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Abstract
In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, 
we develop such a framework to learn a robust face verification in an unconstrained environment using aggressive data aug-
mentation. Our objective is to learn a deep face representation from large-scale data with massive noisy and occluded face. 
Besides, we add an adaptive fusion of softmax loss and center loss as supervision signals, which are helpful to improve the 
performance and to conduct the final classification. The experiment results show that the suggested system achieves compa-
rable performances with other state-of-the-art methods on the Labeled Faces in the Wild and YouTube face verification tasks.
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1  Introduction

Face recognition is a well-studied problem in computer 
vision. Automatic face recognition is an important vision 
task in several practical applications such as identity verifi-
cation, intelligent visual surveillance and immigration auto-
mated clearance systems. According to different application 
scenarios, it can be classified into two different tasks: face 
verification and face identification. The former aims to deter-
mine whether a given pair of face images is from the same 
person or not, while the second is to recognize the person 
from a set of gallery face images and find the most similar 
one. Nevertheless, face recognition in real applications is 
still a challenging task [1]. The main reason is that the face 
is a non-rigid object, and it often has varied appearance 
owing to numerous facial expressions, different ages, mul-
tiple angles and more importantly the various illumination 

intensities. In addition, there are still many factors which 
affect the face recognition performance, such as occlusions 
and poses.

In recent years, deep learning has become more and more 
prevalent in computer vision. In the last decade, convolu-
tional neural networks (CNNs) have become popular tech-
niques for solving computer vision problems. Numerous 
vision tasks, such as image classification [2], object detec-
tion [3] and face recognition [4–8], have benefited from the 
robust and discriminative representation learned via CNNs. 
Indeed, a neural network can learn effective features from 
repeated convolution and pooling operations based on a 
large-scale dataset. Recently, CNNs have shown a powerful 
capability and have become the most effective means for 
dense prediction problems, especially in the field of face 
recognition. Some of improvement in face recognition has 
been propounded in the past decade, which was based on 
CNNs [9, 10]. The recent face recognition methods have 
made considerable progress, even beating human beings on 
the Labeled Faces in the Wild (LFW) and Wild and You-
Tube face (YTF) benchmarks.

To achieve optimal accuracy, the scale of the training 
dataset for CNNs has been consistently increasing. Data 
augmentation (DA) is a potential solution that artificially 
inflates a database by using a domain-specific synthesization 
to add more invariant examples [11]. In addition, it is a set 
of computationally inexpensive methods previously used to 
reduce overfitting in training a CNN [12]. However, large-
scale datasets often contain massive noisy signals especially 
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when they are automatically collected via image search 
engines or from movies.

Face recognition work based on CNNs has achieved ideal 
recognition rates, except that the majority of studies have 
used original data on different databases and have lacked 
more complex situations. Authors in some works pursued 
DA methods of increasing training data and to generate more 
examples according to the requirement of deep learning.

Our approach consists in forcing learning in different 
more difficult situations to solve problems in face recogni-
tion caused by data corruption, variation in illumination, 
occlusion and missing parts. Inspired by DA methods and to 
further make more complex situations in the training dataset, 
we use, in this paper, an aggressive DA, so as to generate 
more face images and to learn a deep face representation 
from the large-scale data within a CNN model. We propose 
a collection of perturbations on aligned faces. In fact, we 
train our model with various transformations, such as noisy 
regions, blurring, contrast, and variation in illuminations. 
Especially, we fuse the entire face with its components and 
occluded face. Besides, to obtain the deep features on large-
scale datasets, we train a robust CNN with the joint supervi-
sion of softmax loss and center loss. The two key learning 
objectives, inter-class dispersion and intra-class compact-
ness, are very essential to face recognition. According to 
the results of experimental analysis, our model has a good 
performance compared with the state of the art.

The rest of this paper is organized as follows. Section 2 
reviews some related previous work. Section 3 presents the 
architecture network and the DA approach. The experimen-
tal setup and results are presented in Sect. 4. Section 5 offers 
our conclusion.

2 � Related work

In this section, we make an overview of existing work on 
face recognition.

There are some work in the literature in the field of com-
puter vision [13–17]. Especially, face recognition has been 
a prevalent research field in pattern recognition, which it 
consists of two stages: face detection and face recognition.

Several recognition techniques have been developed to 
capture discriminative features for better performances. 
The traditional approaches usually include two steps: high-
dimensional feature extraction and a classifier design. The 
CNN models naturally integrate the feature extractor and the 
classifier in an end-to-end fashion. The face representations 
obtained by the methods are effective.

Newly, CNN-based applications, reminiscent of Face-
Net [18], DeepFace [6] and DeepID [19], are extensively 
utilized in face recognition tasks and have shown nec-
essary results in free environments. Compared with the 

conventional face recognition methods, face recogni-
tion models based on deep networks can always achieve 
better performances. For instance, FaceNet [18] oper-
ates very deep networks to perform face recognition. It 
utilizes approximately 8,000,000 images of 2,000,000 
people. Applied to the largely used LFW database, this 
system achieves 99.63% of accuracy. Since 2012, Deep 
CNNs (DCNN) has become prevalent. This is due to the 
large amounts of training data and adaptable computing 
resources such as GPUs. For example, Krizhevsky et al. 
[20] trained a convolutional network to classify images in 
ILSVRC-2012 competition and obtained attractive recog-
nition accuracy. Meanwhile, the DCNN architecture, such 
as GoogLeNet [9] and VGG [21], has been much wider 
and deeper, leading to enormous network parameters and 
good performances.

A lot of approaches have been also suggested to improve 
the face verification performance in an unconstrained envi-
ronment, and some of them have exhibited impressive 
results. Guo et al. [22] propounded a deep network model 
which took both visible light and near-infrared images into 
account to perform face recognition. The experimental 
results demonstrated that the model was very effective in 
real-world scenarios and performed much better in terms of 
illumination change than other state-of-the-art models. The 
authors in [23] developed a facial expression recognition 
algorithm based on the deep learning method. This adap-
tive model parameter initialization, based on the multilayer 
maxout network linear activation function, allowed initial-
izing the CNN and the long–short-term memory (LSTM) 
network method. The experiments showed that the facial 
expression recognition method would accurately iden-
tify various expressions and have a good adaptive ability. 
Jiang-Jing et al. [24] put forward a simple and efficient DA 
approach, which uses artificial landmark perturbation to 
generate a huge number of misaligned face images, to train 
DCNN model robust against landmark misalignment. The 
experimental LFW and YTF verify the effectiveness of the 
approach. The authors in [25] present a light CNN frame-
work to learn a compact embedding on large-scale face data 
with massive noisy labels. The experimental results showed 
that the proposed framework was efficient in computational 
costs and storage spaces. In [26], the authors introduced a 
new layer to embed the patch strategy in convolutional archi-
tecture to improve the effectiveness of face representation. 
This approach made a better use of the interactions between 
global and local features in the model. Two baseline CNNs 
(i.e., AlexNet and ResNet) were used to analyze the effec-
tiveness of their method. The experiments indicated that 
the suggested system achieves comparable performance 
with other state-of-the-art methods on the LFW and YTF 
tasks. Wen et al. [27] supervised a CNN by a novel signal 
center loss together with the softmax loss and obtained the 
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state-of-the-art accuracy on three important face recognition 
benchmarks.

Following the trend, we learn face features by using CNN 
with the joint supervision of softmax loss and center loss to 
improve the performance of face representation in the paper. 
Inspired by DA methods, we also employ an aggressive DA 
method to develop a CNN framework and to learn a robust 
face verification in an unconstrained environment.

3 � Data augmentation

In real-world applications, natural data can still exist in a 
variety of conditions such as varying illuminations and noisy 
information. These latter are among the most important fac-
tors that significantly affect the performance of face recogni-
tion algorithms, and they also draw much attention in deep 
learning. This paper studies a CNN framework to learn a 
deep face representation with more difficult conditions for 
the appearance of faces. Hence, the DCNNs have a powerful 
feature extraction ability and can obtain competitive extrac-
tion by using massive training sets [28]. Therefore, if we 
want to solve the complex change problem utilizing deep 
networks, there must be enormous training data that have 
various scenarios. The idea is to use the DA to present the 
samples dataset in the different variations, as we pointed out 
earlier, to force the CNN framework to learn a robust face 
representation with different modifications. This can lead 
to better performances. We account for these situations by 
training our neural network with additional synthetic modi-
fied data. DA is a very common and important preprocessing 
step for CNN-based methods [24, 29] to achieve consider-
able performance. There are different DA methods, which 
are used to find various situations, such as flipping, color 
casting, blurring, noise, histogram and sigmoid. Moreover, 
illumination is an important influence factor for the dataset 
robustness. Several types of illumination conditions may 
affect the results of object detection and recognition. Also, 
various methods have been proposed to transform a real face 
image to a new type, such as pose transfer, hairstyle transfer, 
expression transfer, makeup transfer, and age transfer [30]. 
In order to improve the dataset robustness against different 
illumination types, variation illumination is used for DA, 
i.e., changing in the tone, luminance or contrast in images. 
Herein, a general framework for the association of face com-
ponents or partial faces with a full face is introduced. The 
DA strategy in this work also contains a combination of 
faces occluded to learn data in more difficult situations in the 
training dataset. This method is adopted to extract features 
of various regions with CNN model. We aim to generate 
more face images with misalignment for DCNN training to 
improve, significantly, the face recognition rate.

4 � Network architecture

DCNNs have achieved outstanding performances on image 
classification. There are many tricks for DCNN training 
with very deep architecture. This section describes the 
CNN used in our experiments. In this paper, we use a CNN 
model based on GoogLeNet style Inception models, called 
inception-v1 [9], which contains the most mainstream com-
ponents of CNN architecture. The key idea is to devise this 
architecture and deploy multiple convolutions with multiple 
filters and pooling layers, simultaneously, in parallel within 
the same inception layer. Furthermore, each inception layer 
has filters of different sizes (e.g., 1 × 1, 3 × 3, 5 × 5) to find 
the optimal local construction. We find more details of the 
configuration of the model in Table 1. Each convolutional 
neuron treats data only for its receptive field. It is followed 
by additional nonlinear operations, ReLU, max (0.x) which 
is an activation function. Then this model uses pooling lay-
ers, which are fixed directly after the convolutional layers, 
whereas softmax is used as a loss function that computes the 
probability of the Kth output assigned to the Kth class. Soft-
max (or multinomial logistic) regression is a generalization 
of the logistic regression, and it is a kind of linear regression 
[31]. It is used in several problems including text classifica-
tion. In our case, it is utilized for the classification of faces 
within the target classes through the logistic operation. More 
than the softmax function, we use the center loss function to 
train the deep model.

To develop an effective loss function and to improve the 
discriminative power of deeply learned features, we use the 
center loss function based on the idea of authors in [32]. The 
center loss minimizes the intra-class variations while keep-
ing the features of multiple classes separable by softmax. 
Equation 1 gives the center loss function as follows:

where l
c
 is the center loss, m is the number of training sam-

ples in a min-batch, xi ∈ Rd denotes the ith training sample, 
yi is the label of xi . cyi ∈ Rd denotes the yith class center of 
deep features, and d is the feature dimension. The idea is 
to adopt the joint supervision of softmax loss and center 
loss to train the network, when training DCNN. Equation 2 
describes this fusion as follows:

where L is the DCNN total loss, L
s
 is the softmax loss, L

c
 is 

the center loss, and � is the scalar used for balancing the two 
loss functions. However, training the CNN with the center 
loss is easier than training with the triplet loss method, 
which is used on the FaceNet model.

(1)lc =

m∑

i=1

‖‖‖
xi − cyi

‖‖‖

2

2

(2)L = L
s
+ �Lc
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5 � Experiments

In what follows, we first describe the details of datasets 
and then present the methodology of training and testing. 
A set of experiments are conducted on the LFW and YTF 
for the verification task. We also discuss the effectiveness 
of the joint supervision of softmax loss and center loss to 
train the network. We describe the influence of combina-
tion of different data augmentation methods on LFW and 
YTF datasets. Besides, we provide a comparison with the 
state-of-art methods on LFW and YTF.

In order to demonstrate the effectiveness of our pro-
posed method of face verification, we used typical data-
bases in this domain.

LFW It is the standard benchmark and a public dataset 
for automatic face verification. The database comprises 
13,233 images of 5749 people, where 1680 subjects con-
tain more than two images and 4096 subjects consist of 
only one image. The face images taken from LFW are 
taken under an unconstrained environment with face 
variations, such as poses, illuminations, expressions, and 
occlusions.

YTF This is a popular face dataset that allows evaluat-
ing face recognition performance. It contains 3425 videos 
of 1595 different people. Various videos were downloaded 
from YouTube. On average, 2 videos are available for each 
subject. To determine the face verification performance, 
5000 pairs of face videos are used for demonstrating the 
face verification performance. The YTF face frames not only 
contain large facial variations (such as occlusions, expres-
sions, poses and lighting), but also suffer from various 

levels. It is treated as a more challenging testing dataset for 
face verification.

CASIA-WebFace The CASIA-WebFace dataset has face 
images of celebrities taken from websites. It is a classic pub-
lic dataset with wide face subjects, namely 10,575 subjects 
with 494,414 face images, and it is utilized for scientific 
research of unconstrained face recognition. Furthermore, it 
can be treated as a standard training dataset for developing 
face recognition methods, and it has no overlap with the 
YTF and LFW datasets.

Next, we describe the details of image preprocessing for 
the mentioned datasets and the augmentation data methods.

5.1 � Face detection and data augmentation 
methods

The training and testing datasets contain multiple images 
with numerous conditions and positions. In fact, we need 
an efficient method for the detection and alignment of faces. 
We use the multi-task cascaded CNN (MTCNN) [33]-based 
framework for joint face detection and alignment. Retina-
Face is a powerful face detector method for face recognition 
applications. It could easily handle faces with pose varia-
tions, but it still had difficulty under complex scenarios [34].

The MTCNN is capable of detecting faces by locating 
facial landmarks (i.e., two eyes, a nose, and mouth end-
points). Figure 1 presents an example of the face image 
alignment from the CASIA-WebFace dataset using the 
MTCNN method.

As previously mentioned, our objective is to have a 
deep face representation of large-scale data with a massive 

Table 1   CNN model used in 
this paper based on GoogLeNet 
(inception architecture)

Type Filter size/stride Output size Depth Parameters (K)

Convolution 7 × 7/2 112 × 112 × 64 1 2.7
Max pool 3 × 3/2 56 × 56 × 64 0
Convolution 3 × 3/1 56 × 56 × 192 2 112
Max pool 3 × 3/2 28 × 28 × 192 0
Inception (3a) 28 × 28 × 256 2 159
Inception (3b) 28 × 28 × 480 2 480
Max pool 3 × 3/2 14 × 14 × 480 0
Inception (4a) 14 × 14 × 512 2 364
Inception (4b) 14 × 14 × 512 2 437
Inception (4c) 14 × 14 × 512 2 463
Inception (4d) 14 × 14 × 528 2 580
Inception (4e) 14 × 14 × 832 2 840
Max pool 3 × 3/2 7 × 7×832 0
Inception (5a) 7 × 7×832 2 1072
Inception (5b) 1 × 1×1024 2 1388
Avg pool 7 × 7/2 1 × 1×1024 0
Fully connection 1 × 1×1000 1 10.575
Softmax 1 × 1×1000 0



221Face recognition in unconstrained environment with CNN﻿	

1 3

complex and uncontrolled environment. For that, we 
change the face representation by including multiple situ-
ations of information disruption in the CASIA-WebFace 
database before the training step. Figure 2 illustrates the 
different DA methods, which are gathered and used in our 
work.

In order to make the learning environment more difficult, 
we propose a collection of DA methods by perturbing origi-
nal information (aligned faces). Thus, we train our model 
with various transformations such as flipping, histograms, 
noise, and blurring (Fig. 2a). In addition, we suggest training 
data that have various illumination intensities (Fig. 2b) to 
solve the illumination change problem. Afterward, we add 
randomly occluded faces (Fig. 2c) to learn data in more dif-
ficult situations. Besides, a mix between full faces and these 
components is present in this approach (Fig. 2d).

5.2 � Training methodology

The details of the training strategy are presented as follows. 
The model is trained on GPU GeForce GTX 1080 Ti. We 
adopt a public available deep learning framework, Tensor-
flow, to train our model. This model is characterized by 

Fig. 1   Example of face image alignment from CASIA-WebFace data-
set. a Original image, b result of aligned face with MTCNN method

Fig. 2   Examples generated by 
of different DA methods used 
in our work; a Flipping + His-
togram + Noise + Blurring, b 
examples with Different illumi-
nation, c examples with differ-
ent occluded face, d examples 
of cropped face parts

(a)   Examples with the different DA methods: Flipping+Histogram+Noise+Blurring

(d)  Examples of cropped face parts

(c)  Examples with different occluded face

(b) Examples with Different illumination
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aggressive DA and by combining the softmax loss and the 
center loss put forward to achieve better performances. As 
indicated, for face alignment, the MTCNN is used, proving 
that it gives very good performances for the alignment of 
train/test sets. We train the model on an aligned dataset 
for 100 epochs with an RMSProp optimizer. To improve 
the generalization of the CNN model, several techniques 
are utilized in this work. In order to perform a regulation 
in the loss function and to avoid overfitting, the weight 
decay parameter is used. The coefficient of the latter is set 
to 5e−4 for the convolutional layers and fully connected lay-
ers. Added to that, the model is regularized using a drop-
out layer. The learning rate is initially set to 0.05 and then 
decreases by a factor of 0.1 when the validation set accuracy 
stops rising. The momentum coefficient is also set to 0.9. 
For details of testing, the similarity score is calculated by 
the cosine distance of a pair of features after transform-
ing the representation. We report the results on LFW and 
YTF following the standard protocol of restricted, labeled 
outside data.

Besides, as mentioned before in this paper, we join the 
softmax loss and center loss. To further demonstrate the 
effectiveness of the center loss, we conduct the experiments 
on the LFW dataset. We train on the augmented dataset 
CASIA-WebFace using the information disruption and test 
on the 6000 face pairs on LFW, using softmax only on the 
one hand. On the other hand, we also retrain the network 
under the supervision of the softmax loss and center loss. 
The result is provided in Table 2. We can observe that when 
the model is trained with the fusion of both losses, the accu-
racy on LFW boosts by 1.07%, compared, respectively, with 
the model trained with the softmax loss only.

The combination of the center loss and the softmax 
loss gives better results than simply using anyone of them 
separably.

5.3 � Model trained with different DA methods

To further verify the robustness of our method, we com-
pare the performance with different DA methods. Therefore, 

we mix the different DA methods and train our model as 
follows.

A: No data augmentation
B: Different illumination + flipping
C: Occlusion + blurring + noise + histogram + B
D: we have collected the different DA methods in our 
work: C + cropped face parts

The results of each data augmentation method on LFW 
and YTF datasets are provided in Table 3, and the ROC 
curves are shown in Figs. 3 and 4.

As shown in Table 3, for case A, without DA, the classi-
fication rate reaches only 94.5% on LFW. For B, C and D, 
the rate increases gradually. We can see clearly, by chang-
ing the lighting with flipping methods, that the face recog-
nition accuracy can reach 97.7%. By adding the occlusion, 
blurring, noise and histogram methods, respectively, the 
model can achieve 98.4% rate. For case D, we make a bal-
ance by adding the cropped parts of faces. Thus, among 

Table 2   Effect of center 
loss method by determining 
classification accuracy (%) on 
the LFW dataset

The results are recorded in 
two cases. First, the network 
is trained with the softmax 
loss only. Second, the net-
work is trained with softmax 
loss + center loss

Method Accuracy (%)

Softmax loss 98.133 ± 0.013
Softmax 

loss + center 
loss

99.2 ± 0.04

Table 3   Classification accuracy (%) on LFW and YTF datasets with 
different methods DA

A: No data augmentation, B: different illumination + flipping, C: 
Occlusion + blurring + noise + histogram + B, D: we have collected 
the different DA methods in our work: C + cropped face parts

Method Accuracy (%)

LFW YTF

A 94.5 ± 0.008 91.9 ± 0.011
B 97.7 ± 0.006 93.2 ± 0.014
C 98.4 ± 0.007 94.38
D 99.2 ± 0.04 96.6

Fig. 3   Influence of combination different data augmentation meth-
ods on LFW dataset. A: No data augmentation, B: Different illumi-
nation + flipping, C: Occlusion + blurring + noise + histogram + B D: 
We have collected the different DA methods on our work: C + cropped 
face parts
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these DA methods, case D performs much better than the 
other methods and it achieves the highest rates on the veri-
fication task with 99.2%. In other words, when incorpo-
rating more DA methods, the performance can be signifi-
cantly improved. Actually, the fused methods achieve high 
recognition rate. Furthermore, adding the parts cropped of 
faces and the different DA combinations can still improve 
the performances. This test shows that the combination of 
the different DA methods is practical and efficient. It can 
be used to improve the face recognition performance in an 
uncontrolled and complex environment.

For the YTF dataset, it is remarkable that for a method 
without DA, the accuracy decreases to 91%, whereas the 
accuracy increases progressively with B, C and D. The 
significant result is obtained with method D. Thus, accord-
ing to Table 3, we can also demonstrate the significance 
of the mix of diverse DA methods on the YTF dataset. 
Accordingly, on both datasets, our model is reasonable for 
better performances.

Figures 3 and 4 provide ROC curves for each tested 
augmentation technique on the LFW and YTF datasets. 
As shown, the training model without DA fails to attain 
better results (purple curves). We can easily find that the 
performance of the proposed method is at the top level 
(blue curves). The suggested method D is better than the 
others; the main reason is the addition of the cropped parts 
of faces. Besides, the different DA combination chosen in 
our work can still improve the performance. This method 
enables also the learned feature to be more discriminative. 
Thereafter, these results illuminate the effectiveness of the 
DA methods on the LFW and YTF datasets.

5.3.1 � Comparison with the state of the art

This section presents a comparison of our method with 
other state-of-the-art methods based on DA on LFW data-
set, accompanied with a description of the multiple DA sys-
tems. Our aim consists in forcing learning in different more 
difficult situations. Inspired by DA methods and to further 
make more complex situations in the training dataset, we 
use, in this paper, an aggressive DA, so as to generate more 
face images and to learn a deep face representation from the 
large-scale data within a CNN model.

There are several published DA methods, which have 
reached important results in terms of verification rate. 
Table 4 provides a comparison with other studies based on 
different DA methods on LFW. As illustrated in this table, 
obviously, our method outperforms [35, 36]. Indeed, the 
authors in [35] described methods of enriching an exist-
ing dataset with important facial appearance variations by 
manipulating the faces it contained, which generated images 
with facial appearance variations, including poses, shapes 
and expressions. As given in Table 4, the effect of training 
and testing with synthesized images on the LFW reaches 
98.00%, which is less than our work. However, this model 
did not take into account inter-class and intra-class distances 
jointly, hence neglecting the spatial structures underlying 
inter-class and intra-class data samples. On the other hand, 
the authors in [36] described a method to generate reason-
able virtual samples, so as to prevent imbalance classifica-
tion results. This method was based on joint Bayesian face 
analysis, and the experiments were conducted based on high-
dimensional LBP features as well as features extracted by 
a shallow CNN. This method is already acceptable consid-
ering the model size and running speed, since it is trained 
with limited samples and reduced network parameters. The 
performances of this method have been limited as well. The 
accuracy has risen only to 71.235% and 73.897% with the 
augmented dataset. As a consequence, it is not much fasci-
nating compared to known highly accurate algorithms and 
our work. Also, the results in [36, 37] remain in an environ-
ment, which is not rich by hard and difficult situations.

Evidently, [37] has the most significant performance. The 
experimental result on popular LFW for the verification rate 

Fig. 4   Influence of combination of different data augmentation meth-
ods on YTF dataset. A: No data augmentation, B: Different illumi-
nation + flipping, C: Occlusion + blurring + noise + histogram + B, 
D: We have collected the different DA methods on our work: 
C + cropped face parts

Table 4   Performance 
comparison with state-of-the-art 
methods on LFW

We achieve comparable results 
with other studies [35–37] 
based on different DA methods

Method Accuracy (%)

[35] 98.00
[36] 73.897
[37] 99.33 ± 0.3
Our method 99.2 ± 0.04
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achieves 99.33 ± 0.39%. This is because the method presents 
five data augmentation methods dedicated to these factors: 
landmark perturbation and four synthesis methods (hair-
styles, glasses, poses, illuminations), which improve the face 
recognition performance, hence increasing the effective size 
of the training set. The DA methods are easy to implement 
and integrate. However, the authors in [37] have not make 
the environment more difficult of the training set since they 
have used the most common occlusion method, as wearing 
glasses. In addition, the generalization ability of the model 
might be limited by using the softmax loss. Furthermore, the 
aforementioned model did not take into account inter-class 
and intra-class distances jointly.

Although most face recognition applications still suffer 
from the deficiency of difficult facial images with partial 
occlusions. An intuitive solution to this problem is that 
more occluded facial images should be included into the 
training process of the CNN framework. Our goal is to urge 
our network to learn the face features in difficult cases. Due 
to loyalty to the different methods of data augmentation, 
such as flipping and histograms, we add masked parts of 
faces. More specifically, square patches are cropped from 
the original image with a random size, thus getting a general 
framework for the association of face occluded faces and 
partial faces with a full face. Besides, despite the presence 
of complex situations, like the occluded faces, in order to 
study the model of stabilization, we achieve a significant 
performance in terms of recognition rate (99.2% on the LFW 
dataset and 96.83% on the YTF dataset). This shows the 
ability of the CNN model for imperfect facial data analysis 
without greatly reducing the recognition rate. Furthermore, 
we adopt the fusion of the softmax loss and the center loss 
as supervision signals, which help improve the performance 
and conduct the final classification, unlike studies with soft-
max only which was not specifically designed for complex 
samples.

5.4 � Performance comparison and evaluation

The comparison with the most recent state of the art on the 
two LFW and YTF datasets is given in this section.

Firstly, Table 5 depicts the face verification rates on LFW. 
Our model achieves 99.2% accuracy. The result of our model 
outperforms the performance of DeepID2 [38], VGG [21], 
DeepFace [6], DeepID2+ [39], WebFace [40] also Joint-
Alex [26], Joint-Res [26] and Light CNN9 [25]. However, 
our best model is close to the accuracy rate of FaceNet [18] 
by about 0.66% because FaceNet is trained on a large data-
base that contains 200 million photographs of eight million 
persons. In addition, having a clearly significant capability, 
FaceNet adopts the triplet loss function.

The majority of the aforementioned models do not take into 
account inter-class and intra-class distances jointly. Obviously, 

the ArcFace method [41], as illustrated in Table 5, achieves up 
to 99.83% accuracy on the LFW dataset when training with the 
improved ResNet100 model. The ArcFace method has a clear 
geometric interpretation due to the exact correspondence to the 
geodesic distance on the hypersphere. This method achieved 
an important recognition rate compared to our work. Neverthe-
less, when there are millions of identities in the training data, 
ArcFace causes significant training difficulties, e.g., excessive 
GPU memory consumption and massive computational cost, 
even at a prohibitive level. Therefore, the authors in [41] used 
eight GPU cards (four NVIDIA Tesla P40 (24 GB) GPUs) on 
the training data to achieve high performances. These perfor-
mances remain in an environment which is not rich by hard 
and noisy samples. However, in our work, we used DA to make 
difficult situations on the training data, and our performances 
do not decrease and we achieve a significant recognition rate 
of 99.2% on LFW dataset while considering inter-class and 
intra-class distances jointly.

We also evaluate our model on YTF to further prove its 
generalization. The results are reported in Table 6. It can 

Table 5   Comparison with existing state of the art on LFW dataset in 
terms of accuracy (%)

Method Networks Accuracy (%)

VGG [21] 4 98.37
DeepID2 [38] 100 97.45 ± 0.26
DeepFace [6] 3 97.15 ± 0.27
WebFace [40] – 97.73 ± 0.31
DeepID2+ [39] 25 98.97 ± 0.25
FaceNet [18] 1 99.63 ± 9
Joint-Alex [26] 1 98.03 ± 0.23
Joint-Res [26] 1 98.70 ± 0.16
Light CNN 9 [25] 1 98.13
ArcFace (ResNet100) [41] 1 99.83
Our model 1

1
99.2 ± 0.04

Table 6   Comparison with existing state of the art on YTF dataset in 
terms of accuracy (%)

Method Networks Accuracy (%)

VGG [21] 4 97.30
DeepID2 + [39] 25 93.20 ± 0.2
DeepFace [6] 3 91.40 ± 1.1
WebFace [40] 92.24 ± 1.28
Joint-Alex [26] 1 92.32 ± 0.40
Joint-Res [26] 1 93.12 ± 0.43
ArcFace [41] 1 98.02
CosFace [43] 1 97.6
SeqFace [42] 1 98.12
Our model 1 96.63



225Face recognition in unconstrained environment with CNN﻿	

1 3

be observed that the verification accuracy of our model 
outperforms DeepID2+ [39], DeepFace [6] WebFace [40], 
Joint-Res [26] and Joint-Alex [26] models. CosFace [42] 
and SeqFace [43] attain important performances on the 
YTF dataset. However, their performances largely depend 
on these methods, which require a significant number of 
iteration steps during training. Also, these methods did not 
utilized complex environment as our work.

6 � Conclusion

In this paper, we have developed a CNN framework to learn 
a robust face verification on an uncontrolled environment. 
We have used aggressive DA including randomly perturbing 
information and complicated conditions for the appearance 
of faces. One of the key ideas has been to use the adaptive 
fusing strategy of softmax loss and center loss, which is 
helpful to improve the performance and to make the model 
more efficient and flexible. The experimental results on LFW 
and YTF datasets in the unconstrained face recognition dem-
onstrate that the features extracted by the inception model 
significantly improve the face recognition performance in 
verification scenario. Finally, we achieve 99.2% on the LFW 
and 96.63% on the YTF with the CNN model only, which 
demonstrate the effectiveness of our method.
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