ∈ {1, 2, . . . , T } and T is the total num-
ber of encryption rounds). In the IEEE-754 standard [20], the
precision of the double float type is equal to 10−16. However,
the precision of the (1-DCP) control parameter μ is equal to
10−12. Therefore, the 1-DCPIE secret keyspace is approx-
imated as (1016×4 × 1012×4)T ≈ 2392×T , which is largely
sufficient to handle brute-force attacks [1,36]. Moreover, the
secret keymust be sensitive to anyminormodification to pro-
duce a totally different cipher image whenever it is altered.
We apply the NPCR/UACI tests to quantify the difference
between the output cipher images encrypted using almost
identical secret keys. The obtained results of modifying any

part in the key are all in the acceptable range of NPCR/UACI
(see Fig. 12). Besides, in Fig. 13 we illustrate the results of
key sensitivity in the decryption process where we slightly
change a part of the key and try to decrypt the cipher image.
Wecannotice that only the original key can decrypt the cipher
image.

4.5 Speed analysis

Nowadays, many image encryption schemes achieve a suf-
ficient security level. However, their encryption algorithms
are too complicated, which mainly affect their speed and
hence make them inapplicable in real communications. In
the new scheme, we aim to increase the processing speed by
significantly reducing the chaotic map use, raising the small
encryption unit from the pixels level to the rows/columns
level, and combining the substitution and permutation stages.
In Table 5, we compare the theoretical and experimental
speeds of the 1-DCPIE scheme and some recently published
encryption schemes which have been simulated in the same
running environment.

4.6 Correlation analysis

The adjacent pixels values in the image data type are often
close and highly correlated. This image characteristic is a big
obstacle for cryptography where an attacker can try to hack
the scheme by finding eventual relations between correlation
in the plain and cipher images. Therefore, the encryption
scheme must break any existing high correlation among
adjacent pixels. To test the resistance of the new scheme
against this type of attack, we choose 2000 random pixels in
both plain and cipher images. Then, we calculate the cor-

Fig. 13 a Plain ‘Lena’ image; decryption using slightly modified b x1; c x2; d x3; e x4; f μ1; g μ2; h μ3; i μ4; j original key
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Table 5 Speed analysis test
results (ms)

Ref. [37] Ref. [26] Ref. [18] Ref. [43] 1-DCPIE

Complexity O(MN ) O(MN ) O(MN ) O(MN ) O(M + N )

Minimum rounds 1 2 4 2 1

256 × 256 21.2 75.9 398.8 59.8 11.1

512 × 512 93.9 315.6 1677.4 162.6 36.0

1024 × 1024 387.2 1315.3 6984.1 575.0 134.2

Table 6 Correlation test analysis

Horizontal Vertical Diagonal

Plain image ‘Lena’ 0.9693 0.9860 0.9572

1-DCPIE − 0.0076 0.0004 0.0019

Ref. [37] 0.0335 − 0.0174 − 0.0295

Ref. [26] − 0.0132 0.0185 0.0376

Ref. [18] 0.0097 − 0.0280 0.0247

Ref. [43] − 0.0059 − 0.0146 0.0211

relation coefficient of the chosen pixels by the following
equation:

corr(x, y) = cov(x, y)√
D(x) × √

D(y)

where

cov(x, y) = 1

N

N∑
i=1

(xi − E(x))(yi − E(y))

D(x) =
N∑
i=1

(xi − E(x))2, E(x) = 1

N

N∑
i=1

xi

The test results are reported in Table 6. The correlation
test results prove that the proposed scheme produces cipher
images with no correlation.

4.7 Interference resistance analysis

In reality, the transmitted data over communication canals
are sometimes altered by the effect of noise interference sig-
nals or deliberately by attackers. Thus, some parts of the
received cipher images can be lost. An effective encryption
scheme must be able to decrypt the rest of the affected cipher
image and retrieve the corresponding plain image. Figure 14
illustrates the capacity of 1-DCPIE to decrypt noisy cipher
images.

Fig. 14 Interference resistance analysis: a cipher image with 5% data
loss; b cipher image with 10% data loss; c cipher image affected by
2.5% of ‘Salt & Pepper’ noise; d cipher image affected by 5% of ‘Salt
& Pepper’ noise; e decryption of image a; f decryption of image b;g
decryption of image c; h decryption of image d

5 Conclusion

In this paper, we have developed a new one-dimensional
chaotic (1-DCP) map defined by a simple iterative math-
ematical equation. The new chaotic map exhibits a very
high chaotical behavior over a large interval of its posi-
tive real control parameter. Therefore, this map fits more
the needs of cryptography, such as large keyspace, unpre-
dictability, and speed than some predictable low-dimensional
maps or slower high-dimensional maps. Through several
analytical tests, we demonstrate the high chaotic behavior
of the proposed map. Besides, we design a new efficient
image encryption scheme based on the 1-DCP map. In this
scheme, we merged the permutation and substitution stages
to improve encryption speed and security. The experimen-
tal analysis results demonstrate that the 1-DCPIE scheme is
more secure and faster than other recently proposed encryp-
tion schemes.
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