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Abstract
Blind motion deblurring is one of the most basic and challenging problems in image processing and computer vision. It aims
to recover a sharp image from its blurred version knowing nothing about the blurring process. Many existing methods use
the maximum a posteriori or expectation maximization framework to tackle this problem, but they cannot handle well the
natural images with high-frequency features. Most recently, deep neural networks have been emerging as a powerful tool for
image deblurring. In this paper, we show that encoder–decoder architecture gives better results for image deblurring tasks.
In addition, we propose a novel end-to-end learning model that refines the generative adversarial network by many novel
strategies to tackle the problem of image deblurring. Experimental results show that our model can capture high-frequency
features well, and achieve the competitive performance.

Keywords Image processing · Blind deblurring · Motion deblurring · Cycle consistency

1 Introduction

With the increasing digital cameras and mobile phones, a
huge amount of high-resolution images are taken every day
[2,8,11,18,51], e.g., the latest Huawei Mate20 series mobile
phones have over 60 megapixels. However, sensor shake is
often inevitable, resulting in undesirable motion blurring.
Although sharp images might be obtained by fixing devices
or taking the images again, in many occasions, however, we
have no chance to fix the devices or take the images again,
for example, in remote sensing [15], video surveillance [44],
medical imaging [14] and some other related fields. There-
fore, how to obtain sharp images from blurred ones has been
noticed by researchers in many fields for many years, but
the problem still cannot be well-solved due to the complex-
ity of the motion blur process and, most importantly, the
high-resolution natural images often have rich details. Most
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existing methods may not produce satisfactory results, as
shown in Fig. 1.

Image deblurring problems are a kind of image degrada-
tion problems, which can be expressed as

I blur = A(I sharp) + n, (1)

where I blur is the given blurred image and I sharp is the sharp
image. A is a degradation function, and n denotes possible
noise. In this work, we shall focus on the cases where the
degradation process is shift invariant; thereby, the generation
process of a blurred image is given by

I blur = I sharp ∗ k + n, (2)

where ∗ denotes 2D convolution and k is the blur kernel. To
obtain the sharp image and the blur kernel simultaneously,
some commonly used approaches are MAP [3,52] and vari-
ational Bayes [9,28]. Lots of methods have been proposed
and explored in the literature. For example, Chan et al. [3]
proposed total variation to regularize the gradients of the
sharp image. Zhang et al. [52] used a sparse coding method
for sharp image recovering. Cai et al. [1] applied sparse rep-
resentation to estimate the sharp image and blur kernel at
the same time. Although these methods obtained moderate
good results, they cannot apply to real applications and most
importantly, cannot handle well high-frequency features.
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Fig. 1 Results on a challenging motion blurred image. From left to
right and top to bottom : blurred image, the result by Pan et al. [35],
the results by Xu et al. [48] and Ours. The results show that our model
distinctly outperforms the two competing methods

To achieve fast image deblurring, it is straightforward to
consider the idea of deep learning that pre-trained network
models by plenty of training examples. Although the training
process is computationally expensive, deep learningmethods
can process testing images very efficiently, as they only need
to pass an image through the learned network. Most existing
deep learning-based methods are built upon the well-known
convolution neural network (CNN) [12,34]. However, CNN
tends to suppress the high-frequency details in images. To
relieve this issue, generative adversarial network (GAN) [10]
is one of the promising choices. Kupyn et al. [25] used a
GAN-based method that used ResBlocks architecture as the
generator. Pan et al. [34] used aGAN-basedmethod to extract
intrinsic physical features in images.

In this paper, we proposed a cycle GAN-based method
for image deblurring. Specifically, we utilize an encoder–
decoder network as a generator and a classification network
for the discriminator. It uses a cycle-consistent training strat-
egy that requires training two different generators (one for
blurring a sharp image and the other one for sharpening a
blurred image) and two discriminators (one for classifying
the blurred images and the other for sharp). Besides, we pro-
posed a novel loss function. For cycle loss, which aims to
make the reconstructed images and the input images as close
as possible under some measurements, there are some clas-
sical choices for evaluation, L1 loss, mean square loss, least
square loss and perceptual loss.

By some comparison experiments, we demonstrated that
perceptual loss can capture high-frequency features in image
deblurring. So perceptual loss is used for evaluation in
all experiments. Then, we show that U-net-based architec-

ture with L2 norm and perceptual objective performs better
in image deblurring problem. Besides, we found that dur-
ing training, using unpaired images with cycle consistency
training strategy can improve the performance in image
deblurring tasks. In summary, our contributions of this paper
are as follows:

1. A novel cycle GAN-based architecture is presented for
image deblurring.

2. We proposed a new loss function in our architecture.
3. A novel training strategy is proposed to tackle the image

deblurring problem.

2 Related works

Image deblurring is a classical problem in image processing
and computer vision. We can divide it into learning-based
methods and learning-free methods.

In learning-free methods, most existing works suppose
that blur is shift invariant and caused by motion [4,21,29],
which can be treated as a deconvolution problem [22,29,46,
53]. There are many ways to solve this; Liu et al. [29] used
Bayesian estimation, that is,

p(I sharp, k|I blur) ∝ P(I blur|I sharp, k)P(I sharp)P(k). (3)

One commonly used deblurring method is the maximum a
posteriori (MAP) framework, where the latent sharp image
I sharp and the blur kernel k can be obtained by [7],

arg max
I sharp,k

P(I blur|I sharp, k)P(I sharp)P(k). (4)

Chan et al. [3] used a robust total variation minimization
method which is effective for regularizing the edge of the
sharp images. Zhang et al. [52] used a sparse coding method
for sharp image recovering, which assumed that the natural
image patch can be sparsely represented by an over-complete
dictionary. Cai et al. [1] applied sparse representation to esti-
mate sharp image and blur kernel at the same time. Krishnan
et al. [23] found that the minimum of their loss function in
many existingmethods does not correspond to their real sharp
images, so they used a normalized sparsity prior to tackle this
problem. Michaeli et al. [31] found that multi-scale proper-
ties can also be used for blind deblurring problems, and they
regard self-similarity as an image prior. Ren et al. [38] used
a low rank prior for both raw pixels and their gradients.

Another common approach to estimate motion blur pro-
cess is to maximize the marginal distribution:

p(k, I blur) =
∫

p(k, I sharp|I blur)d I sharp

=
∫

p(I blur|k)p(k)d I sharp. (5)
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Fig. 2 Network architecture with cycle-consistent training strategy, including two cycle generators and two discriminators

Fergus et al. [9] proposed a motion deblurring method
based on variational Bayes. Levin et al. [28] used an
expectation–maximization (EM) method to estimate blur
process. These two approaches have some drawbacks: it is
hard to optimize, time-consuming and cannot handle high-
frequency features well.

Learning-based methods use deep learning techniques,
which aim to find intrinsic features through the learning
process by themselves. Deep learning [27] has boosted the
research in related fields such as image recognition [24]
and image segmentation [13]. For deblurring problems using
deep learning techniques, [25] trained a CNN architecture to
learn the mapping function from blurred images to sharp
ones. [34] used a CNN architecture with a physics-based
image prior to learn the mapping function.

One of the novel deep learning techniques is generative
adversarial networks, usually known as GANs, introduced
by Goodfellow et al. [10], inspired by the zero-sum game in
game theory proposed byNash et al. [33],which has achieved
many exciting results in image in-painting [50], style transfer
[16,17,54], and it can even be used in other fields such as
material science [40]. The system includes a generator and
a discriminator. The generator tries to capture the latent real
data distribution, and output a new data sampled from the real
data distribution, while discriminator tries to discriminate
whether the input data are from real data distribution or not.
Both the generator and the discriminator can be built based
on convolutional neural networks [27], and trained based on
the above ideas.

Instead of input a random noise in origin generative adver-
sarial nets [10], conditional GAN [6] inputs random noise

with discrete labels or even images [16]. Zhu et al. [54] take
a step further, using conditional GAN with unlabeled data,
which gives more realistic images in style transfer tasks.
Inspired by this idea, Isola et al. [16] proposed one of the
first image deblurring models based on generative adversar-
ial nets [10].

While numerous learning-based methods have been pro-
posed, most of the works need paired training data [25,32],
which is hard to collect in practice, and strong supervision
of these methods may cause over-fitting.

3 Proposedmethod

The goal of blind image deblurring is to recover the sharp
images given only the blurred images, with no information
about the blurring process.We introduce aGAN-basedmodel
with a novel objective and training strategy to tackle this
problem. The whole model architecture is shown in Fig. 2.

3.1 Model architecture

For discriminator architecture, we use slightly modified
versionofPatchGANarchitecture [16], and themodel param-
eters are shown in Table 1. Instead of classifying the whole
image as sharp or not sharp, PatchGAN-based discriminator
tries to classify each image patch from the whole images,
which gives better results in image deblurring problems.
Experiments show that PatchGAN-based architecture can
achieve good results if the image patches are a quarter size
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Table 1 Model parameters of
discriminators

Layer Type Input shape Output shape Params

1 Input (None, 256, 256, 3) (None, 256, 256, 3) 0

2 conv2d (None, 256, 256, 3) (None, 128, 128, 64) 3136

3 conv2d (None, 128, 128, 64) (None, 64, 64, 128) 131,200

4 conv2d (None, 64, 64, 128) (None, 32, 32, 256) 524,544

5 conv2d (None, 32, 32, 256) (None, 16, 16, 512) 2,097,664

6 conv2d (None, 16, 16, 512) (None, 16, 16, 1) 8193

Each convolution layer is activated with leaky ReLU (α = 0.2) and normalized with instance normalization
except the first layer

Fig. 3 Generator network built in this work. We use encoder–decoder network architecture with skip connection and cycle consistency objective
training strategy, which gives comparative results in image deblurring tasks

of the input images [16]; so in the work, we choose image
patch = 70 × 70 in all experiments.

As the sharp images and corresponding blurred images are
similar in pixel values, it is efficient to distinguish whether
the input is from blur domain or sharp domain separately, so
we build two discriminators as shown in Table 1. We also
report quantitative results (see in Sect. 4—Experiments for
more detail).

For generator, Ronneberger et al. [39] used encoder–
decoder architecture and Kupyn et al. [25] used ResBlock
architecture for image deblurring. The generator architec-
ture is shown in Fig. 3. Hereby, the network only consists
of convolution and transpose convolution with instance nor-
malization. For the convolution layer, we apply leaky ReLU
activation. For the transpose convolution layer, we apply
ReLU activation. In the encoder part, each block consists of
a downsampling convolution layer, which halves the height
and width with stride 2 and doubles the number of chan-
nels [H ,W ,C] → [H/2,W/2,C × 2]. In the decoder part,
each block inverts the effect of downsampling [H ,W ,C] →
[H × 2,W × 2,C/2]. We use filter size of 4 × 4 in all con-
volution and deconvolution blocks.

3.2 Training

Our goal is to learn the mapping function between blur
domain B and sharp domain S given samples {bluri }Mi=1]
where bluri ∈ B and

{
sharp j

}N
j=1

where sharp j ∈ S. A
combination of the following losses is used as objectives:

L(DA, DB,GB2S,GS2B) = Ladv + αLcycle, (6)

whereL,Ladv,Lcycle, α is the total loss function, adversarial
loss, cycle loss and their parameters, respectively. The adver-
sarial loss tries to ensure the deblurred images as realistic as
possible; cycle loss tries to ensure that the deblurred images
can transfer back to the blur domain, which can also make
the deblurred images as realistic as possible.

For the two mapping functions GS2B : I sharp →
I blur,GB2S : I blur → I sharp aims to transfer the sharp
images to the blur domain and transfer the blurred images
to the sharp domain, respectively. The adversarial loss is as
follows:

Ladv = Ladv1 + Ladv2, (7)

where

Ladv1 = EI blur∼pdata(I blur)[log DA(GB2S(I
blur))], (8)
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Ladv2 = EI sharp∼pdata(I sharp)[log(1 − DB(GS2B(I sharp)))],
(9)

where the two discriminators DA, DB tries to distinguish
whether the input images are blur or not, sharp or not,
respectively. Generators GS2B and GB2S try to fool the dis-
criminators and generate the images from specific domain as
realistic as possible.

Isola et al. [16] and Zhu et al. [54] showed that least square
loss [30] can perform better than mean square loss in style
transfer task, and Kupyn et al. [25] used least square loss [30]
for image deblurring tasks. So far, we do not know which
loss objective performs better in image deblurring problems,
mean square loss or least square loss [30];we have done some
experiments, see in Sect. 4—Experiments for more detail.

For cycle loss, which aims to make the reconstructed
images and the input images as close as possible under some
measurements, there are two classical choices for evaluation,
L1 loss or mean square loss, least square loss [30] or percep-
tual loss [17]. The experiments show that perceptual loss [17]
can capture high-frequency features in image deblurring task,
which gives more texture and details. So perceptual loss is
used in all experiments. Cycle loss is as follows:

Lcycle = Lcycle1 + Lcycle2, (10)

where

Lcycle1 = 1

N (i, j)M (i, j)

N (i, j)∑
x=1

M(i, j)∑
y=1

(σi, j (I
sharp)x,y − σi, j (GB2S(I

blur))x,y)
2,

(11)

Lcycle2 = 1

N (i, j)M (i, j)

=
N (i, j)∑
x=1

M(i, j)∑
y=1

(σi, j (I
blur)x,y − σi, j (GS2B(I sharp))x,y)

2,

(12)

where σi, j is the featuremapwhich obtains from the i-thmax
pooling layer after the j-th convolution layer from VGG-19
network, and N (i, j), M (i, j) are the dimensions of the corre-
sponding feature map; the perceptual loss can capture high
level intrinsic features which has been proved to work well

in image deblurring [25], and some other image processing
task [16,54].

So in summary,we aim to optimize the following objective
function:

G∗
B2S = arg max

DA,DB
min

GB2S ,GS2B
L(DA, DB,GB2S,GS2B)

(13)

We train the network with a batch size of 2, and give 100
epochs over the training data. The reconstructed images are
regularized with cycle-consistent objective with a strength of
10. No dropout technique is used since the model does not
overfit within 100 epochs.

For the optimization procedure, we perform ten steps on
GS2B and GB2S , and then one step on DA and DB . We use
Adam [19] optimizer with a learning rate of 2× 10−3 in the
first 80 epochs, and then linearly decay the learning rate to
zero in the following epochs to ensure the convergence. The
whole training process is shown in Fig. 2.

The key point is to train the model in one scene for given
epochs, and then move to another scene. When the input is
from the blur domain, the starting point and the cycle training
process are the left-hand side. When the input is from the
sharp domain, the starting point and cycle training process
are the right-hand side. Notice that we just have one model
during training; for different input from a different domain,
the starting point of the model can be a little different.

4 Experiments

We implement our model with Keras [5] library. All the
experiments are performed on a workstation with NVIDIA
Tesla K80 GPU.

4.1 Network analysis

Cycle consistency Cycle consistency ensures that the
deblurred images can transfer to the blur domain, and blur
images can transfer back to the sharp domain, which can
make sure that our model learns what is “blur” mean, and
give more realistic results. We report a quantitative result in
Table 2 to demonstrate the advantage of using cycle consis-
tency.

Table 2 A quantitative
evaluation on the effectiveness
of cycle consistency

Methods PSNR SSIM MS-SSIM IFC VIF NIQE

Ours (without cycle) 22.74 0.77 0.85 3.78 0.82 4.96

Ours (with cycle) 24.60 0.83 0.90 4.24 0.91 5.23
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Table 3 A quantitative
evaluation on the effectiveness
of two discriminators

Methods PSNR SSIM MS-SSIM IFC VIF NIQE

Ours (1 discriminator) 21.51 0.80 0.86 3.56 0.79 5.22

Ours (2 discriminators) 24.60 0.83 0.90 4.24 0.91 5.23

Table 4 Model parameters of
generators

Layer Type Input shape Output shape Params

1 Input (None, 256, 256, 3) (None, 256, 256, 3) 0

2 conv2d (None, 256, 256, 3) (None, 128, 128, 32) 1568

3 conv2d (None, 128, 128, 32) (None, 64, 64, 64) 32,832

4 conv2d (None, 64, 64, 64) (None, 32, 32, 128) 131,200

5 conv2d (None, 32, 32, 128) (None, 16, 16, 256) 524,544

6 conv2d (None, 16, 16, 256) (None, 32, 32, 128) 524,416

7 concat (None, 32, 32, 128) (None, 32, 32, 128) 0

8 conv2d (None, 32, 32, 128) (None, 64, 64, 64) 262,208

9 concat (None, 64, 64, 64) (None, 64, 64, 64) 0

10 conv2d (None, 64, 64, 64) (None, 128, 128, 32) 65,568

11 concat (None, 128, 128, 32) (None, 128, 128, 32) 0

12 conv2d (None, 128, 128, 32) (None, 256, 256, 3) 3075

Every convolution layer is activated with leaky ReLU layer(α = 0.2) and normalized with instance normal-
ization. Each deconvolution layer is activate with ReLU and normalized with instance normalization

Table 5 Comparisons of our
model with other four methods
on the five images shown in
Fig. 4

Results Methods PSNR SSIM MS-SSIM IFC VIF NIQE

img1 Pan et al. [37] 19.50 0.80 0.98 0.22 0.25 29.45

Pan et al. [35] 18.55 0.77 0.97 0.19 0.30 28.10

Xu et al. [48] 19.29 0.80 0.97 0.27 0.44 25.57

Kupyn et al. [25] 25.98 0.89 0.99 0.67 0.67 26.38

Ours 26.56 0.91 0.99 0.77 0.66 28.86

img2 Pan et al. [37] 18.62 0.72 0.95 0.24 0.33 25.93

Pan et al. [35] 18.60 0.71 0.93 0.40 0.54 25.29

Xu et al. [48] 21.08 0.80 0.96 0.65 0.54 25.29

Kupyn et al. [25] 24.76 0.87 0.97 1.03 0.64 23.56

Ours 27.11 0.90 0.97 1.51 0.90 25.42

img3 Pan et al. [37] 17.27 0.60 0.96 0.24 0.16 20.20

Pan et al. [35] 16.19 0.56 0.96 0.30 0.22 21.80

Xu et al. [48] 17.25 0.56 0.97 0.42 0.26 22.43

Kupyn et al. [25] 13.16 0.67 0.96 0.94 0.33 19.27

Ours 19.45 0.69 0.98 0.95 0.38 21.06

img4 Pan et al. [37] 16.51 0.66 0.96 0.20 0.36 27.05

Pan et al. [35] 14.16 0.57 0.93 0.22 0.54 25.15

Xu et al. [48] 19.31 0.73 0.97 0.29 0.49 26.37

Kupyn et al. [25] 19.65 0.74 0.97 0.27 0.41 27.71

Ours 21.94 0.82 0.98 0.76 0.74 23.76

img5 Pan et al. [37] 19.25 0.82 0.97 0.25 0.22 28.03

Pan et al. [35] 18.54 0.80 0.96 0.23 0.26 28.91

Xu et al. [48] 19.48 0.83 0.97 0.37 0.33 27.12

Kupyn et al. [25] 19.69 0.82 0.74 0.58 0.45 23.09

Ours 25.26 0.93 0.98 1.36 0.67 25.94

Bold value indicates that the according methods achieve the state-of-the-art performance comparing with the
other methods
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Fig. 4 Some visual comparison results of our model and other four approaches. From left to right: blurred images, the results by Pan et al. [37],
Pan et. al. [35], Xu et al. [48], Kupyn et al. [25] and the results produced by the proposed method

Skip connections Skip connection is widely used to combine
the different levels of information which can also benefit
back propagation. Inspired byRonneberger et al. [39] and the
success of skip connections, we use U-net-based architecture
with skip connections as shown in Fig. 3.

Motion blur generation For motion blur generation, Kupyn
et al. [25] proposed a method which can generate realistic
random motion trajectory. We use this method to generate
blur kernels to blur images.

Architecture selection We do some experiments in Table 3
to demonstrate the effectiveness of using two discriminators.
The results show that using two discriminators can signifi-
cantly improve performance.

We also do some experiments to find the optimal choice
for generator and training objectives in Table 4. The results
show that for image deblurring task, the optimal choice for
generator architecture is U-net-based architecture, and the
optimal evaluation for optimization objective is a least square
loss. The generator architectures are shown in Fig. 3 and
Table 4

4.2 Results analysis

4.2.1 GoPRO dataset

The proposed GoPRO dataset consists of 21,000 images,
including 11,000 blurred images and 10,000 sharp images.
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Table 6 Quantitative
evaluations for our model in
GoPRO dataset using different
evaluations

Methods PSNR SSIM MS-SSIM IFC VIF NIQE

Pan et al. [37] 18.70 0.77 0.94 0.23 0.23 25.92

Pan et al. [35] 17.92 0.73 0.95 0.28 0.36 26.05

Xu et al. [48] 19.29 0.73 0.97 0.44 0.42 24.13

Kupyn et al. [25] 20.91 0.82 0.91 0.65 0.50 23.07

Ours 24.29 0.86 0.95 1.14 0.66 25.20

Bold value indicates that the according methods achieve the state-of-the-art performance comparing with the
other methods

Table 7 Quantitative evaluations of three methods in terms of PSNR
and SSIM on the Kohler et al. [20] dataset

Methods PSNR SSIM

Nah et al. [32] 29.00 0.91

Tofighi et al. [45] 25.67 0.88

Ours 26.13 0.90

We use 20,000 images for training, and 1000 images for test-
ing.

For image evaluation, most of the works used full refer-
ence measurements PSNR and SSIM in all their experiments
[34–37]. Tofighi et al. [45] used SNR and ISNR for evalua-
tion. For other image assessments, VIF [41] captures wavelet
features which focus on high-frequency features, and IFC
[42] puts more weights on edge features. Lai et al. [26]
pointed out that the full reference image assessments VIF
and IFC are better than PSNR and SSIM.

For the fair comparison, we choose different learning-
free methods proposed by Pan et al. [37], Pan et al. [35]
and learning-based methods proposed by Xu et al. [48] and
Kupyn et al. [25].

Some result examples are shown in Table 5 and Fig. 4. All
the salient regions are pointed out in each image. We also
report the quantitative results of average evaluations on this
dataset in Table 6. We observe that our method outperforms
many competitive methods in PSNR, SSIM, MS-SSIM, IFC
and VIF. We also observe that our methods recovered more
textures, sharp edges, background and fewer artifacts.

4.2.2 Kőhler dataset

This dataset consists of four ground-truth images and 12
blurry images for each of them. These blurs are caused by
replaying recorded 6D camera motion. We report the quan-
titative results on this dataset comparing with Tofighi et al.
[45] in Table 7. From this table, we can see that our method
performs better than Tofighi et al. [45].

Table 8 Quantitative
evaluations for our model in
dataset of Sun et al. [43]

Methods PSNR

Xu et al. [49] 28.01

Ours 26.79

Table 9 Quantitative evaluations for our model in dataset of
Wieschollek et al. [47]

Methods SSIM

Wieschollek et al. [47] 0.86

Ours 0.72

4.2.3 Dataset of Sun et al.

This dataset consists of 640 images generated from80 natural
images and eight blur kernels. We add 1% Gaussian noise
as done in Xu et al. [49]. We report the quantitative results
on this dataset comparing with Xu et al. [49] in terms of
average PSNR in Table 8. The method proposed by Xu et al.
[49] suppresses extraneous textures andmeanwhile enhances
salient edges during training, which gives better results in
PSNR performance.

4.2.4 Dataset of Wieschollek et al.

In the method of Wieschollek et al. [47], the authors use
a 720p high-resolution video from Youtube to generate the
dataset. For a fair comparison, here we report the quantitative
results on this dataset comparing with Wieschollek et al. in
Table 9. Themethod proposed byWieschollek et al. [47] used
recurrent neural network architecture withmulti-scale paired
input, which can achieve state-of-the-art performance when
dealing with video blurring and burst blurring problems.

5 Conclusions

In this paper, we provide an unsupervised method for blind
motion deblurring problem. We build the network with a
cycle training strategy. We use two discriminators to distin-
guishwhether the input is blur or not, sharp or not, separately,

123



Blind motion deblurring with cycle generative adversarial networks 1599

Table 10 Performance of
different generator architectures
dealing with deblurring problem
in GoPRO dataset

Methods PSNR SSIM MS-SSIM IFC VIF NIQE

Ours (Resblock based + L1) 18.16 0.73 0.81 3.00 0.80 4.24

Ours (Resblock based + L2) 23.48 0.80 0.88 3.88 0.85 5.01

Ours (U-net based + L1) 21.32 0.76 0.88 3.17 0.84 5.60

Ours (U-net based + L2) 24.60 0.83 0.90 4.24 0.91 5.23

We evaluate on different full reference and non-reference evaluations. The results show that U-net based +
L2 architecture performs better than the other choices
Bold value indicates that the according methods achieve the state-of-the-art performance comparing with the
other methods

which can perform better in image deblurring tasks.We show
that encoder–decoder-based architecture gives better results.
For optimization objective, least square loss performs better
than mean square loss.

During training, the experiments show that this model
can deal with image deblurring task well without giving
any domain-specific knowledge. It can recover more high-
frequency textures and details, which not only outperform
many competitive methods in many different image qual-
ity assessments but also in human visualization evaluation
(Table 10).

We show that the key point is to train the model in one
scene for given epochs, and then move to another scene,
which can ensure that the model learns exactly what “blur”
and “sharp” mean.

We also show that our model can handle blur caused by
motion or camera shake; the recovered image has fewer
artifacts compared to many existing methods. We conduct
extensive experiments on three other datasets and report
quantitative results.
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