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Abstract
Dynamic rulemining can discover time-dependent association rules and providemore accurate descriptions about the relation-
ship among items at different time periods and temporal granularities. However, users still face some challenges in analyzing
and choosing reliable rules from the rules identified by algorithms, because of the large number of rules, the dynamic nature
of rules across different time periods and granularities and the opacity of the relationship between rules and raw data. In this
paper, we present our work on the development of DART, a visual analytics system for dynamic association rule mining,
to help analysts gain a better understanding of rules and algorithms. DART allows users to explore rules at different time
granularities (e.g., per hour, per day, per month, etc.) and with different time periods (e.g., daily, weekly, yearly, etc.), and
to examine rules at multiple levels of detail, including investigating temporal patterns of a set of rules, comparing multiple
rules, and evaluating a rule with raw data. Two case studies are used to show the functions and features of DART in analyzing
business data and public safety data.

Keywords Visual analytics · Dynamic association rule · Sensemaking · Data mining

1 Introduction

Visual analytics helps users gain insight into data through
interactive visualization [1–3]. To respond to the rapid growth
of data volumes and the increasing complexity of data
types in analysis, researchers have advocated leveraging both
human analytical skills and machine computational powers
data in user-centered visual analytical systems [4–8].
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Effective use of powerful data-processing algorithms
requires users to havenecessaryknowledge and skills to inter-
pret and evaluate algorithms and their results [9]. However,
users may lack basic knowledge about an algorithm, feel
uncertain about its results, or fail to see the implications of
the results for real-world applications. Even for users with
necessary knowledge about the algorithm, they may want to
be more involved in data processing by controlling algorithm
parameters so that they can know more about the data, the
algorithm, the results, and the semantic implications of the
results.

More efforts are needed to help users better understand
algorithms and their results. Often algorithms are used in
systems as a black box, and users interact with them by just
providing inputs and receiving outputs. A more explicit inte-
gration of algorithms into visual analytics systems would
provide users with visual representations for algorithms,
algorithm parameters, and their results.

The focus of our research in this paper is on dynamic
association rule mining. Association rule mining [10,11] can
help to find interesting relationships among data items based
on the frequency of their co-occurrences and has been used
in decision-making in various areas. Extended from associ-
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ation rule mining, dynamic association rule mining [12–14]
provides more information about such relationships by con-
sidering temporal features of data.

Current support for the analysis of dynamic association
rule mining results is insufficient. Users often face various
challenges in understanding and interpreting dynamic associ-
ation rules identified by algorithms. The first challenge stems
from the temporal nature of dynamic rules.Dynamic rules are
time-dependent. While some rules may be very strong across
all the time (e.g., everyday in the whole week), some rules
maybevalid onlywithin a specific time range (e.g.,weekends
only). To know better and more accurately the rules, users
may need to analyze them in various ways, such as choosing
different temporal granularities (e.g., per hour, per day, per
month, etc.) in analysis, or to compare the validity of rules
in different time periods (e.g., rules for Monday vs. rules
for a week). Another challenge is associated with the mas-
sive rules returned by an algorithm [15]. Facing hundreds, or
sometimes thousands, of derived rules, users often find it hard
to interpret individual rules effectively and select appropriate
ones accurately [16]. The complex data structures involved
with dynamic rulesmake the situation evenworse. In addition
to understanding what data items are included in a rule and
whether the rule makes sense, users also need to evaluate and
compare rules with several measures, such as support, con-
fidence and lift. Furthermore, similar to other data-mining
algorithms, dynamic association rule mining algorithms are
opaque to users, making it difficult to understand, explain
and use the results obtained from algorithms [9]. Existing
data-mining tools, such as Weka [17] and RapidMiner [18],
only support static association rules and lack the support for
the analysis of dynamic association rules.

In this paper, we report our research on the design of a
system to support the visual analysis of dynamic association
rule mining. After reviewing relevant work in Sect. 2, the
paper presents design requirements in Sect. 3. In Sect. 4,
we provide the design details of individual visualization
tools. After two case studies in Sect. 5, we discuss the
implications of our work and future research directions in
Sects. 6 and 7. Our contributions can be summarized as the
following:

– An interactive visual analytics system, DART, that helps
users to analyze and compare dynamic association rules
across various time periods and at different temporal
granularities;

– An approach to support multi-level analysis of temporal
data, in particular in situations where periodic data are
the focus; and

– Two case studies that demonstrate the usefulness of our
system in the scenarios of business analysis and public
safety analysis.

2 Related work

Our research concerns visual analysis of dynamic association
rule mining. Thus, in this section we review literature on
association rule mining and discuss research on visualization
designs for association rule mining.

2.1 Association rule mining

Association rule mining [10] is a widely used data min-
ing method to identify those data items in a data set that
appear together frequently. The input of this method is a
set of itemsets, each of which contains several items. The
output is a set of rules, which is a set of items. The co-
appearances of these items in the input itemsets must meet
certain percentage-based measures, such as support and con-
fidence. Association rule mining algorithms search for rules
based on raw itemset data and based on user-specified mea-
sure values. Various algorithms [19–22] have been developed
for association rule mining. In addition, Djenouri et al. [23]
presented a bio-inspired approach to improving performance
in frequent itemsetsmining. Recently, a clustering-based pat-
tern mining technique [24] was developed to support the
discovery of relevant rules in data.

An association rule contains a set of items and has several
measures. The number of items in a rule varies. The mini-
mum number is 2. A rule itself can be measured by support,
confidence, lift and other criteria. Each item in a rule can
also be compared by its support. A rule L and its relevant
measures can be written as:

L = {I1, I2, . . . , Ii , . . . Ik} (1)

S = {s1, s2, . . . , si , . . . sk} (2)

M = {s, c, l} (3)

where Ii is an item; k is the number of items in the rule L; S
is the support set, of which the member si corresponds to the
support of the ith item; and M is the measure set for the rule,
with three most commonly used measures: s as support, c as
confidence and l as lift.

Extended from association rule mining, temporal associ-
ation rule mining discovers time-related rules from temporal
database. Various types of temporal association rule mining
methods had been proposed, such as sequence rules min-
ing [25], cyclic rules mining [26], incremental association
rule mining [27] and dynamic rule mining [12–14]. More
specifically, sequential association rule mining [25] extracts
relationships between data items while considering the time
ordering from the sequencedatabase; cyclic rulemining algo-
rithms [26] find rules having regular cyclic variation over
time from the whole dataset; and incremental association
rule mining [27] discovers rules from databases that update
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over time, instead of mining the entire dataset from scratch.
Although these works take the time factor into account, they
still assume that the data characteristics and the underlying
associations hidden in the dataset are stable over time, and
thus these rules from the whole dataset are also static.

Different from the above methods, dynamic rule min-
ing [12–14] identifies association rules that provide more
accurate descriptions about the relationships among items
in different time periods and at different temporal granu-
larities. For example, when applied in analyzing people’s
purchasing behaviors, dynamic association rule mining can
help to discover purchasing patterns at different times, such
as what gifts people buy together during the holiday season,
or what stuffs people usually buy with beers in the evenings
of weekends and whether the patterns may differ fromweek-
day evenings. Such temporal patterns may be unavailable
under generic association rule mining, because the frequen-
cies of relevant time-dependent records may never be above
the minimum frequency due to a low number of instances of
relevant records out of all records. To discover these dynamic
rules, data sets must first be appropriately clustered accord-
ing to the purposes of analysis, such as grouping purchasing
records based on the month or hour of transaction time in the
above examples, and then apply an association rule mining
algorithm to individual data clusters.

Let I = {i1, i2, . . . , im} be a set of m different items.
Let D = {d1, d2, . . . , dn} be a set of n different transactions
collected within a time period τ . Let T = {t1, t2, . . . , tk} be
a set of k time segments, which are disjoint, where �ti = τ ,
and let A and B be two sets of items, where A, B ⊂ I and
A ∩ B = �. The dynamic association rule can be defined as
follows:

R : A → B, (s1, s2, . . . , sk), (c1, c2, . . . , ck) (4)

s j (AB) = f j (AB)/|Dj | (5)

c j (AB) = f j (AB)/ f j (A) (6)

where jε{1, 2, . . . , k}, s j and c j are the support and confi-
dence values of the rule during the time period t j . |Dj | is
the number of transactions collected within the time period
t j and f j (x) measures the frequency of the set x in Dj . In
this paper, the Fp-Growth algorithm [19] was used to extract
association rules for consecutive time intervals with different
time granularities. Then these derived rules were combined
to dynamic rules. Using this approach, the users can observe
the changes and fluctuation in the association rules over the
time period when these rules are valid.

Although dynamic association rule mining was proposed
years ago [12–14], tools to support its use are rarely seen.Dif-
ferent from traditional association rule mining, which often
only requires measure threshold of support and confidence,
dynamic association rule mining also requires controls over

temporal parameters. Usually, users need to specify certain
parameters for data mining [28,29] to obtain such dynamic
rules as hourly patterns in each day, daily patterns in each
week, or monthly patterns in each year. Thus, users often
need to examine temporal patterns to find interesting rules
and modify time granularity back and forth based on pre-
viously found rules and involved raw data. This is where
interactive visualization can help.

2.2 Visualization designs for association rules

Research has shown that visualization can facilitate associ-
ation rule mining from three aspects: visualizing the rules,
assisting rule evaluation, and controlling rule generation [30].

2.2.1 Visualization of rules

Most of the data-mining tools list the derived results in text,
but visualization of data-mining results can provide imme-
diate insights into important features of algorithms. Liu and
Salvendy [31] argued that visualization of association rules
should present all the rules generated by an algorithm, show
interesting items involved in a rule, and provide effective
interestingness measures.

Somevisualization designs have been proposed for visual-
izing association rules. For example, rules can be visualized
as a grid [32,33], a node-link network [34,35], parallel coor-
dinates [36–38], or information landscape [39,40]. Users can
also examine the details of the rule subset or a specific rule
with tools like SARV [35], which presents rules with three
synchronous views: a matrix view for rule preview, a node-
link view to show the relationship among selected rules, and
a view to display texts of the selected rules and items.

2.2.2 Assisting rule evaluation

Rule evaluation is a fairly complicated process, which often
requires users to examine and analyze a significant amount
of rules. Various methods have been proposed to evaluate the
interestingness of rules [16] with objective measures (data-
based methods) and/or subjective measures (user-oriented
methods). Bruzzese et al. [41], targeting for objective mea-
sures, defined utility index for items of rules to measure
the impact on confidence exerted by the inclusion or non-
inclusion of a certain item in a rule, and then used parallel
coordinates to visualize the association rules and the util-
ity index of each item. Berzal et al. [42] introduced an
assessment framework based on Shortliffe and Buchanan’s
certainty factors [43] to discard misleading rules. In Liu et
al. [44], a subjective interestingness method was used to
measure the unexpectedness and actionability of rules based
on user prior knowledge. And further, Delgado et al. [45]
discussed a good assessment measure for association rule
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evaluation should fulfill and provided a new formulation for
both strong and very strong rules based on a logical model.
With visualization techniques, users can explore the rules of
interest more effectively.

2.2.3 Controlling rule generation

With data-mining algorithm being considered as a highly
automated model, visualization techniques have been com-
bined with algorithm modeling processes recently in many
studies [46,47]. In a model building process, visualization
plays various roles, including displaying the operation results
obtained in model building, fulfilling interactive functions to
enable user participation in model building, and giving feed-
back about user operations.

When visualization is combined with a modeling process
of association rules, it is necessary to increase the partici-
pation of users [8]. For association rule mining algorithms,
Liu et al. [44] first proposed an interactive visual exploration
tool to control the derivation of rules. Similarly, Chen et al.
[32] used visual analysis techniques for modulating the con-
straints during iterative mining processes. Recently, Zhao et
al. [48] focused on progressive techniques that execute data-
mining processes step-by-step and show results to facilitate
analysts to detect interesting patterns and factors effectively
and efficiently.

In sum, research has been done to support the visualiza-
tion and evaluation of association rulemining algorithms and
their results. However, to our best knowledge, tools to sup-
port the understanding of dynamic association rule mining
and derived results are rare. Our research is an effort to fill
the gap.

3 Design requirements

The focus of this research is on the design of a user-driven
visual analytics system for dynamic association rule mining.
In this section, we present the analysis of design require-
ments.

Our goal is to design a set of visualization tools to help
users better understand and analyze the results of dynamic
association rule mining, as well as control rule mining pro-
cesses. Our design is grounded in interviews with two data
analysis experts, whose work involved the use of dynamic
association rule mining. One expert is a business analyst
who often needs to analyze business data for marketing. The
other works on public safety data analysis. Both experts were
asked to show us how they performed data analysis in their
work. They demonstrated their tools, such as Weka [17] and
Tableau Desktop [49], for data analysis. To this end, based
on the observation of their analysis process, we conducted
several rounds of discussions and system prototyping with

them, and the following requirements were distilled based
on such work to guide the system development.

R1: Support temporal pattern driven analysis Here,
the temporal pattern is defined as the distribution of dynamic
rules in the time dimension. To obtain dynamic rules and
their temporal patterns, the experts first divided the dataset
into multiple disjoint sub-datasets according to a certain time
granularity (e.g., hour, day, week, or month) and a desir-
able temporal period (e.g., daily, weekly, monthly, or yearly).
Then, these data subsets were separately imported into the
Weka tool to perform association rule mining. Weka pre-
sented the static rules obtained in each run as a list with
various numerical measures (e.g., support, confidence, or
lift). Next, these rules derived from different subsets of data
were integrated into a file to examine temporal patterns,
which was a daunting task even with tools like Tableau. Fur-
thermore, both experts noted that they often need to examine
and compare temporal patterns under multiple time granu-
larities to get a comprehensive understanding of the data,
but none of available software packages allows them to do
so. Thus, they hoped to get a tool that can help them get an
overview of the dynamic rules across all time periods and at
different time granularities.

R2: Support item-driven analysis Through the inves-
tigation, we learned that analysts usually have some pre-
liminary ideas in their minds before starting data analysis.
Often they want to know about some specific information
from a particular perspective. For example, the business ana-
lyst mentioned that he always wanted to know information
about particular products (such as newly promoted goods,
high-margin items, slow-moving stock), rather than the rules
for all products. This goal requires tools for item-driven
rule analysis. Combining temporal pattern-driven and item-
driven analysis could help the selection of specific rules based
on temporal criteria and item interest.

R3: Support detailed analysis of dynamic rules Both
experts said they often analyzed rules in different levels of
detail. After selecting several potentially interesting rules
based on temporal patterns and/or data items involved, they
usually viewed and manipulated the details of these rules
(e.g., support, confidence, lift) at various time periods to fur-
ther narrow down the number of rules to be analyzed. They
hoped to have tools for the analysis of rules in different ways,
such as sorting rules based on various criteria, comparing
rules that contain similar items, etc. They preferred intuitive
and user-friendly visualization-based tools.

R4: Support the analysis and interpretation of individ-
ual rules The experts indicated that for ordinary users, the
black box nature of the algorithm makes the results difficult
to understand. In particular, they felt that without knowing
the relationship among rawdata and derived rules, it was hard
to judgewhere these rules came from,whether theywere cor-
rect and valid, and which rules should be chosen. They felt
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Fig. 1 User interface of DART: a parameter panel to set parameters
and start analysis; b summary view to show the number of rules; c, d
views to show the items appearing in rules; e overview to show temporal
patterns of multiple rules; f rule comparison view for the evaluation of

multiple rules; g itemset view for the analysis of a rule and its frequent
items; h rule data distribution for the examination of raw data related
to a rule; and i tabbed view panel for rule collection (not shown here)

that to better interpret the results and choose correct rules, it
was important for them to have a deeper understanding of the
relationships among the data, the algorithm parameters, and
the results. Specifically, they hoped that they could exam-
ine the frequent items and items corresponding to individual
rules to evaluate the rules and understand the semantics of
the rules.

R5: Support the collection and management of rules
Both experts indicated that they needed tools to help them
collect and organize rules, in particular when the number of
the rules generated was significant. If they needed to collect
a rule of interest, their current practice was very similar:
copying and pasting the rule to a separate document (e.g.,
a text file or a spreadsheet ). This approach is less efficient
because they had tomove back and forth between the analysis
tools (e.g., Tableau) and the rule collection documents to
search and compare rules. They hoped to have a tool that
allows them to collect and compare rules of interest directly
and interactively.

4 Visualization design

Our system, DART, was designed based on these require-
ments. Our design includes several panels that support user
interaction and visualize dynamic rules in different perspec-
tives (Fig. 1). Panels for parameter control and rule summary

(Fig. 1a–d) on the left are presented to set up parameters
and summarize the rule results. The overview (Fig. 1e) in
the upper middle shows temporal pattern of multiple rules.
The rule comparison view (Fig. 1f) on the top right allows
users to view and manipulate the details of dynamic rules.
The itemset view (Fig. 1g) and the view of rule distribution
(Fig. 1h) are updated by selecting individual dynamic rule
from the rule comparisonview. In this section,wefirst present
the data attributes and structures of dynamic rules used in
visualization design and then describe individual panels and
views. Toolswe used to implement the system are also briefly
introduced. The brief introduction and analysis process about
the system can also be found at https://www.dropbox.com/
s/aulwshhu6ln256u/DART.mp4?dl=0.

4.1 Data attributes and structures of dynamic rules

A dynamic association rule actually is a set of simple asso-
ciation rules that contain the same set of items, but have
different measures at different time points. For example, a
dynamic rule that describes the hourly purchasing patterns
of beer and diaper often have different supports and/or con-
fidences in each hour during a day. Thus, the analysis of a
dynamic rule actually involves the analysis of multiple sim-
ple rules with the same frequent items but different measures
in the time domain. The itemset of these rules can still be
described by Eq. (1), because of the same set of items they
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have, but their measures become matrices as shown below,
rather than what Eqs. (2) and (3) describe:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

s1,1 s2,1 · · · si,1 · · · sk,1
...

...
. . .

...

s1, j s2, j · · · si, j · · · sk, j
...

...
. . .

...

s1,t s2,t · · · si,t · · · sk,t

⎞
⎟⎟⎟⎟⎟⎟⎠

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

s1 c1 l1
...

...
...

sp cp l p
...

...
...

st ct lt

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

where t is the total number of time points in analysis, S is the
item-support matrix, in which si, j is the support of the ith
item among all k items at time j ; andM is the rule-measure
matrix in which sp, cp , and l p are the support, confidence,
and lift, respectively, of the pth rule out of the total t rules.

The visualization design in our research focused on the
visualization of data structures seen in Eqs. (1) and (7), as
well as other information relevant to these structures.

4.2 Panels for parameter control and rule summary

The left side of the user interface (Fig. 1) is a set of pan-
els to set up algorithm parameters and summarize the rule
results. Users start an analytical process by selecting a data
set and specify algorithmparameters (e.g.,minimumsupport,
minimum confidence, temporal granularity and period) in
the upper-left panel (Fig. 1a). The histogram below it shows
the total counts of dynamic rules returned by the algorithm
(Fig. 1b). The histogram color-codes the rules that are valid
in the whole time period, or global rules, and those only valid
in certain periods, or local rules. Their heights indicate the
total numbers of global and local rules.

Below the summary histogram is a bar chart to show the
item distribution in consequent of dynamic rules (Fig. 1c).
All these bars can be toggled on and off by clicking. Toggling
on an item will only keep those rules that contain the item in
consequent for further analysis.

Under this bar chart is another bar chart, in which users
can check what other items are contained in the antecedent
of rules that are kept and the corresponding rule distribution
(Fig. 1d). Items in this bar chart can also be toggled on and
off for further rule filtering.

These two bar charts allow users to examine what items
are involved in rules and initiate item-driven rule analysis
(R2). Rules returned from the algorithm or filtered by users
will be projected to the overview panel where their temporal
patterns can be analyzed.

4.3 Overview of dynamic rules

The overview (Fig. 1e) allows users to gain a big picture of
a set of dynamic rules and lets users choose some rules for

Fig. 2 Data cube involved in analyzing multiple rules: a 3 dimen-
sions of the data cube: measuring dimension with 3 measures (support,
confidence, and lift), time dimensionwith t time points, and rule dimen-
sion with n rules; b data slices, distinguished by color

further analysis based on their temporal distribution patterns.
When comparing multiple rules, users often need to evaluate
them based on certain measures that are available in their
rule-measure matrix, or M in Eq. (7). However, visualizing
multiple matrices could be a challenge, because putting these
matrices together actually makes a data cube (Fig. 2a) with
three dimensions: measure dimension, rule dimension and
time dimension. The rule dimension is fixed with three mea-
sures, but the number of rules in the rule dimension and time
points in the time dimension vary from analysis to analysis.

To deal with the challenge in visualizing a data cube with
two undetermined dimensions, we adopted an approach to
convert the visualization of the whole data cube into the
visualization of user-controlled three data slices (Fig. 2b)—
support slice, confidence slice, and lift slice, because in rule
analysis users usually compare rules with the same criterion.
Each slice is a matrix, in which one dimension has individual
rules, and the other has time points. The visualization in the
overview is based on data slice specified by users through a
drop-down menu, as seen in Fig. 1e.

The interest here is the temporal distribution patterns of
the measures of these rules. On the surface, the measures
of a dynamic rule may look like multidimensional data. For
example, for a rule that is valid for 7 days each week, it has
7 supports, one for each day; or a rule that is only valid in
weekends has 2 supports for Saturday and Sunday.

However, in nature the measures of dynamic rules are
periodic data. Unlike regularmultidimensional data, periodic
data usually implies a specific order of individual dimensions
and data analysis of periodic data must consider dimension
order and adjacency. Thus, traditional tools for multidimen-
sional data, such as parallel coordinates [50] and scatterplot
matrix [51], are inappropriate here.

Our visualization design in this overview is based on Rad-
viz [52,53]. Radviz considers both the multidimensional and
periodic characteristics of data andmaps data into a 2Dplane.
In our design, each time dimension is designed as an anchor
and all anchors are evenly distributed on a circle. Differ-
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ent choices of temporal granularity and period will lead to
different numbers of anchors. For example, when analyzing
daily rules in a week, there will be 7 anchors corresponding
7 days. If the interest is monthly rules in a year, 12 anchors
are needed.

Based on itsmeasure, each rule is visualized as a dot inside
a circle, and the dot location is determined by the measures
of the rule at all time points, as if the dot is tied to each
anchor by a spring, the stiffness of which is determined by
the rule measure in the dimension. For example, a rule that is
valid on weekends will be visualized as a dot sitting between
the Saturday and Sunday anchoring points and its location is
determined by the measures on these two days; a rule that is
only valid on Friday will be a dot on the radius connecting
the center of the circle and the Friday anchoring point, and
the bigger the rule measure is, the closer the dot is to the
anchoring point. It should be noted that all measures used to
calculate the locations of the dots are normalized to a value
between 0 and 1. A value of 1 will put a dot on the circle,
while with a value of 0 a dot will be at the center.

The overview also color-codes global and local rules as
red and blue, respectively. Two check-boxes are provided in
this view to let users decide the visibility of global and local
rules.

The designs of the overview support temporal pattern
driven analysis (R1). Users can quickly see the distribution
patterns of rules, such as dot clusters where similar rules
gather, or lone blue dots close to the circle, which may be
unique local rules. Users can select such dots in the overview
as the rules of interest to further compare their distribution
patterns or to examine their details.

4.4 View for rule comparison

The view for rule comparison (Fig. 1f) supports the explo-
ration and comparison of those rules of interest (R3). This
view is designed as a table. Each row is a rule, and the
columns include rule items and time points. The two left-
most columns are reserved for items: one for items selected
by users in the control panels and the other for the rest items in
a rule. The other columns are for time points, and the number
depends on the temporal granularity and period in analysis: 7
columns for an analysis of daily patterns in a week (7days),
or 24 columns for hourly pattern analysis in a day.

In each rule, its measures are visualized as circular dots.
The size of a dot is determined by the corresponding support
of the rule, and its vertical location is by its confidence. Our
visual encoding considers only these two measures largely
because of their popularity.

Users can interact with the table in various ways. They
can order rules based on their measures at each time point
through a drop-down menu. Users can also learn more about
a rule by hovering the cursor over it. Hovering over the text

of a rule on the two left columns brings up a tooltip to tell
what this rule is about. Hovering over a dot will show the
quantitative measures at a particular time.

With these designs, users can compare rules directly based
on the visualized measures at different time points and then
identify those rules that need further investigation. Such rules
can be those with the larger dots (higher support) compared
with other rules with similar temporal patterns, or those with
dots only appearing at some times. To analyze such rules
of interest, users can look at the detail of a rule, such as its
itemset composition and the strength of item support in the
itemset view.

4.5 Itemset view

The itemset view (Fig. 1g) is designed to let users see the
item composition of a rule to assist the understanding and
evaluation of the rule (R4). When users select a rule from
the rule comparison view, its items are displayed as a set
of histograms. The bars in a histogram represent the sup-
ports of the rule and the supports of its items. The horizontal
axis represent time. The data involved in this view includes
the supports of a dynamic rule, i.e., the first column of the
rule-measure matrixM in Equation (7), and the item-support
matrix S.

The view usually contains multiple groups of bars. Each
group corresponds to a rule at a time point. All groups have
similar patterns: the same number of bars and comparable
bar heights. Blue bars represent the items of the rule, and
their heights are mapped to their supports. The pink bar at
the bottom of a bar group represents the rule, and its height
is proportional to the support of the rule itself. Because the
support of a rule is usually smaller than the supports of all
its items, the pink bar is generally lower than the blue bars,
making it easy for users to see all items.

A rule that is valid at different times may have different
supports across time and the supports of its items may also
vary from time to time. Thus, the bar heights in all groups
are usually inconsistent, allowing users to easily compare the
temporal patterns of the supports of the rules and its items
and evaluate the strength of the rule.

In addition to seeing directly the items involved in a rule
and their supports, users can also obtain more information
about the rule and its items interactively. Hovering the cursor
over a bar group, users can read these items and their supports
in a tooltip.

With this view, users can know more about how a rule
is made, and compare the rule across different time points.
Doing so will allow users to better understand the principles
of dynamic association rule mining and enhance their skills
in the evaluation of a rule (R4).
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4.6 View for rule data distribution

The view of rule data distribution (Fig. 1h) is designed to
help users further investigate the temporal characteristics of
dynamic rules (R4). The goal of this view is to let users ver-
ify a rule based on the temporal granularity and period given
in the beginning of analysis. These two parameters are often
estimated and chosen based on the intuition, knowledge, or
experience of a users, but temporal patterns of dynamic rules
obtained from real-world data may not follow the same tem-
poral patterns as what the user may think. For example, in
analyzing the purchasing behaviors in a store, the user may
take day as the granularity and week as the period, but inter-
esting shopping patterns may occur from the evening of a
day to the early morning the next day, a period that does not
fit into what the user has defined. Consequently, such pur-
chasing patterns, even through significant enough to become
a rule, may never be discovered, if the relevant records are
spread into multiple periods and become infrequent in any
of them.

The data distribution view helps users to see how data
related to a rule is distributed across time and guides users to
choose new and probably more appropriate parameters for
rule mining. The view appears as a calendar-like heatmap
to show the frequencies of itemsets that contain all frequent
items of the rule. The temporal scale of this view is deter-
mined by the time granularity specified by the user. Each cell
in the view represents a time period at the granularity that is
one level finer than the specified granularity. For example, for
an analysis at a granularity of day, each cell in the view rep-
resent an hour. The color of a cell is based on the frequency
of all relevant itemsets during the time the cell represents.

This view serves two purposes. First, it allows users to
examine distribution patterns of data and verify the rule. For
example, the view in Fig. 1h, which is about the hourly pat-
terns of data in an analysis of the daily pattern in a week,
shows that data distributions vary significantly between day
and night: heavy activities at night but light in day. This
implies that using day as the time granularity for rule mining
may not be the best choice and results may be inaccurate.
The second purpose of this view is to let users directly define
new time granularity for rule mining. Based on what they
see, users can manually specify the boundaries of time peri-
ods by clicking relevant cells. New time periods do not have
to follow natural time units, such as day or week, and they
can even be unequal. New rules can be generated with the
changed parameters.

This data distribution view supports the analysis based on
temporal patterns of data (R1) by drawing on more detailed
information from another level (R4). Furthermore, with the
help of this view, users can start with roughly-defined param-
eters and then use intermediate results to fine-tune them for
more accurate results.

4.7 View for rule collection

Our system provides a view for collecting and managing
rules of interest (R5). The view is in a tabbed panel (Fig. 1i)
together with the panel that contains the rule comparison
view. A rule can be added into the collection by double-
clicking it in the rule comparison view. Its layout is very
similar to that in the rule comparison view. Users can delete
a rule from the view if it is no longer interesting.

4.8 Tools used for design and implementation

DART is a web-based visual analytic system. The front end
focuses on visualization and interaction functions and was
built with HTML5, D3.js, and jQuery.js. The server end pro-
vides computation and data management services and was
implemented with Java and MySQL.

5 Usage scenarios

In this section, we describe two case studies to demonstrate
the functions and features of DART. The first case study
involved a sales analyst as the subject to analyze online retail
data, while in the second case a transportation expert was
recruited to use DART to analyze data related to fatal car
accidents. Neither subject had prior knowledge on dynamic
association rule mining before the study. We introduced
the basic concepts of dynamic association rule mining and
other relevant concepts, such as rule measures and itemsets,
through system demonstration. We also asked them to talk
aloud about their actions during the study session. In this
section, we describe the first case study in a brief manner to
show how the system was used, and provided more detail on
the second case study to show how DART can be used for
in-depth analysis of dynamic rules.

5.1 Online retail data analysis

Our data in this study were from an online database [54],
and the data set we used contain 25,899 valid transactions in
an online store occurring from December 1, 2010 to Decem-
ber 9, 2011. The subject was interested in the relationship
among gift-related products sold during the holiday season,
so he used month as the time granularity and year as the
period. Some relevant information displayed in the system
interface during the analysis is shown in Fig. 3. Specifically,
the overview (Fig. 3a) presents a big picture of all rules in
every month. Items that appear in the antecedent and conse-
quent of rules are shown in Fig. 3b, c, respectively. A rule of
interest to the user displays in Fig. 3d, and the frequent item-
set and the rule data distribution corresponding to this rule
are shown in Fig. 3e, f. After the user adjusted the parameters

123



DART: a visual analytics system for understanding dynamic association rule mining 349

Fig. 3 Online retail data analysis: a overview; b, c items appearing in rules; d temporal pattern of a rule; e frequent items of the rule; f data
distribution of the rule; g new rules after adjusting parameters; h frequent items of a new rule; and i adjusting parameters

(Fig. 3i), a new rule is generated (Fig. 3g), and its frequent
itemset is shown in Fig. 3h.

Examining temporal patterns of dynamic rules The
overview gave a big picture of all rules identified by the
system (Fig. 3a). The subject said, “I want to view the
relationship between the products sold during the Christ-
mas holiday season, so I intend to examine the rules that
only appear in November and December.” Then the subject
selected the rule cluster shown in Fig. 3a for analysis.

Exploring and comparing dynamic rules Among 75
selected rules, the subject wanted “to look at the specific
semantics of these rules, that is, which products they are
about”. The subject checked the data items contained in these
rules and sorted them in a descending order based on the
number of rules that contained them, as shown in Fig. 3b.
Through exploration, the subject take 22086 as the interest,
which is a Christmas gift–paper chain kit 50’s Christmas,
and explored all rules including it. After comparing 6 relevant
rules, the subject finally took the rule with the highest con-
fidence. The rule included three items: 22086 (paper chain
kit 50’s Christmas), 22577 (wooden heart Christmas Scandi-
navian), and 22578 (wooden star Christmas Scandinavian),
and was valid only in November (Fig. 3d).

Exploring items, rule data and new rules To further
understand how this rule was derived from data, the subject
clicked on the rule in the rule comparison view to explore its
frequent items and thedata distribution, as shown inFig. 3e–f.
After observing the data distribution of the rule, the subject
said that “this rule appeared only in November. However,
in fact, I noticed that there are many data records in early
December. Maybe I should change the time periods to see
whether the rule is good in early December too.” As shown
in Fig. 3i, the subject set three new time points: Novem-
ber 2nd, December 1st, and December 10th to cut the time
into four periods: before November 2, between November
2 to November 30, between December 1 to December 10,
and after December 10. Running the algorithm with the new
parameters, the subject got two new rules: one for Novem-

ber and the other for December 1 to December 10. After
comparing these two rules with the previous one, the subject
believed both rules were as good as the previous one, with
similar support and confidence. The new rule on December
indicated that if promotion for these items were needed, the
promotionperiod should include thewholeNovember aswell
as early December, rather than just November.

5.2 Traffic accident data analysis

The data used in this case study were from FARS (Fatality
Analysis Reporting System) [55]. It contains 72,591 records
of car crash accidents in 2011 and each accident contains
such attributes as driver age, driver gender, driver alcohol
test result, driver drug test result, road condition, crash date,
injury severity, etc.

5.2.1 Obtaining a big picture of rules

The subject first looked at daily patterns in a week and
obtained 20,468 global rules and 10,693 local rules. The
subject was interested in fatal accidents. All these accidents
have a value of I4 in the attribute of injury severity. Thus,
the subject clicked the bar representing I4 in the item dis-
tribution chart to narrow down the number of rules. This
choice reduced the rules to 509 global rules and 287 local
ones (Fig. 1b). Next, the subject examined their temporal
patterns in the overview (Fig. 1e), and felt that the overview
was very “beneficial” to having a big picture of these rules.
Then he checked the data items contained by these rules, and
saw many human-related factors. Interested in such driver-
related factors, he decided to focus on alcohol test result and
driver age in his analysis.

5.2.2 Investigating alcohol factor

First of all, the user investigated the impact of alcohol factor
on fatal traffic accidents at weekly granularity. As shown in
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Fig. 4, the system provided some important information in
the user’s analysis process. For details, please refer to the
user’s analysis process below. The subject first examined the
rules that contain negative alcohol test result (coded as Alc0).
The overview (Fig. 4b) showed the rules in the middle of the
circle as well as spreading over weekdays. Seeing some rules
at the center of the circle, the subject wanted to “explore these
rules that seem good at every day and want to see if they may
differ between weekdays and weekends”.

Selecting a rule cluster at the center (Fig. 4b), the subject
began to examine the supports and confidences of these rules
in the rule comparison view (Fig. 4c). The rule at the top of
the table, (Alc0, I4) interested the subject, so he clicked it
to check its frequent items (Fig. 4d) and the distribution of
relevant accident records (Fig. 4e). He indicated that these
two viewswere very “informative” to understanding the rela-
tionships among dynamic rules, itemsets, and raw accident
records. Helped by these views, he was confident about the
validity of the rule, as evidenced by the high supports and
the fact that the accidents happened largely during day time
and early evening from 6am to 10pm. Thus, he collected the
rule.

The subject used the same procedure to analyze rules
that contain positive alcohol test result (coded as Alc1). He
noticed the number of the ruleswas fewer (Fig. 4f), compared
with that with negative test result. He also saw a differ-
ent distribution pattern in the overview (Fig. 4g): although
there were still rules concentrating in the center, other rules
actually appeared mostly during weekends. Selecting a rule
cluster at the center again, the subject browsed the mea-
sures of the rules in the cluster (Fig. 4h). After checking
the frequent items of the rule (Alc1, I4) (Fig. 4i) and its
data distribution (Fig. 4j), he found another difference: most
alcohol-related fatal accidents happened at night. Seeing this
rule valid too, he collected it.

In the rule collection panel, the subject compared these
two rules side by side (Fig. 5). He said, “the support values
of the rule with Alc0 and I4 during weekdays are consider-
ably higher than those at weekends. In contrast, the support
values of the rule with Alc1 and I4 during weekends are
significantly higher than those during weekdays, but their
confidences do not vary too much.” He also noticed that the
rule (Alc1,I4) had lower supports than the rule (Alc0, I4)
almost every day (measured by dot size), but its confidence
levels (the vertical position of the dot) seemed higher con-
sistently. He summarized what these rules implied as “well,
among fatal traffic accidents, more may be caused by peo-
ple not drinking alcohol, but drinking alcohol is more likely
to cause such accidents”. Drawing on his expertise, he liked
these rules.

To understand more the relationship between alcohol test
result and fatal traffic accident, the subject then analyzed the
rules related to alcohol factor at two other temporal levels:

Fig. 5 Comparison of rules related to alcohol test result

monthly patterns andhourly patternswith the sameprocedure
as the above.

The overview of the monthly patterns shows high rates of
alcohol-related accidents fromApril to July and inDecember
(Fig. 6g), while accidents with negative alcohol test result
were scattered more broadly across the year (Fig. 6b). After
the detail analysis of two rules—(Alc0, I4) and (Alc1, I4),
the subject found that their supports and confidences did not
change toomuch in thewhole year (Fig. 6c, h). Their frequent
itemset views (Fig. 6d, i) and data distribution views (Fig. 6e
and 6j) indicate these two rules were fairly stable.

For the hourly patterns, the rules containingAlc0 appeared
more during day time and from 5am to 2pm (Fig. 7b), while
the rules containing Alc1 were more at night, from 9pm to
5am (Fig. 7g). Analyzing the details of two rules—(Alc0, I4)
and (Alc1, I4) indicated that the supports of the rule (Alc1, I4)
were larger at night (larger dot size), while the confidences
were higher during the day time than at night (higher dot posi-
tion) (Fig. 7h). In contrast, the supports of the rule (Alc0,I4)
were higher during the day time, and the confidences were
much more stable (Fig. 7c). The data distribution shown in
Fig. 7e, j further confirmed the validity of these two rules.

5.2.3 Investigating age factor

The subject also analyzed the relationship between driver age
and fatal accident. In our system, age values were coded as
Ag1, Ag2, Ag3, Ag4 and Ag5 to represent to 5 age groups,
respectively: child, teen, young adult, adult, and senior.

The subject examined the overall patterns of the rules
related to each age group. Results showed very few rules
related to Ag1 and Ag2. He found the rule patterns for Ag3
andAg4were similar. Figure 8 compares the rule patterns for
these two age groups at different levels side by side. As seen,
theweekly rules for these two groupsweremainly distributed
in weekends (Fig. 8a, d), their monthly rules concentrated
between May and August (Fig. 8b, e), and their hourly rules
were largely distributed between 1am to 12pm (Fig. 8c, f).
Further analyzing some weekly rules on Ag3 that were only
valid during weekends (those being selected in Fig. 8a), the
subject saw the presence of Item S1 in many rules (Fig. 9a),
indicating that all drivers were male.

The subject then saw something interesting on the rule
(Ag3, I4, S1): “this rule only appears on Sunday, so I am
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Fig. 6 Analysis of monthly rules on alcohol factor and fatal injury: a
numbers of rules having Alc0 and I4; b overview of the rules having
Alc0 and I4; c comparison of rules having Alc0 and I4; d frequent items
of a rule (Alc0, I4); e data distribution of the rule; f numbers of rules

having Alc1 and I4; g overview of rules; h details of rules having Alc1
and I4; i frequent items of a rule (Alc1, I4); and j data distribution of
the rule

Fig. 7 Analysis of hourly rules on alcohol factor and fatal injury: a
numbers of rules having Alc0 and I4; b overview of the rules having
Alc0 and I4; c comparison of rules having Alc0 and I4; d frequent items
of a rule (Alc0, I4); e data distribution of the rule; f numbers of rules

having Alc1 and I4; g overview of rules; h details of rules having Alc1
and I4; i frequent items of a rule (Alc1, I4); and j data distribution of
the rule
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Fig. 8 Rule patterns for Ag3 andAg4. a–cweekly, monthly, and hourly
rule patterns for Ag3; and d–f patterns for Ag4

going to explore it further.” He analyzed its frequent item-
sets (Fig. 9b) and data distribution (Fig. 9c) and found that
the relevant data concentrated from 10pm on Friday to 8am
on Saturday. The subject redefined time periods so that two
night periods–10pm on Friday to 8 am Saturday and 10pm
Saturday to 8am Sunday–would be singled out (Fig. 9f). The
new parameters led to two new rules that corresponded to the
two night periods, with comparable supports and better con-
fidence (Fig. 9e). Comparing the rules obtained before and
after the change of time parameters, the subjectwas confident
that the new rules were “more accurate and more reliable”
than the old one and attributed the improvement to“more
accurate control of time periods”.

Finally, the subject analyzed the weekly rules related
to senior drivers (Ag5). Unlike the rules on Ag3 or Ag4
(Fig. 8a, d), the rules on Ag5 appeared almost everyday
(Fig. 10a), and many rules contained Alc0 (no influence of
alcohol). The subject chose a rule (Ag5, Alc0, I4) to check its
frequent itemsets (Fig. 10c) and data distribution (Fig. 10d).
His conclusion was that “accidents involving this age group
largely occurred during day time, but afternoon hours were
more dangerous. Need further investigation to explain why.”.

Fig. 9 Analysis of Ag3 and fatal accident: a rules having Ag3 and I4;
b itemset of Ag3, S1 and I4; c data distribution; d rule collection with
the old rule and new rules; e itemsets of S1, Ag3 and I4 under a new
rule; and f changing time parameters for mining

Fig. 10 Analysis of rules involving senior drivers Ag5: a the overview
of rules having Ag5 and I4; b temporal pattern of a rule (Ag5, Alc0,
I4); c frequent itemset of the rule; and d accident record distribution of
the rule

5.2.4 User feedback

After the subjects completed their analysis, we conducted an
interviewwith each to collect their feedback onDART.Over-
all, the subjects were impressed by DART. One subject said
that “the system helped me steer the analysis effectively. In
particular, I appreciate the tools to support the exploration of
temporal patterns of rules at different levels”. The other sub-
ject believed that the improved knowledge on the concepts
related to dynamic association rules (e.g., frequent itemsets
and various measures) by using the system would give him
“more confidence in evaluating rules from algorithm and
choosing appropriate rules for future event predictions”.

Regarding visualization tools anduser interface, they liked
the way that different views worked together to support in-
depth analysis of rules. In particular, they thought that the
tool for adjusting time periods in the data distribution view
is valuable and innovative in this type of scenarios. They also
mentioned that the system was intuitive to use.

The second subject made some suggestions for system
improvement. One suggestion was to add tools to deal with
spatial attributes, such as accident locations. He believed that
by supporting both spatial and temporal factors, the system
would be stronger.
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6 Discussion

By focusing on temporal pattern analysis of dynamic rules
at different time granularities, DART enhances the support
for the visual analysis of association rule. In recent years,
researchers have paid attentions to the visualization of asso-
ciation rules. Some data-mining tools such as Weka [17] and
RapidMiner [18] integrate visualization into system, butmost
of themmainly focus on the visual display of static rules, and
only provide limited interaction. In addition, some visual
analysis tools have emerged to interpret the algorithms and
results of association rules, such as AssocExplorer [15] and
PatternDiscover [48]. Furthermore, all these tools aimed at
static rule analysis. Our research on the visual analysis of
dynamic association rules will fill in the gap and offer peo-
ple a powerful approach to understanding association rules
and making better decisions.

DART was designed to support the analysis of dynamic
association rules, but the methods we proposed can be gen-
eralized to the analysis of temporal data, in particular in
situations where analysis needs to be conducted with dif-
ferent temporal granularities and periods. The combination
of the RadViz in the overview (Fig. 1e) and the table layout
in the rule comparison view (Fig. 1f) offers a way to enhance
the understanding of global patterns of periodic data, as well
as to support data evaluation at local levels. Also, our idea
of offering relevant raw data in the itemset view (Fig. 1g)
and the data distribution view (Fig. 1h) can be informative to
design efforts to connect the results of an opaque algorithm
with the raw data used by the algorithm.

Our designs to support data analysis at multiple scale lev-
els (e.g., hourly, daily, and monthly rule patterns) can be
extended to the analysis of other types of data that have
hierarchical structures, such as spatial data. Our design advo-
cates multiscale approaches to support easy shift of the level
of analysis from one level to another, as evidenced by the
analysis of the relationship between alcohol factor and fatal
accident in the second case study, and to use cross-scale data
to improve data analysis, as seen in the use of lower-level data
to support the direct manipulation of data-mining parameters
at the current level (Fig. 3i, f).

The scalability of our approach is reasonable. Because our
tool is a web-based system with sufficient system memory
on the server side, space complexity is less a concern of us.
Thus, here we discuss the time complexity only. The core
component of the time complexity of our approach is the
time complexity of the process to generate various associa-
tion rules. This process is based on the Fp-Growth algorithm,
which has a time complexity of O(n2) [56]. In the analysis of
dynamic association rules, users choose a specific temporal
granularity, and this choice divides the whole dataset, which
has a total n data records, into k subsets. Here, k represents
the number of data segments in analysis at a given granular-

ity. For example, when the granularity is at the level of hour,
k is 24, while when the granularity is at the level of week, it is
7. Assume all data records are evenly distributed into all data
segments. Then,we have k data segments, each ofwhich con-
tains n/k records. For each data segment, the time complexity
is O((n/k)2), so the total complexity is around k ·(O(n/k)2)
for rule mining, or O(n2/k). This time complexity can sup-
port real-time online data analysis for common datasets. Of
course, for every large datasets, other methods, such as paral-
lel algorithms could be considered to further reduce the time
complexity of our approach.

Some limitations exist in our research. One of them is
the lack of support for linking the dynamic rules at different
levels. Although DART allows users to switch the analysis
between different levels, currently users can only examine
these patterns at different levels separately and cannot see
how they may be related to each other. Easy connections
among rules at different levels could be useful for better
decision-making and sensemaking (e.g., explaining whether
high accident rate in a day is related to accidents in rush hours
or during lunch time.)

7 Conclusion

In this paper, we have presented DART, a visual analyt-
ics system of dynamic association rule mining. Our system
offers a set of visualization and interaction designs to assists
the control of data-mining processes, the examination of
rules at different temporal levels, and the interpretation of
the results from algorithm. Our two case studies involving
domain experts analyzing relevant datawith our system show
that DART supports the analyses of dynamic rules, the acqui-
sition of knowledge on algorithm, and the interpretation of
data-mining results.

Our research can be extended in several ways. On the
one hand, we will enhance the system by adding such tools
as those to recommend appropriate temporal parameters for
dynamic rule mining, to support the connection among rules
at different levels, and to facilitate temporal-spatial rule anal-
ysis. On the other hand, we will have more comprehensive
evaluation studies by making DART available to the public
and collecting system usage data in the wild to deepen our
understandings of how people use this kind of systems.
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