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Abstract
Object detection is an important topic for visual data processing in the visual computing area.Although a number of approaches
have been studied, it still remains a challenge. There is a suitable way to promote image classifiers by blending training with
blended images and corresponding blended labels. However, our experiments show that directly moving existing blending
methods from classification to object detection will cause the training process become harder and eventually will lead to a
bad performance. Inspired by our discovery, this paper presents a multi-phase blending method with incremental blending
intensity to improve the accuracy of object detectors and achieve remarkable improvements. Firstly, to adapt blending method
to detection task, we propose a smoothly scheduled and incremental blending intensity to control the degree of multi-phase
blending. Based on the above dynamic coefficient, we propose an incremental blending method, in which the blending
intensity is smoothly increased from zero to full. Therefore, more complex and various data can be created to achieve the
goal of regularizing the network. Secondly, we also design an incremental hybrid loss function to replace the original loss
function. The blending intensity in our loss function increases smoothly, which is controlled by our scheduled coefficient.
Thirdly, we further discard more negative examples in our multi-phase training process than other typical training methods
and processes. By doing so, we can regularize the neural network to enhance generalization capability with data diversity and
eventually to improve the accuracy in object detection. Another advantage is that there is no negative effect on evaluation
because our method is just applied during the training process. Typical experiments show the proposed method improves the
generalization of the detection networks. On PASCAL VOC and MS COCO, our method outperforms the state-of-the-art
RFBNet of one-stage detectors for real-time processing.

Keywords Object detection · Data augmentation · Convolutional neural network

1 Introduction

Neural networks, especially deep neural networks, have fun-
damental advantages over traditional methods for visual
computing [1–13]. For object detection task, since R-CNN
[14] was proposed 4 years ago, the accuracy on VOC [15]
dataset has gradually improved. Different from R-CNN and
Fast R-CNN [16], Faster R-CNN is fully based on the convo-
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lutional network. Furthermore, the one-stage object detection
approaches, such as SSD, combine two stages in Faster R-
CNN to obtain the bounding boxes and the labels in the same
output.Although the accuracy of one-stage detectors is a little
lower than two-stage, it has the advantage of concise network
architecture and high speed.

The above networks are used for many applications [17–
21]. The typical network training rule is to train the networks
by minimizing their average error over training data, which
is known as the empirical risk minimization (ERM) principle
[22]. The classical theory ofmachine learning tells us that the
convergence of ERM can be guaranteed as long as the size
of the learning machine does not increase with the number
of training data [22,23].

However, a recent research [24] shows suspect opinion
that ERM allows large neural networks to memorize (instead
of generalizing from) the training data despite that the pre-
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vious works conduct a lot of tricks, such as taking strong
regularization and applying the random label for classifica-
tion problem.

In many applications of neural networks of recent years
[25,26], the performance can be easily impacted by the train-
ing and testing data. The neural networks being trained with
ERM may give the opposite (error) predictions for the cus-
tom (testing) examples. Therefore, the generalization is still
a challenge.

Typical data augmentation methods to address the above
problems can be found in classification task [27] and can be
formalized by the vicinal risk minimization (VRM) princi-
ple [28], which tries to train networks on similar but different
examples. The basicmethods include slightly image rotation,
random crop, horizontal flip, mild scaling, etc. Other aug-
mentation methods are noisy labeled data by adding noise
to labels [29], label smoothing by softening the label from
one-hot to no explicit ones and zeros in labels [30]. Blending
methods try to blend the inputs and their targets across differ-
ent classes [23,31,32] and achieve dramatic improvements in
classification task.

However, the above data augmentation methods are ori-
ented for classification task with the assumption that the
examples in the vicinity share the same classes, and they are
not suitable for being applied to the detection task directly.

For the classification task, the classifier only needs to pro-
duce a prediction for each image. However, for the detection
task, the detector has to predict both locations and categories
of all objects. So the complexity of detection is much higher
than that of classification. Therefore, directly and simply
moving above blending method from classification task to
detection task will put more pressures on training and will
make it difficult for the network to converge to the optimal
state, eventually leading to performance degradation.

To solve the above problem, we present a multi-phase
blending method to improve the accuracy of object detectors
and achieve remarkable improvements.

Firstly, we propose a scheduled and incremental coeffi-
cient to control the blending intensity.We construct a sigmoid
formulation to lead the multi-phase training process. (1) In
the initial phase, the intensity starts from almost zero and
increases slowly and smoothly. So the network has time to
fit itself to the difficult object dataset and converge to a good
state. (2) In the second phase, the intensity grows rapidly and
reaches a high level of full intensity in a short time, so that the
blendingmethod starts to amplify the regularization effect on
the detector. (3) In the last phase, the detector is trained with
full intensity until the detection network converges. Based
on the above dynamic coefficient, we propose an incremental
blending method, in which the blending degree is controlled
by this coefficient. In this way, more complex and various
training data can be created to regularize the network. Mean-

while, the training process will not become too tough for the
network.

Secondly,we also design a hybrid loss functionwith incre-
mental intensity. The blending intensity of both increases
smoothly at the beginning, which is controlled by our sched-
uled coefficient. Different from the original loss function, we
propose a hybridmethod for loss functions, inwhich the clas-
sification function and regression function can be blended
separately.

Thirdly, the blending method will further increase the
number of negative examples by creating hybrid categories
withmore backgrounds than objects, which generally belong
to negative examples. For the detection task, too many
negative examples have no advantage for detecting posi-
tive examples. On the contrary, they will make the training
process more difficult. Therefore, we further discard more
negative examples in our multi-phase training process than
that in other typical training methods and processes.

Finally, our experiments indicate that we can achieve our
purpose of regularizing the object detection networks and
eventually improve the performance on complex detection
tasks.

The proposed method is highly valuable for its improve-
ment on the detector’s performance without increasing its
computational cost. The only price is more time spent in the
training phase. Moreover, it is a compact and independent
module that is easy to use.

The rest of this paper is organized as follows. Section 2
briefly reviews the related work in object detection. Section
3 presents our regularization method for one-stage object
detectors. Section 4 conducts the experiments and discusses
empirical results. Section 5 analyzes the highlights of the pro-
posed network. Section 6 concludes this work and discusses
future work.

2 Related work

2.1 Detection networks

Two-stage detector R-CNN [14] is a standard two-stage
object detection framework. Girshick et al. [14] combines
the steps of cropping box proposals like selective search [33]
and classifying them through a CNN model, yielding a sig-
nificant accuracy gain. For speeding up, Fast R-CNN [16]
computes the entire image only once in a feature extractor
and then puts it into a spatial pooling layer, called ROI pool-
ing, thus allowing to reuse the features in classification.

Faster R-CNN [34] shows that the quality of object pro-
posals can be optimizedbydeepneural networks and replaces
the independent proposal generators in its predecessors by
region proposal network (RPN). RPN has a set of boxes,
named anchors, paved on the image at different locations,
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scales, and aspect ratios, and it is trained to make class-
agnostic predictions and regression predictions of offsets
which fit the object locations for each anchor.

Faster R-CNN is later extended to many more advanced
versions. A typical extension of it is Mask R-CNN [35],
which uses a parallel branch to segment the object mask and
presents a RoIAlign layer to fix misalignment to improve the
detection accuracy.

One-stage detector The typical one-stage detectors are
YOLO [36,37] and SSD[38]. YOLO predicts confidences
and locations for multiple objects by using the whole fea-
ture map. YOLO runs very fast because of eliminating the
stage of proposal generation. However, performance is lim-
ited. SSD [38] is another one-stage object detection approach
and is widely used in pedestrian detection, car detection, and
object tracking, etc. Different from two-stage detection, SSD
produces the results of bounding boxes and class labels from
the feature map at the same time through the location layer
and classification layer, so this framework is faster than two-
stage detector but less accurate.

RFBNet [39] improves basic SSD. It adds a module called
Receptive Field Block (RFB), which consists of several con-
volutional kernels of different sizes in parallel. Compared
with the inceptive block [30], RFB uses a different length of
stride and a bigger kernel to ensure the feature map covered.
So RFB block expands the receptive field of layers to have
the ability to access more information.

Without special notation, our work is in the context of
one-stage detection networks.

2.2 Data augmentationmethods

Intuitive image operations Most existing data enhancement
methods used in object detection are limited to the use of
intuitive image operations (such as cropping, rotation, which
are minor changes to the object). However, these operations
do not obviously change the images.

Noisy label Learning with noisy labeled training data has
been extensively studied in machine learning and computer
vision literature. Limitations still exist. Experiments in [40]
show that the classifiers inferred by label noise-robust algo-
rithms are still affected by label noise. Many studies have
shown that label noises can adversely impact the classifica-
tion accuracy of induced classifiers [41]. Bartlett et al. [42]
proved that most of the loss functions are not completely
robust to label noise.

Label smoothing There exist several related label smoothing
methods [23,30].

Szegedy et al. [30] tries to soften the label by adding addi-
tional labels of each class to enhance the regularization and
get a small improvement. This method encourages the model

to be less confident. It does regularize the model andmakes it
more adaptable by preventing the largest logit frombecoming
much larger than all others. Although it has a positive effect
on generalization, this soft method is not explicit because
label softening is random, and has little influence on some
networks. By contrast to [30],we use the explicit image infor-
mation to get the same effect of overfitting and avoid any
wrong information.

Furthermore, [23,31,32] assume that the linear relation-
ship between images and their labels also affect the general-
ization of models. They adopt another way to get the vicinity
distribution: They mix the two original images by simply
adding together with a random percentage, the label of each
also needs to be added together with the same percentage,
and thus the new images and labels are produced to train the
neural networks.

Our work differs from the above literature [23,30–32] as
follows: (1) It is aimed at object detection, including both
regression problems and classification problems, while the
above methods are only for classification problems. (2) In
addition to one type of blended loss function for the labels,
our method constructs two types of hybrid loss functions
for both labels and locations, containing hybrid classifica-
tion loss function and hybrid regression loss function. (3) In
order to alleviate the difficulty of training the complex data
caused by blending operations, we propose a scheduled and
incremental blending parameter to smoothly control blend-
ing intensity and discard more negative examples.

2.3 Contribution

As a brief summary of this section, our contributions lie
as follows: (1) We design a smooth, scheduled and incre-
mental coefficient with mathematical sigmoid formulation
to control the blending intensity among the multi-phase and
propose a blending method based on dynamic and incremen-
tal intensity. (2) We propose two incremental hybrid loss
functions containing hybrid classification loss function and
hybrid regression loss function, in addition to the original
loss function. (3) We further enhance the hard negative min-
ing method by discarding more negative examples (Fig. 1).

3 The proposedmethod

3.1 The principle of the proposedmethod

Firstly, the widely used data augmentation methods of the
intuitive image operations increase the number of true images
that are stable and concise for training both classification
network and object detection networks. Blending method
creates data of blended class which is closer to one of the
two classes. The blended data expand the training space, and
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Fig. 1 The overview of multi-phase training. The blending intensity
smoothly increases according to our scheduled blending intensity. In
the initial phase, the intensity starts from almost zero and increases
slowly and smoothly. In the second phase, the intensity grows quickly

and reaches a high level of full intensity in a short time. In the last
phase, the detector is trained with full intensity until the detection net-
work converges

Fig. 2 The red dots are data of a class in the natural distribution, and
the green dots are another class. Blended data are created in the vicinal
space of the red dots, to expand the training space and make the feature
space smoother

the soft labels of blended data make the nearby feature space
smoother (Fig. 2). However, this blending method creates
inexact data, which is acceptable for classification network,
but hard for the detection network. Therefore, we propose
a new multi-phase method to smoothly control the blending
intensity among the multi-phase, in which the network can
adapt gradually.

Secondly, in predicting the position of bounding boxes,
the coordinates of bounding boxes are continuous values. The
softened labels is also continuous values, which match the
object detection task very well. Therefore, we propose two
incremental hybrid loss functions containing hybrid classifi-
cation loss function and hybrid regression loss function, in
addition to the original loss function.

The basic idea of the proposed method is illustrated in
Fig. 1.

3.2 Gaps between classification and detection

Gaps always exist between classification and detection tasks.
To initially test the performance of the blending method on

Fig. 3 Left is the original image (black box) and right is the blended
image (blended black box)

regression problems, we conduct a fundamental experiment
to show the effect for regression problem in object detection.

The experiment is set as follows. As shown in Fig. 3, we
create awhite 10×10 square box containing a 5×5 black box.
We establish a data distribution from the original distribution
to simulate the natural situation that the detection datasets
(like PASCALVOC, etc.) are sampled from the natural image
data distribution. In this experiment, only 10 samples of 25
are selected as training data. In the test phase, we use all data
to test the trained model.

For training data distributionD := (xi , yi )mi=1 of location
of the black block, it is a sample distribution from real distri-
bution. We denote xi as the image pixels and yi as its values
of location.

Firstly,we construct a newdistributionDv := (x̃i , ỹi , z̃i )mi=1
fromD := (xi , yi )ni=1 for images by proposed blending oper-
ation.

⎧
⎪⎨

⎪⎩

x̃i = λxi + (1 − λ)x j

ỹi = yi

z̃i = y j

(1)

λ ∼ Beta(β, β) In our experiment, we set β = 0.1.
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Fig. 4 Graphs refer to the losses of models which are trained with
blendingmethod (red and green) and no blending (blue), where it should
be noted that green is a bad example, a shows that blending method is
more fluctuant in the training process. In b, the red line refers to the
model performing better than baseline while the green one is the model
performing worse than baseline model. It means that the final models
with original blending method are inconsistent and not always good

Secondly, we detect the location of a black boxwith small-
scale AlexNet for the initial test, in which we trained the
network by the loss function lhybrid (Eq. 4)

lossp(θ) = LSM( fθ (x̃i ), yi ) (2)

lossq(θ) = LSM( fθ (x̃i ), zi ) (3)

lhybrid(θ) = λlossp( f θ) + (1 − λ)lossq(θ) (4)

where LSM denotes Smooth L1 Loss, fθ and θ are model and
its weights.

As shown in Fig. 4, the experimental results show that
there is potential for the blending method to improve the
detection model, but the training process is unstable which
is the reason we should use scheduled intensity.

In another experiment, we test the simple application of
the blending method on VOC 2007 (Table 1). The perfor-
mance is worse than the original model.

Table 1 Ablation analysis of multi-phased training

Method Backbone Data mAP

SSD*[38] Vgg 07+12 77.2

SSD*+Blending Vgg 07+12 76.0

SSD* denotes training with tricks mentioned in [38]. 07+12 denotes
VOC trainval2007+trainval2012

3.3 Blending intensity for training detectors

Unlike image classifiers, object detectors are usually harder
to train due to their complexity, especially when using the
blending method.

• In the context of this research, the detectors simultane-
ously produce two different losses: the classification loss
and the regression loss. So the complexity of the detection
task is higher than the classification task.

• Besides, for each point on the last feature map of the
object detector, the prediction of both category and
location will be made. Therefore, the loss function of
detectors is more complex than the loss function of clas-
sifiers.

• Furthermore, blending method creates hybrid categories
of objects or objects and backgrounds with hybrid labels
combined by labels of original objects, so the human-
made images and labels are more complex than original
images and labels.

Through the above analysis, it is not suitable to apply
the blending method directly to object detectors. Therefore,
we propose a multi-phase blending method with incremental
blending intensity for training detection networks.

3.4 Enhanced hard negativemining

In the training process of typical object detectors, after the
matching step, most of the default boxes are negatives, espe-
cially when the number of possible default boxes is large.
This introduces a severe imbalance between the positive and
negative training examples [38].

The existing method in typical one-stage detectors is hard
negative mining. They sorted all negative examples using the
highest confidence loss for each default box and pick the top
ones so that the ratio between the negatives and positives is
at a fixed value.

We consider this problem to be more serious in our
method. The blending method will further increase the num-
ber of negative examples by creating hybrid categories with
more backgrounds than objects, which generally belong to
negative examples. However, too many negative examples
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Fig. 5 The overview of incremental blendingmethod.We design two incremental hybrid loss functions containing hybrid classification loss function
and hybrid regression loss function

have no advantage in detecting positive examples. On the
contrary, they will make the training process more difficult.

Based on the above discovery, we further discard more
negative examples in our multi-phase training process than
that in previous training methods and processes.

3.5 Blending training architecture and principles

In the one-stage detector, all the labels and the bounding
boxes of objects come out simultaneously. The network pro-
duces a fixed-size matrix containing all the information of
both the detected objects and backgrounds. Each prediction
is related to the corresponding area.

Therefore, we can blend two blocks of fixed-size outputs
with correct alignment. In thisway,we can blend both images
and labels (softening effect) in object detection task and pro-
pose a novel training architecture, that is, blending training
architecture with incremental blending intensity.

The architecture and principles of the proposed method
are shown in Fig. 5

• Before inputting data batches to the base network, we
present a pairwise operation to hybrid pairs of images in
addition to intuitive image processing operations.

• Also, at the tail of the network, we present a hybrid loss
function called HLoss which contains the hybrid classi-
fication loss and the hybrid regression loss.

• The blending degree of the blendingmethod is controlled
by the scheduled and incremental blending intensity.

3.6 Details of the Algorithm

For convenience, we abbreviate our method, multi-phased
blending method as MPB. MPB includes three parts as fol-
lows:

3.6.1 Scheduled blending intensity

We design our scheduled blending intensity λ through sig-
moid formulation,

λ = λ̂

1 + e−α(epoch−n)
(5)

where λ̂ is the highest value of the blending intensity, α and n
are the hyperparameters of λ, and epoch denotes the current
epoch during training. In most of our experiments, λ̂, α, n
are set to be 0.02, 0.1 and 200 respectively. For the typical
detection networks, when epoch goes to around 200, the net-
works reach the premature stage, from which the loss curve
becomes smooth and the network performance keeps stable.
Thus, from this stage, we proposed a smoothly incremental
blending intensity to further improve the performance of the
networks.

3.6.2 Blendingmethod

The blending method includes three major procedures as fol-
lows.

In the first step, for a training batch, we randomly select
two image and blend them by x = λx1 + (1 − λ)x2. We
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construct a new distribution Dv from source distribution
Ds := (xi , yi )ni=1

Dv := (x̃i , ỹpi , ỹqi )
m
i=1 (6)

where x̃i = λxpi+(1−λ)xqi , (xpi , ypi ), (xqi , yqi ) ∈ Ds and
λ is the scheduled blending intensity from Eq. (5). Then we
input these blended images from distributionDv to calculate
the feature maps.

In the second step, we calculate the classification loss and
regression loss of the feature maps. The basic classification
loss is Crossentropy Loss, (x, y) ∈ Ds , θ denotes the param-
eters of the network.

losscls(θ) = 1

m

m∑

i=1

LCE( fθ (xi ), yi ). (7)

Here we present a new loss function, in which we replace the
basic loss with the sum of two losses, (x̃i , ypi , yqi ) ∈ Dv

lossi (θ) = 1

m

m∑

i=1

LCE( fθ (x̃i ), ypi ) (8)

loss j (θ) = 1

m

m∑

i=1

LCE( fθ (x̃i ), yq j ) (9)

losshybrid(θ) = λlossi (θ) + (1 − λ)loss j (θ) (10)

losscls(θ) = losshybrid(θ) (11)

For localization loss, we modify it in the same way; LSM

refers to the Smooth L1 Loss,

lossi (θ) = 1

m

m∑

i=1

LSM( fθ (x̃i ), ypi ) (12)

loss j (θ) = 1

m

m∑

i=1

LSM( fθ (x̃i ), yq j ) (13)

losshybrid(θ) = λlossi (θ) + (1 − λ)loss j (θ) (14)

lossloc(θ) = losshybrid(θ) (15)

In the third step, we get the HLoss by adding lossloc and
losscls together and minimize it to train our network.

HLoss(θ) = losscls(θ) + γ lossloc(θ). (16)

We set γ to 1 in our experiments.

3.6.3 Enhanced hard negative mining

After blending operation, we sort all negative examples using
the highest confidence loss for each default box and pick the

top ones. We keep the ratio between the negatives and posi-
tives at 3, besides we discard 20% of these negative examples
randomly.

4 Experiments

We apply the method on other networks based on the same
datasets. PASCAL VOC [15] and MS COCO [43] have 20
and 80 object categories respectively.

In PASCALVOC 2007, a predicted bounding box is posi-
tive if its Intersection over Union (IoU) with the ground truth
is higher than 0.5, while in COCO, it uses various thresholds
for more comprehensive calculation. The metric to evaluate
detection performance is the mean average precision (mAP).

In MS COCO, following settings in other studies, we use
trainval35k as training set, which includes train2014 and
val2014-minival.We test on test2015 as the evaluation result.
All our training is based on one 1080TI, and pytorch as the
platform,wewill show the details of each experiment respec-
tively in the following parts.

4.1 PASCALVOC

In this experiment, we follow [38] by using the same settings
and hyperparameters.

For SSD + MPB, we set SGD as the optimizer and the
initial learning rate at 0.004, momentum at 0.9, set epoch at
400 and weight decay at 0.0005 and batch size at 32. We set
γ at 1 and λ̂ at 0.1. We used a strategy called warm restart
[44] to accelerate the training that gradually ramps up the
learning rate from 10−6 to 0.004 at the first 5 epochs. After
the warm-up phase, the learning rate goes back to 10−6 until
200 epoch and keeps it in the following epochs. For settings
of the blending training parameter, λ̂, α, n is set to be 0.02,
0.1 and 200 respectively. We trained the model for 7.5 hours
totally and reached the best model at 340 epoch. For DSSD
and YOLOv2, the settings are almost the same as the SSD.

For RFB +MPB, we use a similar strategy and parameters
as above. Almost settings follow [39]. We set SGD as the
optimizer and the initial learning rate at 0.004, momentum
at 0.9. We set the batch size at 32, weight decay at 0.0005
and epoch at 400. We also use the warm-up strategy that
gradually ramps up the learning rate from 10 − e6 to 4− e3
at the first 15 epoch. After the warm-up phase, the learning
rate goes back to 10−6 until 250 epoch and keep it in the
following epochs. Similarly, λ̂, α, n is set to be 0.02, 0.1 and
200 respectively. We reached the best model at around 390
epoch.

As shown in Tables 2 and 5, we can see the compari-
son between the networks with and without MPB on the
VOC2007 test set. SSD* is the updatedSSDresultswithmore
data augmentation [38]. For a fair comparison, we reimple-
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Table 2 Detection results on PASCAL VOC 2007

Method Backbone Data mAP

SSD* [38] Vgg 07+12 77.2

SSD* + MPB Vgg 07+12 78.5

DSSD [45] Vgg 07+12 78.6

DSSD + MPB Vgg 07+12 79.4

YOLOv2 544 [36] Darknet 07+12 78.6

YOLOv2 544+MPB Darknet 07+12 79.2

RFB300 [39] Vgg 07+12 80.5

RFB300+MPB Vgg 07+12 80.9

RFB512 [39] Vgg 07+12 82.2

RFB512+MPB Vgg 07+12 82.5

MPB multi-phase blending method
The best or better results in the comparative experiments are bold

Table 3 Detection results on PASCAL VOC 2012

Method Backbone Data mAP

SSD* [38] Vgg 07++12 75.8

SSD*+MPB Vgg 07++12 76.9

YOLOv2 [36] Darknet 07++12 73.4

YOLOv2+MPB Darknet 07++12 74.0

RFB512 [39] Vgg 07++12 81.2

RFB512+MPB Vgg 07++12 81.4

07++12 denotes trainval2007+test2007+trainval2012
The best or better results in the comparative experiments are bold

ment SSD* with Pytorch-0.4 and CUDA9.0 and apply our
method in the same environment. We also use the same data
augmentation methods in [38]. By using our method, SSD*
is greatly improved by 1.3%. DSSD and YOLOv2 also are
upgraded by 0.8% and 0.6%. For the latest fast one-stage
detector RFBNet, it is also improved obviously by 0.4% and
0.3% for RFB300 and RFB512 respectively.

Another experiment on PASCAL VOC 2012 is shown
in Table 3. The settings are same as the above experiments
and training set used in this part is 07++12, which denote
trainval2007 + test2007 + trainval2012. We can see that
the improvements on VOC2012 test are also marked. SSD*,
YOLOv2, and RFBNet512 are greatly improved by 1.1%,
0.6% and 0.2%, respectively.

4.2 MS COCO

In this experiment, the hyperparameters are the same as the
previous literature [39] on COCO.

In previous literature, the basic learning rate is set to 0.002,
and max epoch is set to 300. We train our network with
trainval35k that is also used in previous networks. The No.1
one-stage detection network from [39] onCOCO is RFB512-
E, and hence we also apply our method on RFB512-E in

this experiment. As shown in Table 4, our method achieves
an improvement to RFBNet300 and RFB512-E by 0.8% and
0.6% respectively.AlthoughMSCOCO ismore difficult than
PASCAL VOC and exists more hard or unclear objects, our
method still works well and achieves a better promotion than
VOC (Table 5).

4.3 Performance on LRP

Localization recall precision (LRP) [51] is a new perfor-
mancemetric for object detectors, and it can directlymeasure
bounding box localization accuracy. As in mAP , moLRP
is the performance metric for the entire detector. Mean opti-
mal box localization, FP, and FN components denoted by
moLRPIoU , moLRPFP and moLRPFN respectively are
similarly defined as the mean of the class-specific compo-
nents. We test our models and demonstrate results in Table
6. For each metric, smaller is better.

From Table 6, we can know that moLRPIoU , moLRPFP

and moLRPFN are actually decreased by MPB, which
demonstrates the both improvements on classification and
localization.

4.4 Two-stage detector

We also test on Faster R-CNN and results are shown in Table
7. In this experiment, the settings of networks are the same
as the original one [34]. Other settings of MPB are the same
as the experiment of SSD+MPB.

4.5 Ablation experiments

4.5.1 Blendingmethod

In order to better understand the proposed network, we inves-
tigate the effect of each component of HLoss and compare it
with [38]. The comparison is shown in Table 8.

Firstly, we set up the network just by applying our method
to the localization part. For the part of localization, we apply
the blendingmethod to the process of localization predicting,
by adding the HLoss to the tail of the localization part. For
the part of the classification, as the input images are blended
before training, we keep the random parameter λ greater than
0.5 to make sure the first image is the main part and calculate
the loss with it. The results show that the method actually
improves the performance on the regression task.

Secondly, we set the HLoss only on classification. We
implement a similar network by only addingHLoss to the tail
of the classification part. Most of the operations are similar
to the above.

The results show that HLoss in both components con-
tributes to the improvement in performance for object detec-
tion. A combination of them achieves the best result.
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Table 4 Comparison between our method and others on MS COCO

Method Backbone Time Avg. Precision, IoU: Avg. Precision. Area
0.5:0.95 0.5 0.75 S M L

Faster [34] VGG 147ms 24.2 45.3 23.5 7.7 26.4 37.1

Faster+++ [26] ResNet-101 3.36 s 34.9 55.7 37.4 15.6 38.7 50.9

Faster w FPN [46] ResNet-101-FPN 240ms 36.2 59.1 39.0 18.2 39.0 48.2

R-FCN [47] ResNet-101 110ms 29.9 51.9 – 10.8 32.8 45.0

R-FCN w Deformable CNN [48] ResNet-101 125ms 34.5 55.0 – 14.0 37.7 50.3

Mask R-CNN [49] ResNext-101-FPN 210ms 37.1 60.0 39.4 16.9 39.9 53.5

YOLOv2 [36] darknet 25ms 21.6 44.0 19.2 5.0 22.4 35.5

SSD300* [38] VGG 12ms 25.1 43.1 25.8 – – –

SSD512* [38] VGG 28ms 28.8 48.5 30.3 – – –

DSSD513 [45] ResNet-101 182ms 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet500 [50] ResNet-101-FPN 90ms 34.4 53.1 36.8 14.7 38.5 49.1

RetinaNet800 [50] ResNet-101-FPN 198ms 39.1 59.1 42.3 21.8 42.7 50.2

RFBNet3001 [39] VGG 15ms 30.3 49.3 31.8 11.8 31.9 45.9

RFBNet512-E1 [39] VGG 33ms 34.2 54.7 36.1 17.6 37.0 47.6

RFB300+MPB (ours) VGG 15ms 31.1 50.2 32.7 12.7 33.7 48.6

RFB512+MPB (ours) VGG 35ms 34.8 55.8 36.5 18.4 37.5 48.9

Statistics are from [39]
1 Are reimplemented on single 1080ti because [39] used Titan which are not widely available on consumption-level platform
The best or better results in the comparative experiments are bold

Table 5 Class-specific comparative results of MPB on PASCAL VOC 2007

Method Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Diningtable

SSD* [38] 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0

SSD*+MPB 82.0 86.4 75.8 73.1 55.0 86.4 86.3 86.6 60.4 83.2 75.7

RFB [39] 85.0 86.1 77.7 75.7 60.6 88.9 87.6 86.8 64.2 85.3 77.9

RFB+MPB 84.5 87.3 79.5 74.6 60.0 88.4 88.0 88.3 65.3 84.8 79.8

Method Dog Horse Motorbike Person Pottedplant Sheep Sofa Train Tvmonitor mAP

SSD* [38] 86.1 87.5 83.97 79.4 52.3 77.9 79.5 87.6 76.8 77.2

SSD*+MPB 85.7 87.5 87.3 79.9 53.3 79.3 80.4 86.6 77.9 78.4

RFB [39] 86.1 89.0 87.1 82.2 58.7 81.5 81.1 88.2 81.5 80.6

RFBF+MPB 85.7 89.4 87.1 82.3 57.9 81.4 81.9 88.2 81.6 80.9

The best or better results in the comparative experiments are bold

Table 6 Experimental results of
SSD and RFB through LRP on
MS COCO

Method mAP mAP@0.5 moLRP moLRPIoU moLRPFP moLRPFN

SSD-300 [38] 0.161 0.383 0.854 0.281 0.403 0.622

SSD-512 [38] 0.284 0.481 0.763 0.202 0.331 0.549

RFB [39] 0.303 0.493 0.745 0.188 0.320 0.539

RFB512E [39] 0.342 0.547 0.717 0.183 0.299 0.487

RFB+MPB 0.311 0.502 0.735 0.185 0.304 0.529

RFB512E+MPB 0.348 0.558 0.712 0.182 0.293 0.480

The best or better results in the comparative experiments are bold
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Table 7 Comparative results for Faster RCNN with or without MPB

Method Backbone Data mAP

Faster RCNN [34] Res101 07+12 80.1

Faster RCNN+MPB Res101 07+12 81.1

The best or better results in the comparative experiments are bold

Table 8 Ablation analysis for hybrid loss function

Method Class bbox mAP

SSD*+MPB � 78.0

SSD*+MPB � 77.9

SSD*+MPB � � 78.5

Class denotes classification loss function, bbox denotes regression loss
function
The best or better results in the comparative experiments are bold

Table 9 Ablation analysis of multi-phased training

Method Blend MP EHNM mAP

SSD*[38] 77.2

SSD*+MPB � 76.0

SSD*+MPB � � 78.3

SSD*+MPB � � � 78.5

Blend Blending method
MP Multi-phase training
EHNM Enhanced Hard Negative Mining
The best or better results in the comparative experiments are bold

4.5.2 Scheduled blending intensity

The comparison between models being trained with or with-
out scheduled blending intensity is shown in Table 9. As we
see, models without scheduled blending training lead to be
even worse than the baseline model, because object detec-
tion datasets are not easy for networks to learn. However,
scheduled blending training can overcome this difficulty by
gradually increasing the blending intensity, whichmeans that
the network has time to adapt to the object detection datasets.

In Fig. 6, the loss of fixed ratio converges slowly, and larger
blending intensitymakes the network harder to converge , but
the loss of our method converges faster because of the low
intensity in the early phase.

4.5.3 Enhanced hard negative mining

The comparison between models being trained with or with-
out scheduled and incremental blending intensity is shown
in Table 9. As we can see, the enhanced hard negative min-
ing improves the performance of the detection networks,
because blending method creates much more negative exam-
ples which affect the training process.

Fig. 6 The confidence and location losses of models with different
blending intensity schedules

Table 10 Comparison between different schedules on PASCAL VOC
2007

Method Schedule Data mAP

SSD*[38] No ratio 07+12 77.2

SSD* Ratio(0.02) 07+12 76.0

SSD* Ratio(0.05) 07+12 70.4

SSD* Ratio(0.1) 07+12 68.8

SSD* Linear 07+12 70.3

SSD* Exponential 07+12 78.0

SSD* Sigmoid 07+12 78.5

The best or better results in the comparative experiments are bold

4.6 Comparison of blending schedules

In this experiment, three groups are made to compare the
performance: (1) networks trained with no ratio; (2) net-
works trained with fixed ratio (we set blending intensity at
0.02, 0.05, 0.1); (3) networks trained with scheduled ratio.
(We test linear schedule, exponential schedule, and sigmoid
schedule.)

According to Table 10, blendingwith fixed ratiomakes the
networks worse, and linear scheduled blending method also
performs badly due to its fast blending intensity increasing
in the early time. Exponential schedule performs better than
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Table 11 Comparison between MPB and other methods on PASCAL
VOC 2007

Method Backbone Data mAP

SSD [38] Vgg 07+12 74.3

SSD* [38] Vgg 07+12 77.2

SSD*+LM Vgg 07+12 77.5

SSD*+RE VGG 07+12 77.7

SSD*+MPB Vgg 07+12 78.5

The best or better results in the comparative experiments are bold

Table 12 Comparison of performances for different quantity of blended
data

Data 50k 75k 100k 125k 150k

CIFAR10 93.60 93.65 93.73 93.81 93.88

the baseline but worse than the sigmoid schedule due to the
low intensity in mid time.

4.7 Comparison with other data augmentation
methods

We also compare our method with other data augmenta-
tion methods which can work on one-stage detectors (label
smoothing [30] and random erasing [52] and traditional
methods). SSD is the typical network, and SSD* comes
with extra augmentationmethods [38]. For SSD*+LM(label
smoothing), we soften the classification labels for each object
by set 0.9 and 0.1/20 in which the previous value is 1
and 0, respectively. For SSD*+RE(random erasing), we use
its default setting. SSD* + MPB is the one with blending
method. All the networks are trained under the same envi-
ronment and same hyperparameters. Our method can further
improve the detection models based on traditional augmen-
tation methods. Compared with label smoothing and random
erasing, our method is more effective.

We get the final results shown in Table 11. Our method is
better than label smoothing.

(a) Comparison on weights

(b) Comparison on biases

Fig. 8 In a the blue bar refers to the number of decreased weights from
original SSD to SSDwithMPB, and the pink bar refers to the number of
increased weights from original SSD to SSD with MPB. Similarly, in b
the blue bar refers to the number of decreased biases from original SSD
to SSD with MPB, and the pink bar refers to the number of increased
biases from original SSD to SSD with MPB

4.8 Quantity of blended data

We conducted an experiment to compare different amounts
of mixed data based on CIFAR10. Five different CIFAR10
datasets are designed including 1 original CIFAR10 dataset
of 50k images and 4 expanded datasets (75k, 100k, 125k,
150k). These datasets are trained on VGG19, and the final
results are shown in Table 12. Obviously, the model trained

Fig. 7 Comparison between RFBNet and RFBNet+MPB. RFBNet+MPB performs better on low-confidence object and gives more detections on
uncertain area

123



256 Q. Quan et al.

with expanded dataset outperforms the original model, and
themodel performs better withmore additional blended data.

5 Analysis

Based on Sect. 4, our method improves the performance on
the object detection network. In this section, we lead a deep
analysis of how this architecture gets a better result.

Firstly, through the proposed method of blending pairs
operation, the diversity of the dataset is enhanced, which

Fig. 9 The number of detected objects of SSD with MPB and not. The
results are obtained fromPASCALVOC2007 test dataset bySSD+MPB

improves the regularization and generalization of the net-
work. The observation of the experiment result also confirms
the proposed idea as follows.

• Our experiment compares all the weights between the
original SSD network and the improved network with
MPB which are trained in previous experiments.

• As shown in Fig. 8, the weights and biases are decreased
byMPB,whichmeans it actually regularizes the network.

Secondly, we analyze the final detection result to show
how our network improves confidence in the previous RFB-
Net as follows.

• As shown in Fig. 7, in the best case of the ski, the confi-
dence of it grows 4x from less than 0.1 in RFB to 0.4 in
RFBNet+MPB. In the worst case of a woman in green,
the confidence of her varies a little from 0.96 in RFBNet
to 0.94 in RFBNet+MPB (Fig. 8).

• Networks being trained with our method tries to give
more confidence to uncertain objects such as some small
and illegible objects which are hard to be detected by
previous methods (Fig. 9). Our method has slight fluctu-
ations on the high-confidence objects due to the effect of
softening and this will not impact the final result. More
examples are listed in Figs. 10 and 11.

Fig. 10 More examples of comparison. Pictures are selected from MS COCO dataset. As we can see, the model trained with MPB gives more
possible predictions boxes than the original one
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Fig. 11 Bad examples on MS COCO dataset, a gives a wrong bounding box of giraffe, b gives labels of handbag and backpack simultaneously to
the handbag with low confidence, c gives a wrong bounding box of the fork, d label the window incorrectly

Thirdly, We also explore the improvement on the num-
ber of the successfully detected objects for medium or low
overlap (overlaps <= 0.5) with ground truth as follows.

• As shown in Fig. 9, RFBNet+MPB increases the number
of medium or overlap objects by 15.2%, which means that
RFBNet+MPB gives more correct detections.

• Benefit fromhigh successful detection rate,RFBNet+MPB
gives more accurate predictions than the original network,
which eventually leads to a decrease on regression loss.

6 Conclusion and future work

In this paper, we propose a novel multi-phase blending
method with incremental blending intensity for training
detection networks. Besides, we design an incremental
hybrid loss function containing both classification loss func-
tion and regression loss function. Furthermore, we discard
more negative examples than the existing methods. In this
way, we can stabilize the training process of object detection
networks and eventually regularize the networks to achieve
remarkable improvements on one-stage detectors. The exper-
iments demonstrate the validity of the proposed method.
One limitation is that hyperparameters is handcrafted. It is
necessary to take several experiments to find the best hyper-
parameters for each model. Thus, in future work, we will
explore adaptive blending training methods to automatically
searching the optimized hyperparameters. Secondly, we also
want to continue the research on other specific problems in
the detection task. Finally, will also plan to extend our idea
to other areas of computer science and applications [53–61],
especially in the areas of intelligent computing [62–64] and
visual computing [65–67].
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