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Abstract
In multi-view facial expression recognition, discriminative shared Gaussian process latent variable model (DS-GPLVM) gives
better performance than that of linear and nonlinear multi-view learning-based methods. However, Laplacian-based prior used
in DS-GPLVM only captures topological structure of data space without considering the inter-class separability of the data,
and hence the obtained latent space is suboptimal. So, we propose a multi-level uncorrelated DS-GPLVM (ML-UDSGPLVM)
model which searches a common uncorrelated discriminative latent space learned from multiple observable spaces. A novel
prior is proposed, which not only depends on the topological structure of the intra-class data, but also on the local-between-
class-scatter-matrix of the data onto the latent manifold. The proposed approach employs an hierarchical framework, in which,
expressions are first divided into three sub-categories. Subsequently, each of the sub-categories are further classified to identify
the constituent basic expressions. Experimental results show that the proposed method outperforms state-of-the-art methods
in many instances.

Keywords Facial expression recognition · Multi-view learning · Local binary pattern · Local fisher discriminant analysis

1 Introduction

Recognition of human’s emotion through facial expressions
hasmany important applications including behavior recogni-
tion, human–computer interaction, security, psychology etc.
[1,2]. In reality, there are infinite number of expressions, but
Ekman and Friesen [3] defined a set of basic expressions,
i.e., happy, surprise, disgust, sad, anger, and fear. Several
research works have been reported to recognize these basic
expressions from the frontal view [4–6]. However, another
important research direction is the recognition of emotions
from multi-view and/or arbitrary-view face images.
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The existing multi-view or view-invariant facial expres-
sion recognition methods can be broadly classified into three
main categories, which is based on how they deal with head-
pose variations and expressions in 2D facial images [7].

In the first category of multi-view facial expression recog-
nition (FER) methods [8–11], a view-specific classifier is
learned for each of the views during training. For recognition,
head-pose is first estimated, and then, corresponding view-
specific learned classifier is applied. However, one major
limitation is that these methods do not consider the correla-
tion between different views of expressions. Since separate
classifiers are learned for different views, so the classification
would be suboptimal.

The second category of methods mainly follow three-step
procedures, (i.e., head-pose estimation, head-pose normal-
ization, and FER from the frontal pose) to recognize facial
expressions from any poses or a discrete set of poses.
Rudovic et al. localize 39 facial points on each of the
non-frontal/multi-view facial images, and then head-pose
normalization is done [12–14]. During head-pose normal-
ization, the mapping functions between a discrete set of
non-frontal poses and the frontal pose are learned. They
proposed coupled Gaussian process regression-based frame-
work, which considers pair-wise correlation between the
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views in order to estimate a robust mapping function.
However, learning of mapping functions is performed on
observation space, and so, error occurring in mapping func-
tions adversely affects classification accuracy. This is even
more severe when high-dimensional noise affects the nor-
malized features. View- normalization or multi-view facial
feature synthesis proposed in [15] uses block-based texture
features. These features are extracted from different views
of facial images to learn the mapping functions between any
two views. This consideration ascertains that the features are
extracted from several off-regions, on-regions, and on/off-
regions of a face, and subsequently weights are assigned for
these regions. However, several unwanted features may be
added to the observation space due to wrong weight alloca-
tion policy. Moreover, major limitation of these approaches
is that the head-pose normalization and learning of expres-
sion classifier are carried out independently, and hence affect
the overall classification accuracy.

The third category of methods [7,16–18] has significant
advantages as a single classifier is used for all the views.
As a result, these approaches bypass the first step, i.e.,
the head-pose estimation for pose-specific classifier. In [7],
it is considered that different views of facial expressions
are just different manifestations of the same facial expres-
sion, and hence the correlations between different views of
expressions are considered during training. In this view, dis-
criminative shared Gaussian process latent variable model
(DS-GPLVM) is proposed to learn a single nonlinear discrim-
inative subspace. More specifically, DS-GPLVMgeneralizes
the characteristics of discriminative-GPLVM (D-GPLVM)
[19] along with the shared GPs [20,21] to learn the dis-
criminative manifold. Nevertheless, discriminative nature of
Gaussian process depends on a kind of prior. In [19], a prior
based on linear discriminant analysis (LDA) [22] was pro-
posed to replace the standard spherical Gaussian-based prior.
A more general prior based on the notion of the graph Lapla-
cian matrix was proposed in [23–25]. However, the affect
of between-class separation was not considered in the prior,
and hence the latent manifold obtained by this approach may
not be optimal. The same Laplacian-based prior is further
generalized for multi-view in [7]. Furthermore, correlations

between the latent positions of themanifoldmay exist, which
may further affect the classification accuracy of the DS-
GPLVM-based FER system [26]. Another extension of [27]
is proposed in [28]. The authors of [28] imposed a view-
similarity constraint to ensure projections of correlated views
close to each other. This method may help to recognize facial
expressions from other views which are not used in train-
ing. Recently, subspace clustering for unlabeled data has also
been proposed in [29]. This may be useful in grouping a large
class of unlabeled spontaneous expressions.

In view of searching an optimal subspace, we propose to
extend uncorrelated discriminative shared Gaussian process
latent variable model (UDSGPLVM) [6] to the multi-level
UDSGPLVM (ML-UDSGPLVM) for multi-view FER. In
ML-UDSGPLVM, amore generalized discriminative prior is
proposed, which is based on graph Laplacian matrix [23] and
a transformationmatrix. The transformationmatrix is derived
from the local-between-class-scatter-matrix (LBCSM) of
data [30,31]. The advantage of the proposed prior is that
it can better infer the separability of data onto the man-
ifold. The proposed prior depends on both the intra-class
geometric structure of the data captured by Laplacian matrix
and the local inter-class variability of the data inferred by
LBCSM. Hence, the proposed prior is more efficient than
the Laplacian-based prior [7]. Moreover, discriminative non-
linear latent manifold (feature space) obtained by Gaussian
process might be correlated, and thus classification per-
formed directly on correlatedmanifold reduces classification
accuracy [26]. In our proposed ML-UDSGPLVM approach,
we first transform the correlated manifold to the uncorrelated
manifold via a kernel approach.

To implement multi-level classification scheme, expres-
sions of multi-view face images are recognized in two steps
as shown in Fig. 1. In the first step, all the basic expres-
sions are grouped into three categories, namely Lip-based,
Lip–Eye-based, and Lip–Eye–Forehead-based expressions.
This classification of expressions is done on the basis of
regions of a face which mostly contribute to an expres-
sion. Then, category-wise training and testing are performed
using the proposed UDSGPLVM. In the second step, a sepa-
rate UDSGPLVM is applied on each of the sub-categories

Fig. 1 Two-level separations of
facial expressions. In first level,
expressions are grouped into
three categories namely
Lips-based, Lips–Eyes-based
and Lips–Eyes–Forehead-based.
The second level shows the
constituent basic expressions of
each of the category expressions
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Fig. 2 Proposed multi-level
DS-GPLVM for multi-view
facial expression recognition: a
training phase includes facial
feature extraction and nonlinear
dimensionality reduction using
l-UDSGPLVM. 1-UDSGPLVM
learns first level of
discriminative features for
group-level facial expression
classification, and
2-UDSGPLVM comprises of
distinct features for constituent
expressions of the respective
subgroups, b classification
stages of the proposed scheme

to further classify the basic expressions embedded in the
above-mentioned three category classes of expressions. The
proposed 2-level UDSGPLVM follows this approach as
against the method used in 1-level DS-GPLVM or simply
DS-GPLVM.

In our proposed method, we employed our earlier devel-
oped face model [32] to extract features only from the
informative regions of a face, as most discriminative features
are only attainable from the informative/active regions of a
face [5,33,34]. The proposedmethod is elaborately discussed
in the following sections.

2 Proposedmethodology

Shape-based method is employed in our proposed method to
extract texture features from the active/informative regions
of a face. We proposed to use our earlier developed face
model, as it was derived from informative regions of a
face [32]. Subsequently, LBP features are extracted from
a 15 × 15 block around each of the facial points of our
proposed face model. Next, expressions are divided into
three classes based on the movements of lips, eyes, and
forehead as stated in [6,35]. The corresponding reduced non-

linear subspace is learned using 1-UDSGPLVM as shown in
Fig. 2a. Subsequently, a 2-UDSGPLVM is learned for each
of the expressions embedded in each of the sub-categories.
Hence, three different 2-UDSGPLVMs have to be learned
for final level of classification. The class-label of the test
sample obtained by the first level of ML-UDSGPLVM and
kNN i.e., 1-UDSGPLVM+kNN is used to select a specific 2-
UDSGPLVM out of three 2-UDSGPLVMs. So, first level of
classification is performed using 1-UDSGPLVM and kNN.
The first level of classification is basically a three-class clas-
sification problem, and hence the classifier identifies the
appropriate sub-category. Any specific expression is finally
identified by 2-UDSGPLVM and kNN. Our proposed ML-
UDSGPLVM is discussed in the following section.

3 ProposedML-UDSGPLVM

In our method, a more accurate low-dimensional manifold is
derived for multi-view FER. We first give a brief overview
of DS-GPLVM [7]. The impact of the state-of-the-art priors
on latent manifold is analyzed, and then we proposed a new
prior to nullify some of the limitations of the existing priors.
Finally, we introduce our proposedML-UDSGPLVMmodel
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Fig. 3 Proposed ML-UDSGPLVM

as shown in Fig. 3, in which a more generalized discrimina-
tive prior is proposed. Also, uncorrelated constraint onto the
latentmanifold is imposed.All the steps ofML-UDSGPLVM
are discussed below.

3.1 DS-GPLVM

The DS-GPLVM is a state-of-the-art approach in the field of
multi-view FER [7]. More specifically, DS-GPLVM gener-
alizes D-GPLVM [19] using the framework of shared GPs
[20,21] to simultaneously learn a single nonlinear discrimi-
native manifold of multiple observation spaces. The problem
formulation of DS-GPLVM as a multi-view FER can be
stated as follows:

Let X = {
X1,X2, . . . ,XV

}
be the set of V observation

spaces of size V N × D, where N is the number of samples
in each observation space and D is the dimension of each
feature vector. Then, the objective of DS-GPLVM is to learn
a single d-dimensional manifold Y ∈ R

N×d with d << D,
which is assumed to be the shared information across all the
views. The learning of low-dimensional manifold Y of DS-
GPLVM and its mapping to the vth observation space Xv

is modeled using the framework of shared GP. More specif-
ically, it tries to learn the covariance function k

(
yi , y j

)
of

the shared manifold. In shared GP, each observation space
is generated from the shared manifold via a separate Gaus-
sian process, and hence the joint likelihood of the observed
X given the shared manifold Y is factorized as follows:

p (X|Y, θ) = p
(
X1|Y, θ1

)
· · · p

(
XV |Y, θV

)
(1)

where θ = {θ1, θ2, . . . , θV } is the kernel parameters of the
shared observation space. The vth factor of (1) represents
likelihood of vth observation spaceXv given the sharedman-
ifold Y, i.e., p (Xv|Y, θv), which is defined as:

p
(
Xv|Y, θv

)= 1
√

(2π)ND|Kv|D
exp

{
−1

2
tr

(
K−1

v XvXvT
)}

(2)

where Kv is the kernel covariance matrix associated with
vth view of input space Xv , whose (i, j)th element can be
obtained using the covariance function k

(
yi , y j

)
defined as

the sum of the radial basis function (RBF) kernel, bias, and
noise term. Hence, k

(
yi , y j

)
can be represented as follows:

k
(
yi , y j

) = θv1 exp

(
−θv2

2
||yi − y j ||2

)
+ θv3 + δi, j

θv4
(3)

where θv = {θv1, θv2, θv3, θv4} are the kernel parameters of
covariance function and δi, j is the Kronecker delta function.
Finally, the distribution of sharedmanifoldY can be obtained
by imposing a prior p (Y) over the shared manifold, and then
applying the Bayes law. Thus, the posterior distribution ofY
given X can be written as follows:

p (Y, θ |X) = p (X|Y, θ) p (Y)

p (X)

∝ p (X|Y, θ) p (Y) (4)

The learning of the shared manifold is accomplished by
minimizing the negative log-likelihood of the posterior dis-
tribution given in (4) with respect to the latent positions of
the sharedmanifoldY. The negative log-likelihood of (4) can
be written as:

Ls =
V∑

v=1

Lv − log (p (Y)) (5)

where Lv is given by:

Lv = D

2
ln |Kv| + 1

2
tr

(
K−1

v XvXvT
)

+ constant. (6)

3.2 Effect of priors on GPLVM

The effectiveness of GPLVM toward classification problem
depends on the kind of prior for the manifold. In this direc-
tion, the first attempt was explored in [19], where a simple
spherical Gaussian prior is replaced by a discriminative prior
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based on LDA. Hence, it maximizes the between-class sepa-
rability (Sb) andminimizes thewithin-class separability (Sw)
of the latent space. The LDA-based prior is defined as:

p (Y) = 1

Zg
exp

{
− 1

σg
J−1 (Y)

}
(7)

where J (Y) = tr
(
S−1
w Sb

)
. In [24], a more general prior

based on the notion of graph Laplacian matrix has been pro-
posed. The Laplacian matrix of vth view is defined as:

Lv = Dv − Wv

where Dv is a diagonal matrix with Dv
i i = ∑

j W
v
i j . The

weight Wv
i j is defined as:

Wv
i j =

⎧
⎨

⎩
exp

(
−||xv

i −xv
j ||2

σv

)
; if ci = c j

0; otherwise
(8)

Also, [7] generalizes the Laplacian-based prior to obtain the
prior for multi-view facial images. The net Laplacian matrix
Lnet in [7] is obtained by summing all the normalize Lapla-
cian matrices corresponding to each of the views. Hence,
mathematically Lnet can be represented as:

Lnet = L1
nor + L2

nor + · · · + LV
nor + ξI (9)

where

Lv
nor = (

Dv
)−1/2Lv

(
Dv

)−1/2

Here, I indicates the identity matrix, and ξ is the regulariza-
tion parameter which ensures positive-definiteness of Lnet

[36]. Finally, the discriminative shared space prior is defined
as:

p (Y)=
V∏

v=1

p
(
Y|Xv

) 1
V = 1

V · Zd
exp

{
−β

2
tr

(
YTLnetY

)}

(10)

where Zd is a normalization constant and β (reciprocal of
the variance) is the precision parameter.

3.3 ML-UDSGPLVMmodel

In the previous section, we introduced the impact of state-of-
the-arts priors on the Gaussian processes. In this section, we
derive amoregeneralizeddiscriminative prior function.Also,
influences of the prior function on the likelihood function
are analyzed to obtain a more accurate posterior distribu-
tion. The prior based on Laplacian matrix (Lnet) given in

(10) essentially preserves the within-class geometric struc-
ture of the data. It uses RBF kernel to obtain weights between
the data samples. So, it can also handle the multi-modalities
present in the data. However, this approach did not consider
the impact of between-class variability while defining the
prior, and hence the prior proposed in (10) makes the GP
suboptimal for classification. But, the impact of between-
class-scatter matrix is crucial for all sorts of classification
problems. So for our proposed prior, we incorporate a center-
ing transformation matrix B. This matrix is derived based on
local-between-class-scatter-matrix (Slb) as defined in [31].
Our proposed prior considers the joint impact of net Lapla-
cian matrix (Lnet) and the net B, i.e., Bnet onto the shared
manifold. The reason behind the use of local-between-class-
scatter-matrix in the proposed method is that it can also
handle the multi-model characteristics of the data. Mathe-
matically, for vth view, Sv

lb, the LBSCM can be represented
as follows:

Sv
lb = 1

2

N∑

i, j=1

Wv
lb,i j

(
xv
i − xv

j

)T (
xv
i − xv

j

)

= XvTBvXv (11)

where Bv = Dv
lb,i i − Wv

lb,i j and Dv
lb,i i = ∑

j W
v
lb,i j . The

termWv
lb,i j is defined as follows [30,31]:

Wv
lb,i j =

⎧
⎨

⎩

(
1
N − 1

nv
c

)
exp

(
−||xv

i −xv
j ||2

σv
i σv

j

)
; if ci = c j

1
N ; otherwise

(12)

The parameter nv
c is the number of samples that belongs to

cth-class in vth-view, and σv
i is the local scaling around xi

in vth view, which is defined as σv
i = ||xv

i − xvk
i ||2. The

term xvk
i is the k-nearest neighbor of xv

i . We use k = 7 in
our proposed work [37]. Thus, the proposed regularized net-
local-between-class-transformationmatrixBnet is defined as:

Bnet = B1
nor + B2

nor + · · · + BV
nor + ξI =

∑

v

Bv
nor+ξI (13)

where

Bv
nor = (

Dv
lb,i i

)−1/2Bv
(
Dv
lb,i i

)−1/2

Finally, the proposed prior for ML-UDSGPLVM is defined
as:

p (Y) = 1

V · Zd
exp

{
−β

2
tr

(
YTLnetY
YTBnetY

)}
(14)

Hence, the proposed prior is more general and suitable for
classification as compared to the earlier priors [7,19]. So,

123



148 S. Kumar et al.

class separation in the low-dimension manifold is being
learned from the class separability of all the views. Addi-
tionally, it can also preserve the local structure of the data
on the reduced manifold. Incorporating the proposed prior in
(5), the proposed negative log-likelihood of ML-DSGPLVM
is given by:

Ls =
V∑

v=1

Lv + β

2
tr

(
YTLnetY
YTBnetY

)
(15)

where Lv is defined in (6). To obtain the optimal latent space,
we need to find the derivative of (15) w.r.t Y, which is given
as:

∂Ls

∂Y
=

V∑

v=1

∂Lv

∂Y
+ β

2
ϕ (Y) (16)

where

ϕ (Y) =
(

2LnetY
YTBnetY

)
−

(
2BnetY
YTBnetY

)(
YTLnetY
YTBnetY

)
(17)

As the GP follows an iterative procedure to find the optimal
latent space, we need to evaluate ϕ (Y) in each of the itera-
tions which is computationally expensive. Also, latent states
obtained by this approach is fluctuating, and hence conver-
gence rate will be slower than that of LPP-based prior [7].
To overcome these limitations of our proposed method, the
proposed prior is slightly modified:

p mod (Y) = 1

V · Zd
exp

{
−β1

2
tr

(
YTLnetY

)

+β2

2
tr

(
YTBnetY

)}
(18)

The corresponding proposed negative log-likelihood and its
derivativew.r.t. latent spaceY canbe reformulated as follows:

L mod
s =

V∑

v=1

Lv + β1

2
tr

(
YTLnetY

)
− β2

2
tr

(
YTBnetY

)

(19)

∂L mod
s

∂Y
=

V∑

v=1

∂Lv

∂Y
+ (β1Lnet − β2Bnet)Y (20)

This representation is simple, and also it allows smooth con-
vergence of the latent space. This is due to the absence of
denominator terms, which change the latent space abruptly.
Hence, the proposed method is comparatively more suitable
than the existingmethods in terms of obtaining optimal latent
subspace. This directly improves the recognition accuracy.

Moreover, test sample comes from the high-dimensional
subspace that needs to bemappedonto the lower-dimensional

latent manifold during the inference process of GPLVM. For
this, back-constrain (learning of inverse mapping) has been
defined such that the topology of data space is preserved
in the latent manifold [38]. In [7], two kinds of back-
constraints are defined for multi-views, namely independent
back-projection (Ibp) and single back-projection (Sbp). For
Ibp, separate inverse function is learned for each of the views,
whereas for Ibp, a single inverse mapping function is learned
from all the views to the shared space. They are defined as:

Y =
{
Kv

ibcA
v
ibc; ∀v = 1, 2, . . . , V : for Ibc(∑V

v=1 wvKv
bc

)
Asbc = KsbcAsbc : for Sbc

(21)

where (i, j)th element of Kv
ibc, i.e., k

v
bc

(
xv
i , x

v
j

)
which is

given by:

kv
bc

(
xv
i , x

v
j

)
= exp

(
−γ v

2
||xv

i − xv
j ||2

)
(22)

Av
ibc andAsbc are the regressionmatrices andwc is theweight

corresponding to the vth view. Finally, these constraints are
incorporated in the objective function (19), and then the min-
imization problem takes of the following form:

argmin
Y,θv,A

L mod
s + R (A)

s.t.

{
Y − Kv

ibcA
v
ibc = 0, v = 1, 2, . . . , V for Ibc

Y − KsbcAsbc = 0, wv ≥ 0,
∑

v wv = 1, for Sbc
(23)

where R (A) is a regularization term, which controls the
over-fitting of the model to the data. An efficient way of
solving this constraint optimization problem is given in [7],
where the minimization problem is first divided into a set
of sub-problems by employing alternative direction method
(ADM) [39]. Next, an iterative approach (conjugate gradient
algorithm) [40] is applied to solve each of the sub-problems
separately with respect to their associated model parameters.
We follow the same procedure to obtain the optimal latent
manifold and other model parameters.

3.4 Uncorrelated latent space

In spite of using nonlinear-based approach to reduce the
dimensionality of original feature space to the latent space,
there may exist correlations between features. This may fur-
ther affect the classification accuracy of the FER system.
So in our proposed approach, instead of classifying directly
from the correlated latent space, we first transform features
of the shared space Y to the another shared space Yuc,
where features are uncorrelated. Then classification is per-
formed. We obtain a nonlinear uncorrelated discriminative
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manifold from the nonlinear correlated discriminative mani-
fold (original latent manifold) via the transformation matrix
χ = [υ1,υ2, . . . ,υd ]. The columns of χ are essentially the
solutions (eigenvectors) of the following generalized eigen-
value equation corresponding to the first d lowest eigenvalues
[26]:

φ (Y) (Ls + Bs) φ(Y)Tυ = λφ (Y)Gφ(Y)Tυ (24)

where φ (Y) = [
φ (y1) , φ (y2) , . . . , φ (yN )

]
. Ls and Bs are

the Laplacian and the local-between-class matrices, respec-
tively [similar to (9], and (13)) obtained from the shared
manifold. The matrix G = I − (1/NV ) eeT, where I is an
identity matrix and e = (1, 1, . . . , 1)T. Further, since eigen-
vectors of (24) should lie in the span of φ (y1) , φ (y2) , . . .,
φ (yN ), there exists a vector αd such that υd = φ (Y) αd ,

where αd = [
αd
1 , αd

2 , . . . , αd
N

]T
. Hence, for dth eigenvector,

(24) can be rewritten in terms of αd as follows:

φ (Y) (Ls + Bs) φ(Y)Tφ (Y) αd =λφ (Y)Gφ(Y)Tφ (Y)αd

(25)

Multiplying both side of (25) by φ(Y)T and by simple sub-
stitution, the following generalized eigenvalue equation is
obtained:

M (Ls + Bs)Mαd = λMGMαd (26)

where M = φ(Y)Tφ (Y) is the kernel matrix with Mi j =
exp

(−||yi − y j ||/σ
)
. Let α1,α2, . . . ,αd be the solutions of

(26), then transformed uncorrelated nonlinear manifold can
be obtained as follows:

Yuc = [υ1,υ2, . . . ,υd ]
Tφ (Y)

= [α1,α2, . . . ,αd ]
Tφ(Y)Tφ (Y)

= [α1,α2, . . . ,αd ]
TM (27)

Similarly, for a given new sample y∗ of correlated manifold
Y, the corresponding position onto the uncorrelatedmanifold
can be obtained using the following equation:

y∗
uc = [α1,α2, . . . ,αd ]

T[M1∗,M2∗, . . . ,MN∗]T (28)

where Mk∗ = exp (−||yk − y∗||/σ).

4 Experiments on BU3DFE dataset

The BU3DFE is a widely used dataset to evaluate the per-
formance of multi-view and/or view-invariant FERmethods.
This database comprises of 3D facial images of Happy (HA),
Surprise (SU), Fear (FE), Anger (AN), Disgust (DI), Sad
(SA), and Neutral (NA) expressions. The database has 100
subjects,which includes 56%of female and 44%ofmale can-
didates. Also, expressions of BU3DFE dataset are captured
at four different intensity levels ranging from onset/offset
level to peak level of expression. As the database has 3D
images, we first rendered the 3D face models using OpenGL
to obtain the 2D textured facial images. 3D face model is first
rotated by a user-defined angle, and then the corresponding
2D textured images are obtained. In our proposed approach,
we obtained 2D facial images for seven views, i.e., −45◦,
− 30◦, − 15◦, 0◦, 15◦, 30◦, and 45◦ yaw angles. A part of
BU3DFE dataset is shown in Fig. 4, where a single subject
is showing the happy expression for seven different viewing
angles.

The validation of the proposed ML-UDSGPLVM algo-
rithm is done on BU3DFE dataset. In our experiment, images
from all the 100 subjects of BU3DFE dataset are employed.
Also, expressions from all the intensity levels are considered
for our experiment. So, altogether 1800 images per view,
i.e., 1800 × 7 = 12,600 images are considered to evalu-
ate the performance of our proposed method. Each view of
the multi-view facial images comprises of six basic expres-
sions, i.e., anger, disgust, fear, happy, sad, and surprise. For
our experimentation, 300 images are taken for each of the
expressions. The face part of 2D textured expressive images
are manually cropped, and then down-sampled to get an
image size of 160 × 140. Subsequently, the proposed 54
facial landmarkpoints are localized.Localizationof the facial
points for the views − 45◦ and 45◦ are carried out manu-
ally, whereas images for the views (− 30◦, − 15◦, 0◦, 15◦,
and 30◦) are automatically annotated using active appear-
ance model (AAM). Out of 54 landmark points, 5 stable
points, i.e., left and right corners of the respective eyes, tip
of the nose, and corners of the mouth are used to align the
facial images using Procrustes analysis [41]. Finally, a grid
of 15×15 is considered at each of the facial points to extract
a feature vector from salient regions of a face. LBPu2 oper-

Fig. 4 An example of showing localization of landmark points (face model) on multi-view face images of BU3DFE dataset
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(a) (b)

Fig. 5 3D distribution of test samples of three expressions: a trained by LBP, PCA, and ML-UDSGPLVM features, and b trained by LBP, LPP,
and ML-UDSGPLVM features

ator is applied to each of the sub-blocks around each of the
landmark points to obtain a feature vector. LBPu2 gives
a 59-dimensional feature vector corresponding to each of
the facial sub-regions, and hence the overall feature dimen-
sion for an image is 54 × 59 = 3186. The first level of
dimensionality reduction in LBP-based appearance feature
is performed using PCA, in which 95% of total variance of
the data is preserved. As the features corresponding to the
data (original feature space) are obtained for different views,
so they may form altogether different clusters. Thus, the
overall data space may be multi-modal. Hence, LPP-based
dimensionality reduction approachwould bemore suitable in
case of multi-view facial expression recognition. LPP-based
dimensionality reduction technique is more capable in han-
dling multi-modal data. In our proposed method, LPP-based
approach is utilized to extract a set of discriminative features.

The experiments are carried out using 10-fold cross-
validation strategy, and hence we first divide images of each
of the views into 10 subsets. Out of which, 9 subsets are
used to train the model, whereas the remaining set is used
for testing. The experiments are repeated for 10 times such
that testing subset is selected exactly ones in each iterations.
Then, average accuracy is obtained for all the experiments. In
all the experiments, we use 1-nearest neighbor (1-NN) clas-
sifier to evaluate the performance of the proposed method.

We used the same parameter settings as used in [7].
The parameters γ v (back-projection parameter) are learned
through leave-one-out cross-validation procedure. Finally,
the optimum values of the two parameters, i.e., β (in our case
β1) and d (dimension of latent space) are found as β = 300
and d = 5. So, we used these parameter values to get optimal
performance of our proposed ML-UDSGPLVM. The only
extra parameter which is used in our proposed algorithm is
the weight of the prior β2, which controls the inter-class vari-

ance of the data onto the shared manifold. This parameter is
learned experimentally by varying β2 from 10 to 0.01, and
found to be optimal at β2 = 0.8.

The proposed ML-UDSGPLVM approach is a multi-
level framework, where first level of proposed model, 1-
UDSGPLVM is first trained by three sets of expression
categories, i.e., Lip-based = {happy, sad}, Lip–Eye-based =
{surprise, disgust}, and Lip–Eye–Forehead-based = {anger,
fear}. Subsequently, a second level of Ml-UDSGPLVM, i.e.,
2-UDSGPLVMis trained for the expressions andhence, three
2-UDSGPLVMs are trained in the second level of proposed
ML-UDSGPLVM. Two different approaches, i.e., PCA and
LPP are applied to reduce the dimensionality of LBP fea-
tures. For this, both PCA and LPP are applied on 90% of the
samples ( i.e., 10-fold cross-validation strategy) of each of
the views to obtain the principal directions, and subsequently
those direction vectors are used to project both training and
testing samples to the initial reduced subspace. In PCA, we
reduce feature dimension in such a way that 95% variance
of the data can be captured. In case of LPP, we restrict the
feature set to 100-dimensional subspace. Finally, we apply
our proposed ML-UDSGPLVM onto the reduced feature set
to obtain a sufficiently lower-dimensional nonlinear discrim-
inative subspace. Furthermore, features in the discriminative
latent spacemay be correlated, and hencewe performanother
transformation on features of the correlated latent space.
The first three components of ML-UDSGPLVM features
are applied on two sets of features, i.e., LBP+PCA+ML-
UDSGPLVM and LBP+LPP+ML-UDSGPLVM. The dis-
tribution of the test samples of all the views for these
two cases is shown in Fig. 5a and b, respectively. These
distribution plots show that first level of proposed ML-
UDSGPLVM+LBP+LPP provides better separability than
the combination of ML-UDSGPLVM+LBP+PCA [7]. The
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Table 1 View-wise recognition
rates (RR) for ML-UDSGPLVM
on BU3DFE database

Ist-level of expression classes Recognition rate (RR) (in %)

− 45◦ − 30◦ − 15◦ 0◦ 15◦ 30◦ 45◦ Avg RR

Stage1 model evaluation using LBP+PCA+ML-UDSGPLVM features

Lip-based 94.32 96.00 95.80 95.80 95.80 90.88 89.20 93.97

Lip–eye-based 96.08 92.70 95.00 98.30 91.70 92.53 95.84 94.59

Lip–eye–forehead-based 96.25 95.26 96.90 98.05 93.11 93.33 95.26 95.45

Average accuracy = 94.67%

Stage1 model evaluation using LBP+LPP+ML-UDSGPLVM features

Lip-based 98.02 98.30 98.20 99.20 99.01 99.20 97.00 97.30

Lip–eye-based 97.86 97.05 98.20 99.00 99.70 99.00 98.20 98.43

Lip–eye–forehead-based 98.50 98.20 99.00 99.00 98.30 98.30 98.20 98.50

Average accuracy = 98.07%

view-wise average recognition rates for all the three types of
expressions are shown in Table 1. FromTable 1, it is clear that
proposed LBP+LPP followed byML-UDSGPLVMgives an
improvement of about 4% as compared to LBP+PCA+ML-
UDSGPLVM-based approach [7].

As discussed earlier, three-class problem is considered at
the first stage of ML-UDSGPLVM. In the second stage, we
need three 2-UDSGPLVM—one for each expression. Each
2-UDSGPLVM is trained using the same training samples of
the respective expression class. For example, 2-UDSGPLVM
corresponding to Lip-based expressions are trained using the
samples of the respective sub-classes, i.e., happy and sad.
Furthermore, the samples which were used for testing of
1-UDSGPLVM are again used for 2-UDSGPLVM. The sam-
ples which were misclassified in the first stage are tested by
the respective 2-UDSGPLVM in the second level of ML-
UDSGPLVM. So, misclassified samples of 1-UDSGPLVM
(stage-1) and 2-UDSGPLVM (stage-2) are accounted for
finding the overall misclassified samples. The misclassified
samples are shown in Fig. 6. The overall view-wise classifi-
cation accuracies for different basic expressions are shown
in Table 2, and the corresponding distributions of test sam-
ples for two sets of features are shown in Fig. 6. It is even
perceptually clear from the distribution plots that second
level of ML-DSGPLVM, LBP+LPP provides better sep-
arability than that of LBP+PCA-based features, and the
overall improvement of about 5%. Table 3 shows the recog-
nition accuracy for different views, i.e.,(− 45◦,− 30◦,− 15◦,
0◦, 15◦, 30◦,and 45◦) for the above-mentioned two feature
sets. Table 4 shows the comparison of DS-GPLVM [7] and
our proposed ML-UDSGPLVM. The performance of DS-
GPLVM is evaluated by imposing it with LDA-based prior,
LPP-based prior, and the prior proposed in (18). It is observed
that the performance of DS-GPLVMwith the proposed prior
is better than LPP-based prior, and the improvement is even
more significant (> 5%) than LDA-based prior. Our pro-
posed ML-UDSGPLVM gives an overall average accuracy

of 95.51%, which is about 3% better than the original DS-
GPLVM (DS-GPLVM with LPP-based prior).

This significant improvement is due to the use of multi-
level framework of uncorrelated DS-GPLVM. The proposed
ML-UDSGPLVMonLBP+LPP-based feature gives the bet-
ter performance as compared to DS-GPLVM.

Table 5 shows the comparison of several state-of-the-
art multi-view learning-based methods [27,42–44] with the
proposed ML-UDSGPLVM. In this, performance of MvDA
is better than DS-GPLVM with LPP-based prior, and it is
very close to DS-GPLVMwith our proposed prior. Common
spaces in all the multi-view-based linear approaches [27,42–
44] were obtained by taking 98% of the total variance, which
corresponds to 175 eigenvectors. This is relatively very high-
dimensional common space than nonlinear DS-GPLVM
latent space. Finally, our proposed ML-UDSGPLVM-based
approach gives an overall improvement of about 2% than
MvDA-based approach. In summary, the proposed ML-
UDSGPLVM-based approach can efficiently find the low-
dimensional discriminative shared manifold for multi-view
FER.

Experiments on KDEF dataset Images of BU3DFE
dataset are synthetic, so we validate our proposed method
by the images of multi-view KDEF dataset [45], and also by
the dataset formed by combining images of both BU3DFE
and KDEF datasets. Images of KDEF dataset are real and
collected on controlled environment, whereas the combined
dataset contains both synthetic and real images of facial
expressions. The purpose of combining two datasets is to
validate our proposed model on a large dataset.

Each of the expressions of KDEF dataset is captured from
five different angles ranging from − 90◦ to 90◦ with an
interval of 45◦. In our experiment, expressions from three
different views i.e., − 45◦, 0◦, and 45◦ are considered. In
training, 2160 expressive images of 60 individuals are used,
and remaining 360 facial images of 10 individuals are used
for testing. The experimental results on KDEF dataset using
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 3D distribution of test samples of the basic expressions. First
these figures show the plot of test samples when 2-UDSGPLVM is
applied on LBP followed by PCA, and the second column shows the

distribution when 2-UDSGPLVM is applied on LBP followed by LPP-
based features, respectively. CC and MC stand for correctly classified
and miss-classified test samples
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Table 2 View-wise expressions
recognition rates (RR) for
ML-UDSGPLVM on BU3DFE
database

Model Expressions Recognition rate (RR) (in %)

− 45◦ − 30◦ − 15◦ 0◦ 15◦ 30◦ 45◦ Avg RR

Stage2 model evaluation using LBP+PCA+ML-UDSGPLVM features

Stage2- Happy 83.40 93.30 96.70 96.70 99.60 96.70 99.00 95.05

Model1 Sad 93.30 73.40 76.70 96.70 80.00 90.00 83.40 84.78

Stage2- Surprise 99.10 90.00 96.70 98.00 93.30 99.80 93.40 95.75

Model2 Disgust 93.30 93.40 96.70 96.70 83.30 99.20 93.30 93.70

Stage2- Anger 83.40 80.00 96.40 93.30 76.70 96.70 86.70 87.60

Model3 Fear 80.00 73.30 76.70 96.70 83.30 90.00 90.00 84.28

Average accuracy = 90.20%

Stage2 model evaluation using LBP+LPP+ML-UDSGPLVM features

Stage2- Happy 99.80 99.50 99.50 99.80 83.40 99.60 99.20 97.25

Model1 Sad 79.20 98.80 91.60 94.40 93.30 94.80 96.00 92.58

Stage2- Surprise 95.60 94.80 94.40 97.60 99.70 97.60 99.60 97.04

Model2 Disgust 99.60 98.80 98.40 98.40 93.30 99.20 96.00 97.67

Stage2- Anger 95.60 96.00 98.40 96.40 83.40 96.40 99.60 95.11

Model3 Fear 90.00 96.80 98.00 99.20 80.00 94.00 95.60 93.37

Average accuracy = 95.51%

DS-GPLVM, ML-UDSGPLVM with and without proposed
prior are shown in Table 6.

Experiment on BU3DFE +KDEF Combined datasets In
this experiment, images from both the datasets are consid-
ered for training and testing. In training, 13230 facial images
from BU3DFE dataset and 2160 facial images from KDEF
dataset are used. The training images are captured from 130
subjects (70 from BU3DFE and 60 from KDEF) out of 170
subjects. A total of 6030 images from rest of the 40 (30 from
BU3DFE and 10 from KDEF) subjects are used for testing.
The experimental results on combined dataset are shown in
Table 7.

Recently several deep-learning-based frameworks are
proposed which give excellent performance in many Com-
puter Vision applications [46,50–53]. However, one draw-
back of deep-learning framework is that it requires a large
number of training samples, which may not be readily
available in many applications. In case of limited training
data, the performance of deep-learning-based approach is
no longer superior to the DS-GPLVM-based method pro-
posed in [7]. To be more fair, we did an experiment on our
dataset by employing deep-learning framework as discussed
in [46]. In our experiment, tenfold cross-validation strategy
is employed. Hence, 11,340 samples out of 12,600 samples
are used for training the deep neural network, and remain-
ing 1260 samples are used for testing. The experiments are
repeated for 10-times to calculate average accuracy. The aver-
age accuracies obtained by different deep-learning-based
frameworks and our proposed method are shown in Table 8.
It is observed that our proposed method can give better
accuracy in contrast to convolution neural network (CNN),

Table 3 View-wise confusion matrices for six basic expressions

View Anger Disgust Fear Happy Sad Surprise

Confusion matrix obtained using LBP+PCA+ML-UDSGPLVM features

Pan of − 45◦

Anger 83.4 0 0 0 13.3 3.3

Disgust 6.7 93.3 0 0 0 0

Fear 3.3 0 80 0 10 6.7

Happy 0 0 0 83.4 13.3 3.3

Sad 0 0 6.7 0 93.3 0

Surprise 0 0 0 0.9 0 99.1

Pan of − 30◦

Anger 80.0 0 0 0 6.7 13.3

Disgust 3.3 93.4 0 0 3.3 0

Fear 6.7 0 73.3 0 20 0

Happy 0 0 0 93.3 6.7 0

Sad 3.3 0 20 0 73.4 3.3

Surprise 0 0 0 0 10 90

Pan of − 15◦

Anger 96.4 0 3.0 0 0 0.6

Disgust 0 96.7 0 0 3.3 0

Fear 0 0 76.7 0 23.3 0

Happy 0 0 0 96.7 0 3.3

Sad 0 0 23.3 0 76.7 0

Surprise 0 0 0 0 3.3 96.7
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Table 3 continued

View Anger Disgust Fear Happy Sad Surprise

Pan of 0◦

Anger 93.3 0 0 0 0 6.7

Disgust 0 96.7 0 0 0 3.3

Fear 0 0 96.7 0 3.3 0

Happy 0 0 0 96.7 3.3 0

Sad 0 0 3.3 0 96.7 0

Surprise 0 0 0 2 0 98

Pan of 15◦

Anger 76.7 0 0 0 10 13.3

Disgust 3.3 83.3 0 0 13.3 0

Fear 6.7 0 83.3 0 0 10

Happy 0 0 0 99.6 0 0.4

Sad 10 0 10 0 80 0

Surprise 0 0 0 0 6.7 93.3

Pan of 30◦

Anger 96.7 0 0 0 3.3 0

Disgust 0 99.2 0 0 0 0.8

Fear 0 0 90 0 10 0

Happy 0 0 0 96.7 3.3 0

Sad 0 0 10 0 90 0

Surprise 0 0 0 0.2 0 99.8

Pan of 45◦

Anger 86.7 0 0 0 13.3 0

Disgust 0 93.3 0 0 0 6.7

Fear 0 0 90 0 10 0

Happy 0 0 0 99 0 1

Sad 3.3 0 13.3 0 83.4 0

Surprise 0 3.3 0 0 3.3 93.4

Confusion matrix obtained using LBP+LPP+ML-UDSGPLVM features

Pan of − 45◦

Anger 95.6 0 0 4.0 0 0.4

Disgust 0 99.6 0 0 0.4 0

Fear 0.4 0 90.0 0 9.6 0

Happy 0 0 0 99.8 0 0.2

Sad 0 0 20.4 0 79.2 0.4

Surprise 0 4.4 0 0 0 95.6

Pan of − 30◦

Anger 96.0 0 0 1.2 2.4 0.4

Disgust 0.8 98.8 0 0 0 0.4

Fear 0.8 0 96.8 0 1.2 1.2

Happy 0 0 0 99.5 0 0.5

Sad 0 0 1.2 0 98.8 0

Surprise 0 4.4 0 0 0.8 94.8

Table 3 continued

View Anger Disgust Fear Happy Sad Surprise

Pan of − 15◦

Anger 98.4 0 0 0.4 0.4 0.8

Disgust 0.4 98.4 0 0 1.2 0

Fear 0.8 0 98.0 0 1.2 0

Happy 0 0 0 99.5 0 0.5

Sad 0.4 0 8.0 0 91.6 0

Surprise 0 5.6 0 0 0 94.4

Pan of 0◦

Anger 96.4 0 0 1.2 0.8 1.6

Disgust 0.4 98.4 0 0 1.2 0

Fear 0 0 99.2 0 0.8 0

Happy 0 0 0 99.8 0.2 0

Sad 0 0 5.2 0 94.4 0.4

Surprise 0.4 2.0 0 0 0 97.6

Pan of 15◦

Anger 83.4 0 0 0 13.3 3.3

Disgust 6.7 93.3 0 0 0 0

Fear 3.3 0 80 0 10 6.7

Happy 0 0 0 83.4 13.3 3.3

Sad 0 0 6.7 0 93.3 0

Surprise 0 0 0.3 0 0 99.7

Pan of 30◦

Anger 96.4 0 0 0.8 1.2 1.6

Disgust 0.4 99.2 0 0 0.4 0

Fear 1.2 0 94.0 0 4.0 0.8

Happy 0 0 0 99.6 0.4 0

Sad 0.4 0 4.4 0 94.8 0.4

Surprise 0 1.6 0 0 0.8 97.6

Pan of 45◦

Anger 99.6 0 0 0 0.4 0

Disgust 0.4 96.0 0 0 0.4 3.2

Fear 0.4 0 95.6 0 4.0 0

Happy 0 0 0 99.2 0.4 0.4

Sad 0 0 4.0 0 96.0 0

Surprise 0 0.4 0 0 0 99.6

deep belief network (DBN), and a special DNN-based struc-
ture proposed in [46]. In fact, performance of DNN-based
approaches (trained on limited dataset) is very much simi-
lar to view-wise multi-view FERmethods. Hence for limited
training dataset, DNN-basedmethods are not much benefited
from the samples of additional views.
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Table 4 Comparison of proposed method with the state-of-the-art DS-GPLVM-based methods on BU3DFE dataset in terms of average recognition
rates with average standard deviation

Methods Recognition rate (RR) (in %)

− 45◦ − 30◦ − 15◦ 0◦ 15◦ 30◦ 45◦ Avg RR

LBP+PCA+Shared features

DS-GPLVM with LDA-based prior 81.04 76.20 74.79 83.87 81.04 79.23 78.83 79.29 ± 0.027

DS-GPLVM with [25] 84.56 79.36 85.08 93.98 82.20 80.55 77.54 83.32 ± 0.015

DS-GPLVM [7] 90.92 85.88 85.68 93.95 81.04 87.50 77.01 86.00 ± 0.021

DS-GPLVM with proposed prior 90.32 83.87 84.07 95.16 85.08 85.28 83.46 86.75 ± 0.021

ML-UDSGPLVM without proposed prior 87.57 86.98 91.66 92.65 90.08 85.28 82.46 88.10 ± 0.065

ML-UDSGPLVM with proposed prior 88.75 83.90 89.98 96.35 86.03 95.40 90.96 90.19 ± 0.011

LBP+LPP+Shared features

DS-GPLVM with LDA-based prior 96.97 91.53 94.95 91.73 93.75 87.90 84.87 91.67 ± 0.025

DS-GPLVM with [25] 96.31 91.03 91.50 97.32 92.12 89.46 86.72 92.06 ± 0.015

DS-GPLVM [7] 96.37 90.12 91.33 97.37 92.74 91.53 88.50 92.56 ± 0.015

DS-GPLVM with proposed prior 95.86 92.13 94.15 96.87 95.86 91.73 89.61 93.75 ± 0.015

ML-UDSGPLVM without proposed prior 94.32 95.44 95.75 96.02 95.16 94.75 92.75 94.85 ± 0.017

ML-UDSGPLVM with proposed prior 93.30 97.45 96.71 97.63 88.85 96.93 97.66 95.51 ± 0.014

Table 5 Comparison of proposed method with the state-of-the-arts methods on BU3DFE dataset

State-of-the-art-methods Proposed method

GMPCA GMLDA GMLPP GMCCA PW-CCA MCCA MvDA D-GPLVM DS-GPLVM ML-UDSGPLVM

89.64 91.19 92.03 91.91 84.28 89.32 93.48 88.33 92.56 95.51

Table 6 Performance of
ML-UDSGPLVM with and
without proposed prior on
KDEF dataset

Methods Recognition rates (RR) (in %)

− 45◦ 0◦ 45◦ Avg RR

DS-GPLVM 76.08 90.45 78.25 81.59 ± 0.018

ML-UDSGPLVM without proposed prior 79.88 96.44 84.06 86.79 ± 0.027

ML-UDSGPLVM with proposed prior 84.95 97.02 88.12 90.95 ± 0.022

Evaluation is done in terms of average recognition rates and average standard deviation

Table 7 Performance of different methods on combined datasets (BU3DFE+KDEF datasets)

Methods Recognition rates (RR) (in %)

− 45◦ − 30◦ − 15◦ 0◦ 15◦ 30◦ 45◦ Avg RR

DS-GPLVM 90.86 93.23 95.36 93.53 93.66 90.20 86.88 91.96 ± 0.021

ML-UDSGPLVM without proposed prior 94.41 95.42 95.70 96.10 95.16 94.75 92.74 94.89 ± 0.016

ML-UDSGPLVM with proposed prior 94.40 96.75 97.30 96.70 96.10 95.91 94.30 95.92 ± 0.013

Table 8 Comparison of proposed method with deep neural network (DNN)-based approaches. The models are trained and tested on BU3DFE
dataset

Methods Recognition Rate (RR) (in %)

− 45◦ − 30◦ − 15◦ 0◦ 15◦ 30◦ 45◦ Avg RR

DNN-driven feature learning [46] 86.00 87.80 91.20 91.00 88.70 82.60 80.20 86.78 ± 0.022

DBN (2 hidden layers) 76.40 79.60 81.01 82.40 81.80 76.50 70.20 78.28 ± 0.028

CNN (3 convolution layers) 82.54 86.50 89.20 89.40 85.20 81.80 76.60 84.46 ± 0.025

Proposed method 93.30 97.45 96.71 97.63 88.85 96.93 97.66 95.51 ± 0.014
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Cross-data performance comparisons of the proposed
method with the state-of-the-art methods are shown in
Table 9. In this comparative analysis, we trained different
models including our proposed model on BU3DFE dataset
and/or KDEF dataset. Subsequently, on each of the trained
models, testing accuracies for both the dataset taken one at a
time are calculated. It can be observed from Table 9 that in
most of the cases, the performance of the ML-UDSGPLVM
is better than other state-of-the-art models.

5 Conclusion

In this paper, a multi-level framework of uncorrelated dis-
criminative shared Gaussian process latent variable model
ML-UDSGPLVM is proposed to obtain a single nonlinear
uncorrelated discriminative shared manifold. More specifi-
cally, we proposed a novel prior with the help of Laplacian
matrix and the local-between-class-scatter-matrix. The rea-
son behind the use of between-class-separability matrix is
that it can handle the multi-modal characteristics of multi-
view data similar to Laplacian matrix. In our proposed ML-
UDSGPLVM, instead of classifying a test sample directly
on correlated shared space, we transform it to a nonlinear
uncorrelated latent space, and then 1-NN classifier is used.
Also, the proposed approach is multi-level framework—the
expressions are first divided into three basic categories, i.e.,
expressions by only Lip, expressions by Lips–Eyes, and
expressions by Lips–Eyes–Forehead, which are recognized
by first level of ML-UDSGPLVM (1-UDSGPLVM). Sub-
sequently, a separate second level of ML-UDSGPLVM (2-
UDSGPLVM) is learned for each of the sub-classes. So, three
2-UDSGPLVMs have to be learned to reach final classifica-
tion level. Expressions are first classified on 1-UDSGPLVM
manifold, and the corresponding 2-UDSGPLVMmanifold is
used for final level of classification. This multi-level decision
strategy inherently improves the recognition accuracy. The
performance of our proposed ML-DSGPLVM is evaluated
for six basic expressions obtained from seven different poses
(− 45◦, − 30◦, − 15◦, 0◦, 15◦ , 30◦, and 45◦) of BU3DFE
dataset. ML-UDSGPLVM approach gives an average recog-
nition rate of 95.51% with LBP + LPP-based features. So,
our proposed scheme outperforms the state-of-the-art linear
and nonlinear-based multi-view learning techniques.

Computational complexity is one of the major draw-
backs of GPLVM. However, advantage of GPLVM is that
it efficiently models data in a nonlinear low-dimensional
subspace. In our proposed approach, we handle complex-
ity issue of GPLVM for multi-view FER by decomposing
the minimization problem defined in Eq. (23) into number
of sub-problems, and subsequently, conjugate gradient algo-
rithm is used to compute model parameters associated with
each of the sub-problems. This approach makes the problem
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tractable even if the number of views is increased. Computa-
tional complexity of our proposed algorithm can further be
reduced by incorporating sparse approximation to full Gaus-
sian process [54]. This process reduces original complexity
of GPLVM, i.e., O

(
N 3

)
to O

(
k2N

)
, where k is the number

of points retained in the sparse representation. Hence, the
proposed method can be extended to recognize expressions
from many views.
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