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Abstract
Salient object detection is a challenging task, and several methods have been proposed for the same in the literature. The
problem lies in that most of the methods perform good on a particular set of images but fail when exposed to a variety of
different set of images. Here, we address this problem by proposing a novel framework called saliency bagging for detecting
salient object(s) in digital images across a variety of images in a robust manner. The proposed framework generates the
saliency map of an image in three phases: (i) Selection of existing saliency detection models and generation of initial saliency
maps (ii) Generation of integrated binary map from the initial saliency maps by applying adaptive thresholding and majority
voting (iii) Computation of final saliency map using integrated binary map and initial saliency maps by applying proposed
integration logic. Extensive experiments on six publicly available datasets viz.MSRA10K,DUT-OMRON,ECSSD, PASCAL-
S, SED2, and THUR15K have been performed to determine the effectiveness of the proposed method. The performance of
the proposed method is measured in terms of Precision, Recall, F-Measure, Mean Absolute Error (MAE) and Receiver
Operating Characteristic (ROC) curve and compared with 25 state-of-the-art methods including 17 classic best-performing
methods of the last decade, five existing selected, and three aggregation saliency methods. The proposed method outperforms
all the compared classic and existing selected methods in terms of Precision, F-Measure, and MAE, while it is comparable
to the best-performing methods in terms of Recall and ROC curve across all the six datasets. The proposed framework is
computationally very fast than all compared aggregation methods, while performance is almost same on all datasets that
support its superiority.
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1 Introduction

Human visual system (HSV) has the ability to orientate
rapidly toward the most salient objects with selective visual
attention, which allows humans to semantically understand
a visual input quickly and efficiently [18]. This selective
visual attention has been intensively analyzed in psychol-
ogy, neuroscience, and computer vision. In computer vision,
there are several methods, for simulating the selective visual
attention, which highlight salient object(s) in an image.
Nowadays, saliency detection is widely applied to a variety
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of computer vision applications including image segmenta-
tion [10], objection recognition [45], image quality assess-
ment [41], image editing and manipulating [9], information
discovery [34], visual tracking [48], content-based image
retrieval [6], etc.

Saliency detection methods can be roughly categorized
as either bottom-up or top-down approaches. The bottom-up
methods [1,8,14,19,20,22,24,29,33,37,42,46,52,55,57,60] are
data-driven which usually use low-level visual features like
intensity, orientation, or pattern from pixels or regions. These
methods do not require training task so that they efficiently
perform, while they are sensitive to noise regions due to data-
driven characteristics. The contrast prior is one of the most
applied principles in bottom-up methods. Based on the sur-
roundings of contrast prior, these methods often categorized
into local [19,24] and global [8] contrast prior methods. The
local contrast effectively highlights boundaries (e.g., edges
and texture) of the objectwhile neglects to highlight the entire
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Fig. 1 Examples of saliency aggregation where saliency maps from the
state-of-the-art methods do not show similar detection characteristics
on variety of input images. From left to right, there are input images,
the state-of-the-art methods, e.g., GMR [55], MC [20], DSR [30],

DRFI [21], and RBD [21], our proposed saliency bagging framework,
and ground truth (GT). Examples are selected from different datasets,
e.g., THUR15K [7], MSRA10K [8], ECSSD [54], and SED2 [2]
datasets

object. However, global contrast identifies the whole object
but fail to keep the inner informationof the object. To improve
saliency detection performance, some methods jointly con-
sider local and global contrast priors [36]. Furthermore, some
bottom-upmethods explore visual features, such as boundary
prior [46], and central bias [60]. Recently, label propagation-
based methods [20,55] have drawn more attention. Initially,
seeds are picked based on some prior information and
then, labels are propagated from seeds to other nodes in a
graph. If the object appears on the image boundary, then
these methods inaccurately identify the object. In contrast,
top-downmethods [13,16,17,21,23,39,47,54,56,59] are task-
driven which require high-level information and learning
mechanisms. These methods require training task which
needs data collection, and hence it is complex and not effi-
cient to implement. These methods are difficult to generalize
due to task-driven characteristics. Lately, deep learningmeth-
ods [15,26,27,31,51,61] have been widely and effectively
applied for salient object detection.

Despite the development of several effective methods,
none could show superiority than others for a variety of input
images. Therefore, the saliency map computed using these
state-of-the-art saliency detectionmethods is not reliable due
to their performance dependence on individual images. As
depicted in Fig.1 that individual state-of-the-art method per-
forms better at some images or some part of the image instead
of performing well on all images. To address this problem,
saliency aggregation has drawn rich attention recently. The
saliency aggregation methods [4,25,38,43,53] incorporate
several existing saliency maps according to diverse mech-
anisms. Accordingly, the saliency aggregation result can be
superior to each selected existing methods that investigated
in [4].

Consequently, the saliency aggregation is proposed to
acquire the superiority of several existing saliency methods
and alleviate the misleads of individual methods to improve
the quality and robustness of the saliency map across a vari-
ety of images. Here, we propose a novel framework called
saliency bagging in which multiple existing saliency detec-
tion methods are exploited to enhance the quality of the
saliencymap. Themain contribution of the proposed research
work is threefold:

1. A novel, simple, and efficient framework called saliency
bagging is proposedwhich effectively incorporates advan-
tages of selected saliency methods to improve the quality
of saliency maps.

2. A novel integration logic is proposed to combine individ-
ual saliencymaps into a final saliencymapwhich chooses
saliency value among individual saliency values for an
image pixel based on the category of the pixel.

3. Extensive experimental evaluation is conducted with 25
different methods including 17 classic best-performing
methods of the last decade, five existing selected, and
three aggregation methods to verify the superiority of the
proposed framework. The experimental results demon-
strate that the proposed framework is better performs and
robust across a variety of images. In addition, it is also
computationally more effective than compared aggrega-
tion methods.

The rest of the paper is organized as follows. Section 2
presents relatedwork and state-of-the-artmethods in saliency
detection. In Sect. 3, the proposedmodel is discussed in detail
along with the step-wise procedure. Experimental results are
demonstrated in Sect. 4, while Conclusion and Future Work
are given in Sect. 5.
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2 Related work

An extremely ample set of saliency detection methods have
been investigated and obtained admirable performance for
detecting salient objects in images over the last few years.
Here, we broadly divide these methods into four classes
according to their approaches used:

2.1 Bottom-upmethods

Bottom-up methods are usually based on low-level visual
attributes (e.g., color, orientation, and intensity) and prior
knowledge (e.g., contrast, uniqueness, compactness, and
boundary). Biologically motivated first computational
saliencymethodwas introduced by Itti et al. [19]. Themethod
extracted center-surround contrast at multiscale with differ-
ent features tomeasure the saliency. In [14], graph hypothesis
is used to measure activation maps from the raw features.
After that, Achanta et al. [1] proposed a simple model based
on center-surround contrast that computes saliency of each
pixel as the absolute difference between the mean pixel value
of the image and blurred image pixel value. Perazzi et al. [42]
decomposed an image into suitable elements that reduce
unwanted details andmeasures rarity and distribution of each
element in the form of contrast. They assign saliency value
to each pixel from element contrast. Klein and Frintrop [24]
formulated saliency computation in an information-theoretic
way using Kullback–Leibler-Divergence (KLD). Cheng et
al. [8] measured saliency via histogram-based contrast and
region-based contrast using global knowledge. Uniqueness-,
focusness-, and objectness (UFO)-based saliency computa-
tion is presented in [22]. Seo and Milanfar [46] computed
local regression kernels, and then saliency is determined
using self-resemblance measure (SeR). Zhang et al. [60]
proposed a method in which rarity was measured using self-
information of local visual cues derived from a Bayesian
framework (SUN). Background priors used with geodesic
distance to compute saliency in [52]. Yang et al. [55]
suggested a graph-basedmanifold ranking (GMR)with back-
ground and foreground seeds to compute saliency values.
Alternatively, saliency can be measured in terms of absorbed
time, which is estimated in the absorbing Markov chain
(MC) [20]. Lu et al. [37] proposed multi-graph-based rank-
ings to measure the coarser saliency map and further refine
the coarser saliency map. Li et al. [29] determined saliency
by aggregating various low-level visual features. Yuan et
al. [57] proposed saliency detection model that exploits a
robust boundary prior to estimating the saliency. Further, reg-
ularized random walk ranking (RRWR) is applied on prior
saliency estimation to generate saliency maps. Foreground-
center-background (FCB)-based saliency model is proposed
by Guang-Hai et al. [33] in which three saliency measures

viz. foreground, center, and background are computed and
then combined to generate final saliency map.

2.2 Top-downmethods

Top-down methods use high-level knowledge and super-
vised learning approach for certain objects. Kanan et al. [23]
proposed appearance-based saliency detection method that
computed saliency in a Bayesian framework. Goferman et
al. [13] proposed the context-aware (CA) saliency method
which identifies salient object along with surrounding con-
text via four principles namely local low-level features,
global considerations, visual organization rules, and high-
level information. Margolin et al. [39] proposed method
to determine distinctive pattern for saliency computation
(PCA). Hou and Zhang [16] converted an image into fre-
quency domain and extract the spectral residual (SR) to
compute saliency. Jiang et al. [21] suggested discriminatively
features integration method (DRFI) to measure saliency
values. Yan et al. [54] suggested a saliency model which
addresses the scaling problem by a hierarchical framework
(HSD) that combines significant information from three
image layers at different scales, while this work extended
on CSSD [47]. Zhang et al. [59] introduced saliency compu-
tationmethod based on theminimumbarrier distance (MBD)
transform. Yang et al. [56] measured saliency which jointly
learns a conditional random field (CRF) and a visual dic-
tionary. Yuang et al. [17] proposed saliency method which
jointly considering object proposals and multiple instances
learning (MIL) for saliency measure (MILPS).

2.3 Deep learningmethods

Recently, many deep learning methods have been developed
to saliency analysis and obtained good state-of-the-art per-
formance. However, these methods required an extremely
rich set of training data and a huge amount of computa-
tion time for deriving suitable network parameters (i.e., a
set of learnable parameters). Hence, such methods may be
not applicable to the real-time application and degrade per-
formance on unseen visual data. Li and Yu [27] proposed a
method which measures saliency using multiscale features
computed by convolutional neural networks (CNNs). He et
al. [15] suggested superpixel-based CNN that learns the hier-
archical contrast features and keeps contextual information
to generate a saliencymap. Amulti-context deep CNN archi-
tecture jointly considered the global and local context to
compute saliency values [61]. Li et al. [31] introduced a fully
convolutional neural network (FCCN) which encode priors
knowledge and constitute multi-task learning to explore the
inner correlation between saliency detection and semantic
image segmentation. Salient instance segmentation approach
which generates a saliency map according to a distinct object
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instance in an input image [26]. Wang et al. [51] proposed
saliency computation based on recurrent fully convolutional
networks (RFCNs). The network incorporates visual priors
in a more appropriate manner. The recurrent framework has
the ability to automatically learn enriching saliency values
by iteratively adjusting its previous errors.

2.4 Saliency aggregationmethods

Existing saliency detection method varies on a variety of
images (e.g., complex structure, boundary touching, small
object, larger object, multiple objects, etc). In order to cap-
ture advantage of the superiority of each existing saliency
method,many researchers havedeveloped the saliency aggre-
gation mechanism that suitably combined these methods
in such a way to enhance performance universally on any
kind of images. Borji et al. [4] suggested aggregation
approaches based on statistical information and linear sum-
mation with three combination functions. Mai et al. [38]
introduced three data-driven saliency aggregationmethods to
combine outcomes of individual existing saliency methods
which enhance performance compared to individual existing
saliency methods. Le et al. [25] suggested various unsuper-
vised and supervised saliency aggregation methods and they
observed that the simple average of the saliency maps gen-
erated by two best methods. Qin et al. [43] suggested an
aggregation method named cuboid cellular automata (CCA)
to incorporate various saliency maps generated by exiting
saliency methods. Recently, Xu et al. [53] proposed an arbi-
trator model (AM) to integrate various existing saliency
methods. The method derived a reference map on jointly
considering the majority voting on multiple existing saliency
methods and external knowledge. Afterward, the method
learns the expertise of existing saliency methods. Lastly, a
novel integration framework is employed based on Bayesian
inference to integrate the existing saliency methods of vary-
ing expertise and the reference map.

3 Saliency bagging: proposed framework

Bagging [5] is a kind of ensemble learning approach that
improves machine learning outcome by aggregating several
models. In this approach, various learner models are required
to apply on data set to generate various outcomes. These
outcomes are integrated together to generate a better out-
come than any of the single learner outcome. The integration
task is defined in two different ways: the first way is aver-
age outcomes generated by various learners if the outcomes
of various learners contain numerical values. The second
way is majority voting on outcomes generated by various
learners if the outcomes of various learners contain class
labels. The learner models are independently produced error.

Hence, the integration task reduces the individual error of
each learner model and evolves a better learner. Here, we
propose a novel framework for salient object detection called
saliency bagging which exploits the concept of bagging. In
this framework, various existing saliency detection models
are exploited to generate a saliency map which is robust
than several other existing models. The proposed framework
entails three main steps:

Step 1 Selection of existing salient object detection models
and generation of initial saliency maps

Step 2 Generation of integrated binary map using initial
saliency maps as obtained in step 1

Step 3 Generation of final saliency map using integration
logic

A schematic representation of the proposed framework
is shown in Fig. 2. In the proposed framework, first initial
saliency maps are obtained using existing saliency detec-
tionmodels. Next, binary maps corresponding to these initial
saliency maps are derived by applying adaptive thresholding
as discussed later. Afterward, these binary maps are com-
bined using majority voting to get the integrated binary map.
The integrated binary map labels the image pixels in a better
way in comparison with each individual binary map due to
bagging. Based on the pixel labels of the integrated binary
map, final saliency map is generated by applying integra-
tion logic in which the foreground pixels and background
pixels are assigned the highest and the lowest saliency val-
ues, respectively, as available from the set of initial saliency
maps.

3.1 Selection of existing saliency detectionmodels
and generation of initial saliencymaps

The performance of the proposed saliency bagging frame-
work depends on the selection of existing saliency detection
models. Hence, the selection mechanism to select existing
saliency detectionmodels plays an important role here. Thus,
the selection mechanism must choose those models which
perform effectively on various categories of images. There-
fore, we require a common environment to determine the
performance of the existing saliency detectionmodels on var-
ious datasets. One such study has been carried out by Borji
et al. [3] in which several salient object detection models
have been compared under the same environment. The per-
formance of these methods has been measured in terms of
Precision, Recall, F-measure, Area under the curve (AUC),
and receiver operating characteristic (ROC), etc.Basedon the
benchmark given by Borji et al. [3], we have selected some
existing saliency detection models whose performance is
best individually in each of the above-mentioned five perfor-
mance measures. The objective of the proposed framework
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Fig. 2 Schematic representation of proposed framework

is to retain the advantages and suppress the disadvantages
of existing saliency detection models. Hence, the proposed
model incorporates various effective existing saliency detec-
tionmodelswith ensemble learningmechanism, i.e., bagging
to improve the quality of the saliency map. Now, we briefly
introduce the selected existing saliency detection models
which are used to generate the initial saliency maps as fol-
lows.

3.1.1 Graph-based manifold ranking (GMR) model

Yang et al. [55] proposed a saliency model that estimates the
saliency of each image element (superpixel) as its ranking
score. The model represents the input image as a graph G =
(V , E), where V is the set of nodes which illustrate elements
of the image and E represents the set of edges between any
pair of nodes i and j . The weight wi j between nodes i and
j is computed as follows:

wi j = e−‖ci−c j‖
σ2 i, j ∈ V (1)

where ci and c j is the mean color of corresponding nodes
and σ is a constant to regulate the strength of the weight. The
objective of the manifold ranking is to estimate rank fi of
each node in the graph with respect to yi and optimal ranking
is computed as follows [55]:

f∗ = argmin
f

1

2

⎛
⎝

n∑
i, j=1

wi j

∥∥∥∥∥
fi√
dii

− f j√
d j j

∥∥∥∥∥
2

+μ

n∑
i=1

‖fi − yi‖2
)

(2)

where dii = ∑
j wi j , μ control the smoothing and f∗ is

optimized ranking vector. Equation (2) is simplified to obtain
the following equation:

f∗ = (D − W)−1y (3)

where D is the degree matrix and W is the affinity matrix.
Using Eq. (3), saliencymap is obtained by selecting a various
set of queries.
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3.1.2 Absorbing Markov chain (MC) model

Similar to themodel given in [55], Jiang et al. [20] also repre-
sent the input image as a graph but with different constraints
on edges. The weight of the edge is computed in a simi-
lar manner to [55]. Here, saliency detection is formulated as
an absorbing Markov chain model over image graph. The
superpixels at the boundary are duplicated as virtual bound-
ary nodes and are called absorbing nodes in the given model.
Rest of the nodes are termed as transient nodes. Afterward,
transient matrix P is obtained as follows [20]:

P = D−1 × A (4)

where A is the affinity matrix and D is the degree matrix
define as D = diag(

∑
j ai j ). The fundamental matrix N is

derived fromEq. (4), and absorbing timevectory is computed
as follows:

y = N × c (5)

Next, the saliency map is generated with the help of the nor-
malized absorbing time vector ȳ as follows:

S(i) = ȳ(i) i = 1, 2, ..., t (6)

Lastly, the saliency map obtained using Eq. (6) is further
refined to get the final saliency maps.

3.1.3 Dense and sparse reconstruction (DSR) model

Li et al. [30] designed dense and sparse appearance model
for finding salient regions in an images. The input image
is segmented into N segments and represented as a matrix
X = [x1, x2, ..., xN ] ∈ R

D×N , where xi is a feature
vector of i th segments and D is feature dimension. A
background templates set is constructed with the help of
background segments bM feature vectors and represented
as B = [b1,b2, ...,bM ] where M is number of background
segments. Next, dense and sparse reconstruction error is cal-
culated with the help of background template. The dense
reconstruction error of segment i is calculated as:

εdi = ‖xi − (UBβi + x̄)‖22 (7)

where UB eigenvectors from the normalized covariance
matrix of B, βi is the reconstruction coefficient of segment
i , and x̄ is the mean feature of X. The sparse reconstruction
error of segment i is calculated as:

εsi = ‖xi − Bαi‖22 (8)

where αi is an encoded representation of segment i . The
reconstruction errors are smoothed based on context obtained

by K-means clustering. After that, saliency value is assigned
to each pixel by combining multiscale reconstruction errors
which are further refined with an object biased Gaussian
model. Finally, Bayes’ formula is applied to integrate both
reconstruction error measures for generating final saliency
maps.

3.1.4 Discriminative regional feature integration approach
(DRFI) model

Supervised learning-based saliency model is proposed by
Jiang et al. [21] that extracts several features such as regional
contrast, regional property, and regional backgroundness and
construct feature vector x of each region of the input image.
In learning phase, the training set contains a set of con-
fident regions R = {R1, R2, ..., RQ} and corresponding
saliency scores A = {a1, a2, ..., aQ} from multi-level seg-
mentation of a set of images. The region is considered to
be confident if its 80% pixels belong to either foreground
or background, and corresponding saliency score is assigned
as either 1 or 0. Then, learn a random forest regressor f
from the training dataX = {x1, x2, ..., xQ} and the saliency
scores A = {a1, a2, ..., aQ}. Thereafter, a set of multi-level
saliency maps {A1, A2, ..., AM } (where M is number of lev-
els) are generated and integrated to get final saliency map.

3.1.5 Robust background detection (RBD) model

A robust background measure-based saliency model is pro-
posed by Zhu et al. [62] that characterizes the spatial
geography of image regionswith respect to image boundaries
and magnitude of robustness. The model represents the input
image as graphG = (V , E), where V nodes of the graph rep-
resent superpixels of the image and E edges on pair p and q
that represent adjacent node. The weight dapp(p, q) is calcu-
lated as the Euclidean distance between two nodes p and q on
mean color in CIE-Lab color space. After that, the boundary
connectivity is calculated with the help of the length along
the boundary and spanning area of each superpixel. Next, the
background weighted contrast is computed as:

wCtr (p) =
N∑
i=1

dapp (p, pi ) wspa (p, pi ) w
bg
i (9)

where wspa (p, pi ) = exp

(
− d2spa(p,pi )

2σ 2
spa

)
, dspa (p, pi ) is

the distance between the centers of superpixels p and pi ,
set σspa = 0.25 and w

bg
i is computed from the boundary

connectivity value of superpixel pi represents background
probability. Further, an optimization model is designed for
optimizing saliency value of superpixel {si }N1 in which the
cost function is defined as [62]:
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Fig. 3 Initial saliency maps. a Images b GMR [55] saliency maps c MC [20] saliency maps d DSR [30] saliency maps e DRFI [21] saliency maps
f RBD [62] saliency maps

N∑
i=1

w
bg
i s2i +

N∑
i=1

w
fg
i (si − 1)2 +

∑
i, j

wi j
(
si − s j

)2 (10)

where w
bg
i is foreground probability and wi j controls

smoothness. Finally, the saliency map is generated by mini-
mizing the cost function.

3.1.6 Generation of initial saliency maps

In this work, we exploit the bagging approach to measure
the saliency of the images. We first compute initial saliency
maps S j = {S j

1,S
j
2, ...,S

j
N } of j-th image and N represents

the number of selected existing saliency detection models.
The initial saliency maps are computed with the help of vari-
ous selected existing saliency detection models. Few sample
images along with the initial saliency maps generated using
selected existing saliency detection models are shown in
Fig. 3.

3.2 Generation of integrated binary map

The initial saliency maps obtained in the previous step are
transformed into corresponding binary maps where each
pixel has value either 0 or 1. Suppose B j

i is the binary

map corresponding to initial saliency map S j
i generated by

i th model on j th image. Thus, the complete set of binary
maps can be represented as B j = {B j

1,B
j
2, ...,B

j
N }. The

binary map is obtained from the saliency map using pop-
ular adaptive thresholding as given in Achanta et al. [1] as
follows:

T j
i = 2

W × H

W∑
x=1

H∑
y=1

S j
i i = 1, 2.., N and j = 1, 2, .., n

(11)

where W and H are width and height of the input image,
n is total number of images in a particular dataset. Hence,
binary maps B j

i corresponding to initial saliency map S j
i are

computed as follows:

B j
i (x, y) =

{
1 if S j

i (x, y) � T j
i

0 otherwise
(12)

where (x, y) represents the location of the pixel under con-
sideration and 1 ≤ x ≤ W and 1 ≤ y ≤ H . The binary maps
thus contain only two values, i.e., 1 and 0 where 1 denotes
foreground region and0denotes background region in agiven
image. Therefore, the binary maps are labeled maps which
classified the original image pixels into two classes. Further,
we use binary maps for integration logic. Since the binary
maps represent class labels, we apply the majority voting
scheme to obtain an integrated binary map which classifies
each pixel as background or foreground in a better manner.
To find the integrated binary map B j corresponding to j-th
image, the following equation is used:

B j (x, y) =
{
1 if

∑N
i=1 B

j
i (x, y) > N/2

0 otherwise
(13)

For proper working of the above equation, N must be an
odd number. In this research work, we have chosen N = 5.

3.3 Generation of final saliencymap

The integrated binarymap obtained in the previous step helps
in the generation of final saliency map S j

f . For this purpose,
we propose a novel integration logic where at the foreground
locations in the integrated binary map, the saliency value is
chosen to be maximum amid the initial saliency maps. Sim-
ilarly, at the background locations, minimum saliency value
amid the initial saliency maps is chosen. The mathematical
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formulation of the proposed integration logic along with ini-
tial saliency maps S j corresponding to j-th image is given
below:

S j
f (x, y) =

{
max{S j

1(x, y), S
j
2(x, y), ..., S

j
N (x, y)} if B j (x, y) = 1

min{S j
1(x, y), S

j
2(x, y), ..., S

j
N (x, y)} otherwise

(14)

Thus, the final saliency map contains maximum saliency
value among all the five initial saliency maps at the pixels
which are classified as foreground, i.e., the salient region.
Therefore, the salient region in the final saliencymap is high-
lighted in a better manner as compared to all the five initial
saliencymaps. Similarly, thefinal saliencymap containsmin-
imum saliency value among all the five initial saliency maps
at the pixels that are classified as background, i.e., the non-
salient region. Therefore, the non-salient region in the final
saliency map is suppressed in comparison with all the five
saliency maps under consideration.

4 Experimental results

We have performed extensive experiments to determine the
efficacy of the proposed method. The experiments have been
carried out on six publicly available benchmark datasets:
MSRA10K [8],DUT-OMRON[55], ECSSD [54], PASCAL-
S [32], SED2 [2], and THUR15K [7]. The qualitative as
well as quantitative performance of the proposed method
is evaluated and compared with 25 state-of-the-art saliency
detection models viz. SR [16], SUN [60], SeR [46], CA [13],
SEG [44], SWD [11], FES [49], SIM [40], COV [12],
PCA [39], GMR [55], MC [20], DSR [30], DRFI [21],
RBD [62], LPS [28], MST [50], HSD [47,54], BMS [58],
MILPS [17], RCRR [57], FCB [33], M-EST [25], CCA [43],
and AML [53]. Next, we give details of the datasets, eval-
uation metrics, comparison of the proposed model with
above-mentioned models and failure cases. All the exper-
iments are carried out using a desktop PC with following
configuration: Intel(R)Core(TM)i7-4770 CPU@3.40GHz.

4.1 Datasets

As discussed above, all the experiments are performed on six
publicly available datasets as given in Table 1. MSRA10K
dataset [8] is constructed from the MSRA dataset [35] and
contains 10,000 images. The dataset also contains pixel-
level saliency labels, and it is a large dataset. DUT-OMRON
dataset [55] contains 5168 manually selected high-quality
images. The images are more complex and contain one or
more salient object(s). Hence, the dataset is more difficult
and challenging for salient object detection models. ECSSD

Table 1 Summary of datasets used in the experiments

S. no. Dataset Total # of images

1 MSRA10K [8] 10, 000

2 DUT-OMRON [55] 5168

3 ECSSD [54] 1000

4 PASCAL-S [32] 850

5 SED2 [2] 100

6 THUR15K [7] 15, 000

dataset [54] contains 1000natural images,which are semanti-
cally meaningful but structurally more complex. PASCAL-S
dataset [32] contains 850 natural images. The images have
multiple complex object and cluttered background. SED2
dataset [2] contains 100 images. The images have two salient
objects. THUR15K dataset [7] is constructed from Flickr
with 5 keywords, i.e., Butterfly, Coffee Mug, Dog Jump,
Giraffe, and Plane. It contains 15,000 images in which only
6000+ images have pixel-accurate ground truth annotations
for salient object regions.

4.2 Evaluationmetrics

Theperformanceof the proposed saliencybaggingmodel and
25 state-of-the-art saliency detection models are measured in
terms of Precision, Recall, Receiver Operating Characteris-
tics (ROC), F-Measure, and Mean Absolute Error (MAE).
Precision, Recall, and ROC are computed based on the
overlapping region between ground truth and saliency map.
Precision indicates the ratio of correctly computed salient
pixels to all the pixel in the computed salient region, while
Recall indicates the ratio of correctly computed salient pixels
to all the pixels in the ground truth. F-Measure is computed
as the weighted harmonic mean of Precision and Recall. The
MAE is computed as the mean of the absolute difference
between the saliency map and ground truth. Let saliency
map whose intensity values are normalized between 0 and
1 is represented as S, while ground truth is represented asG.
Then, a binary map (B) is found from the saliency map by
using an adaptive threshold as suggested in [1] for computing
average Precision, average Recall, and average F-Measure.
The threshold is varied between 0 and 1 in equal steps to
find ROC performance measures. The notation |.| is used to
represent the number of nonzero entries in the binary map
and ground truth annotation. The mathematical formulae for
various performance measures are given below [3]:

Percision = |B ∩ G|
|B| (15)

Recall = |B ∩ G|
|G| (16)
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Fig. 4 Qualitative comparison of proposed framework with 17 classic saliency methods on six datasets. The images are sequentially with pair of
two from MSRA10K [8], DUT-OMRON [55], ECSSD [54], PASCAL-S [32], SED2 [2], and THUR15K [7] datasets

F-Measure is computed from Precision and Recall as fol-
lows [3]:

Fβ = (1 + β2)Percision × Recall

β2Percision + Recall
(17)

For our experiments, β is set to be 0.3 as suggested in [1] to
emphasize Precision more than Recall. Receiver operating

characteristics (ROC) curve is the plot in which a false pos-
itive rate (FPR) is on the x-axis and true positive rate (TPR)
on the y-axis. The TPR and FPR are computed as follows [3]:

TPR = |B ∩ G|
|G| (18)

FPR = |B ∩ Ḡ|
Ḡ

(19)
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Fig. 5 Qualitative comparison of proposed framework with five existing selected saliency methods. The images are sequentially with pair of two
from MSRA10K [8], DUT-OMRON [55], ECSSD [54], PASCAL-S [32], SED2 [2], and THUR15K [7] datasets

Mean Absolute Error (MAE) is found between saliency map
and ground truth as follows [3]:

MAE = 1

W × H

W∑
x=1

H∑
y=1

|S(x, y) − G(x, y)| (20)

4.3 Comparison with state-of-the-art models

4.3.1 Qualitative comparison

Here, we show a qualitative comparison of the proposed
framework with 25 state-of-the-art methods. Several visual
examples are shown in Figs. 4, 5 and 6 on six datasets. Fig. 4
provides visual comparison of the proposed framework with
17 classic saliency methods on all the six datasets. It can be
easily observed that the proposed framework can produce
more accurate saliency maps, while most classic saliency
methods fail to generate good quality saliency maps on com-
plex background and foreground.
For example, (a) homogeneous background and heteroge-
neous foreground images: column 1, 2, 6 in Fig. 4, the
proposed framework detected salient object as whole; (b)
cluttered background: column 3, 4, 8, 11, 12 in Fig. 4, in
this scenario the proposed framework clearly removes back-
ground noises and highlights salient regions; (c) multiple
objects: column 9, 10 in Fig. 4, and the proposed framework
effectively identifies all salient object present in the visuals,
in contrast others fail to detect them either as whole or par-
tially. (d) object touches the image boundary: column 7, 9
in Fig. 4, and the proposed framework detect salient region
that is linked to the boundary of the image. (e) heterogeneous

background: column 5 in Fig. 4, our framework significantly
suppressed all different background regions and highlights
salient region. Figure 5 demonstrates qualitative effective-
ness of the proposed framework against five existing selected
saliency methods. It reveals that the proposed framework
better performs on a variety of images, while individually
selected saliency methods fail to effective on complex sce-
narios. For example, complex scenarios: column 1, 3, 4, 11,
12 in Fig. 5 the proposed framework more effective against
individual selected saliency methods. In addition, the pro-
posed framework also produces good quality salience maps
on other variety of images column 2, 5, 6, 7 in Fig. 5.

Figure 6 shows the qualitative comparison with three
aggregation saliency methods on six datasets. It can be
observed that the proposed framework is consistently supe-
rior than M-EST [25] aggregation approach on variety of
images. Further, the proposed framework identifies salient
region(s) in a visually better manner than AML [53] method
on the images containing heterogeneous foreground, e.g.,
column 3 and 9 in Fig. 6. Here, the proposed framework is
superior than AML method in terms of completeness, while
the performance of the proposed framework is comparable in
other scenarios. The proposed framework efficiently removes
foreground noise in a betterway thanCCA [43] as depicted in
columns 1 and 2. It also effectively highlights salient region
than CCA [43] as shown in column 3, while the results are
similar to CCA [43] in other scenarios. These visual exam-
ples of different saliency methods demonstrate superiority
of the proposed framework on a variety of images. The pro-
posed framework is effective on a variety of images due to
accurately segmenting salient object (majority voting) and
effectively reducing background noise (integration logic).

123



Saliency bagging: a novel framework for robust salient object detection 1433

Fig. 6 Qualitative comparison of proposed framework with three aggregation saliency methods. The images are sequentially with pair of two from
MSRA10K [8], DUT-OMRON [55], ECSSD [54], PASCAL-S [32], SED2 [2], and THUR15K [7] datasets

Table 2 Qualitative comparisons with classic 17 saliency methods on six datasets (Higher is better for Precision, Recall, and F-Measure while
smaller is better for MAE and time

Model Metric MSRA- 10K DUT-OMRON ECSSD PASCAL -S SED2 THUR- 15K Time (s)

SR [16] P 0.5463 0.3084 0.4578 0.5575 0.4974 0.3926

R 0.4453 0.4135 0.3021 0.3278 0.5438 0.4960

F 0.5191 0.3276 0.4092 0.4799 0.5074 0.4124 0.03

M 0.2487 0.2460 0.3106 0.2832 0.2333 0.2243

SUN [60] P 0.5237 0.2835 0.4198 0.4922 0.4792 0.3592

R 0.3345 0.2437 0.1523 0.1554 0.4113 0.3118

F 0.4632 0.2732 0.2987 0.3281 0.4616 0.3471 2.44

M 0.3095 0.3429 0.3720 0.3434 0.2836 0.3087

SeR [46] P 0.5143 0.3305 0.3711 0.4738 0.4253 0.3269

R 0.4158 0.3883 0.2096 0.2700 0.4993 0.3591

F 0.4876 0.3422 0.3151 0.4035 0.4404 0.3338 0.73

M 0.3099 0.3524 0.4043 0.3557 0.3023 0.3482

CA [13] P 0.6400 0.3749 0.5286 0.6085 0.5646 0.4220

R 0.5472 0.5190 0.3769 0.3582 0.5811 0.5387

F 0.6159 0.4006 0.4837 0.5240 0.5683 0.4442 34.58

M 0.2373 0.2545 0.3090 0.2879 0.2269 0.2483

SEG [44] P 0.7367 0.5389 0.6446 0.7361 0.8457 0.5229

R 0.3463 0.3139 0.2457 0.1772 0.3066 0.2689

F 0.5846 0.4624 0.4689 0.4260 0.6016 0.4293 5.07

M 0.3145 0.3369 0.3407 0.3352 0.3121 0.3371

SWD [11] P 0.7585 0.4671 0.7037 0.7210 0.5432 0.5217

R 0.4732 0.4137 0.3489 0.3063 0.4432 0.4740

F 0.6658 0.4536 0.5700 0.5493 0.5163 0.5099 0.10

M 0.2667 0.3106 0.3183 0.3007 0.2968 0.2893

FES [49] P 0.7552 0.4630 0.6714 0.7348 0.6135 0.5089

R 0.5882 0.5695 0.5419 0.4577 0.5042 0.5935

F 0.7088 0.4839 0.6363 0.6447 0.5843 0.5263 0.09

M 0.1849 0.1558 0.2116 0.2214 0.1955 0.1554
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Table 2 continued

Model Metric MSRA- 10K DUT-OMRON ECSSD PASCAL -S SED2 THUR- 15K Time (s)

SIM [40] P 0.4743 0.3278 0.3807 0.4982 0.4257 0.3447

R 0.1614 0.1622 0.0790 0.1146 0.3293 0.1607

F 0.3277 0.2653 0.2024 0.2811 0.3988 0.2726 0.96

M 0.3880 0.4294 0.4333 0.3959 0.3842 0.4160

COV [12] P 0.7169 0.4512 0.6788 0.7054 0.5062 0.4840

R 0.5254 0.5555 0.5243 0.4216 0.4866 0.5727

F 0.6613 0.4716 0.6356 0.6105 0.5015 0.5020 13.10

M 0.1972 0.1562 0.2146 0.2316 0.2103 0.1554

PCA [39] P 0.8048 0.4797 0.6611 0.6989 0.7158 0.4983

R 0.6750 0.6297 0.5215 0.4614 0.6550 0.6235

F 0.7706 0.5076 0.6227 0.6247 0.7008 0.5225 2.77

M 0.1854 0.2063 0.2466 0.2403 0.2008 0.1985

LPS [28] P 0.8917 0.5782 0.7528 0.7550 0.8254 0.5681

R 0.7020 0.5894 0.5524 0.4149 0.6184 0.5730

F 0.8393 0.5807 0.6946 0.6349 0.7662 0.5692 1.07

M 0.1240 0.1448 0.1864 0.2161 0.1414 0.1503

MST [50] P 0.8555 0.5180 0.7098 0.7449 0.8221 0.5667

R 0.7634 0.7279 0.7147 0.5773 0.6811 0.7331

F 0.8324 0.5549 0.7109 0.6981 0.7846 0.5980 0.18

M 0.0970 0.1607 0.1567 0.1925 0.1249 0.1474

HSD [47,54] P 0.8728 0.5571 0.7408 0.7509 0.7582 0.5453

R 0.7122 0.5704 0.5326 0.4067 0.6129 0.5745

F 0.8296 0.5601 0.6795 0.6282 0.7189 0.5518 0.33

M 0.1486 0.2274 0.2274 0.2505 0.2102 0.2198

BMS [58] P 0.7171 0.4401 0.5919 0.6538 0.6471 0.4815

R 0.5254 0.4910 0.3368 0.3215 0.5970 0.5219

F 0.6614 0.4509 0.5038 0.5279 0.6348 0.4903 0.02

M 0.2303 0.2262 0.2856 0.2746 0.2215 0.2169

MILPS [17] P 0.8962 0.5446 0.7698 0.7647 0.8266 0.5635

R 0.8209 0.6916 0.6797 0.5276 0.7501 0.7062

F 0.8776 0.5726 0.7470 0.6928 0.8076 0.5911 64.48

M 0.1101 0.1675 0.1770 0.2118 0.1280 0.1663

RCRR [57] P 0.8905 0.5464 0.7693 0.7633 0.8110 0.5714

R 0.7592 0.6318 0.6526 0.4889 0.6265 0.6478

F 0.8563 0.5640 0.7388 0.6758 0.7594 0.5874 0.33

M 0.1221 0.1825 0.1838 0.2207 0.1611 0.1779

FCB [33] P 0.8620 0.5275 0.7297 0.7046 0.7465 0.5357

R 0.6019 0.5310 0.5032 0.3861 0.5273 0.5058

F 0.7839 0.5283 0.6610 0.5919 0.6812 0.5285 0.20

M 0.1206 0.1488 0.1728 0.2211 0.1603 0.1510

Ours P 0.9157 0.5837 0.8025 0.8007 0.8533 0.5967

R 0.7918 0.7112 0.6776 0.5261 0.7016 0.7108

F 0.8838 0.6089 0.7698 0.7146 0.8127 0.6196 9.80

M 0.0805 0.1165 0.1386 0.1799 0.1185 0.1225

Top three models are emphasized in bold, italic, and bolditalic, respectively). P-Precision, R-Recall, F-F-Measure, M-MAE
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Table 3 Qualitative comparisons with five existing selected saliency methods on six datasets (Higher is better for Precision, Recall, and F-Measure
while smaller is better for MAE and time

Model Metric MSRA- 10K DUT-OMRON ECSSD PASCAL -S SED2 THUR- 15K Time (s)

GMR [55] P 0.8888 0.5509 0.7694 0.7643 0.8077 0.5730

R 0.7501 0.6232 0.6430 0.4797 0.6185 0.6373

F 0.8524 0.5661 0.7360 0.6722 0.7544 0.5867 0.40

M 0.1257 0.1870 0.1861 0.2235 0.1659 0.1811

MC [20] P 0.8899 0.5489 0.7700 0.7747 0.8185 0.5767

R 0.7529 0.6691 0.6490 0.5031 0.6545 0.6797

F 0.8540 0.5726 0.7382 0.6889 0.7738 0.5976 0.09

M 0.1450 0.1863 0.2023 0.2219 0.1838 0.1853

DSR [30] P 0.8537 0.5357 0.7515 0.7500 0.7689 0.5531

R 0.7367 0.6792 0.6443 0.5108 0.6827 0.6769

F 0.8236 0.5632 0.7237 0.6768 0.7471 0.5775 3.49

M 0.1208 0.1388 0.1710 0.2038 0.1401 0.1425

DRFI [21] P 0.8782 0.5598 0.7896 0.7837 0.7932 0.5856

R 0.8151 0.7422 0.6942 0.5313 0.7628 0.7572

F 0.8628 0.5935 0.7653 0.7063 0.7860 0.6179 5.64

M 0.1259 0.1496 0.1702 0.2014 0.1363 0.1501

RBD [62] P 0.8662 0.5253 0.7258 0.7474 0.8443 0.5345

R 0.7885 0.7138 0.6621 0.5484 0.7119 0.7003

F 0.8470 0.5594 0.7101 0.6896 0.8096 0.5654 0.15

M 0.1109 0.1462 0.1713 0.1972 0.1299 0.1509

Ours P 0.9157 0.5837 0.8025 0.8007 0.8533 0.5967

R 0.7918 0.7112 0.6776 0.5261 0.7016 0.7108

F 0.8838 0.6089 0.7698 0.7146 0.8127 0.6196 9.80

M 0.0805 0.1165 0.1386 0.1799 0.1185 0.1225

Top three models are emphasized in bold, italic, and bolditalic, respectively). P-Precision, R-Recall, F-F-Measure, M-MAE

4.3.2 Quantitative comparison

To verify the effectiveness of the proposed framework, we
also estimate quantitative comparison in three segments
including classic, existing selected, and aggregation saliency
methods as illustrated in Tables 2, 3, and 4, respectively.

Classic saliencymethodsThequantitative results of proposed
framework and 17 classic saliency methods are presented in
Table 2 in terms of various performance metrics Precision,
Recall, F-Measures, MAE and computational time in second
on MSRA10K [8] dataset. As can be observed, the proposed
framework outperforms all the other methods across all the
datasets in terms of Precision, F-Measure, and MAE due to
the proposed framework take the advantages of existing com-
bined saliency methods to accurately segment the salient and
non-salient regions and aggregate saliency values using novel
integration approach. It is comparable in terms of Recall with
top performer MILPS [17] and MST [50] on MSRA10K [8],
SED2 [2] and DUT-OMRON [55], ECSSD [54], PASCAL-
S [32], respectively.

As suggested by Liu et al. [36], Recall plays a less
important role than Precision in salient object detection
performance. In addition, on MSRA10K [8], the proposed
framework improves the Precision and F-Measure scores by
approx. 2.2% and 0.7% over the best method MILPS [17]
while improves MAE score by approx. 17% over the best
method MST [50] among the compared classic methods.
On DUT-OMRON [55], the proposed framework improves
the Precision, F-Measure, and MAE scores by approx. 1%,
4.9%, and 19.5% over the best method LPS [28] among
the compared classic methods. Next, on ECSSD [54], the
proposed method improves the Precision and F-Measure
scores by approx. 4.3% and 3.1% over the best method
MILPS [17] while improves MAE score by approx. 11.6%
over the best method MST [50] among the compared clas-
sic methods. On PASCAL-S [32], the proposed framework
improves the Precision score by approx. 4.7% over the best
method MILPS [17] while improves and F-Measure, and
MAE scores by approx. 2.4% and 6.6% over the best method
MST [50] among the compared classic methods. Further
on SED2 [2], the proposed method improves the Precision,

123



1436 V. K. Singh, N. Kumar

Table 4 Qualitative comparisons with three aggregation saliency methods on six datasets (Higher is better for Precision, Recall, and F-Measure
while smaller is better for MAE and time

Model Metric MSRA- 10K DUT-OMRON ECSSD PASCAL -S SED2 THUR- 15K Time (s)

M-EST [25] P 0.8894 0.5498 0.7787 0.7763 0.8035 0.5738

R 0.8288 0.7482 0.7254 0.5654 0.7560 0.7580

F 0.8746 0.5857 0.7657 0.7148 0.7920 0.6079 12.74

M 0.1159 0.1682 0.1719 0.2031 0.1437 0.1660

CCA [43] P 0.9191 0.5904 0.8071 0.8013 0.8558 0.6016

R 0.7966 0.7424 0.7071 0.5645 0.7153 0.7386

F 0.8876 0.6197 0.7816 0.7306 0.8187 0.6285 10.03

M 0.0732 0.1176 0.1262 0.1726 0.1161 0.1226

AML [53] P 0.9423 0.6636 0.8496 0.8423 0.9041 0.6459

R 0.7499 0.6697 0.6379 0.4831 0.6471 0.6750

F 0.8897 0.6650 0.7891 0.7189 0.8282 0.6524 12.47

M 0.0695 0.1004 0.1209 0.1725 0.1151 0.1094

Ours P 0.9157 0.5837 0.8025 0.8007 0.8533 0.5967

R 0.7918 0.7112 0.6776 0.5261 0.7016 0.7108

F 0.8838 0.6089 0.7698 0.7146 0.8127 0.6196 9.80

M 0.0805 0.1165 0.1386 0.1799 0.1185 0.1225

Top three models are emphasized in bold, italic, and bolditalic, respectively). P-Precision, R-Recall, F-F-Measure, M-MAE

F-Measures and MAE scores by approx. 0.9 %, 0.6% and
5.1% over the best method SEG [44], MILPS [17], and
MST [50] among the compared classic methods, respec-
tively. On THUR15K [7], the proposed framework improves
the Precision score by approx. 4.4% over the best method
RCRR [57] while improves F-Measure and MAE scores by
approx. 3.6% and 16.9% over the best method MST [50]
among the compared classic methods. Hence, it is appar-
ent that the proposed model improves Precision, F-Measure,
and MAE by approx. 2.9%, 2.55, and 12.78 on average
over the best method among the compared classic meth-
ods across all six datasets. The above discussion shows that
the proposed framework possess effective performance in
terms of correctness, completeness, and suppressing non-
salient regions on different images scenarios which illustrate
its robustness characteristics. In addition, the computational
time of the proposed framework includes all combined
saliency methods (i.e., 0.40, 0.09, 3.49, 5.64, and 0.15) and
aggregation approach (i.e., 0.03) computational time. It is
faster than several methods such as CA [13], COV [12], and
MILPS [17].

Existing selected saliency methods In order to evaluate the
effective performance of the proposed framework against
existing selected saliency methods, we also estimate qual-
itative comparisons with combined saliency methods as
illustrated in Table 3 in terms of various performance met-
rics Precision, Recall, F-Measures,MAE, and computational
time in second on MSRA10K [8] dataset.

Table 5 Computational time of aggregation component

Model M-EST [25] CCA [43] AML [53] Ours

Time (s) 2.97 0.26 1.07 0.03

Bold is used to signify the least time requiredby the proposed framework

The scores presented in Table 3 demonstrate that the pro-
posed framework outperforms all the individual methods
in terms of Precision, F-Measure, and MAE because the
proposed framework clearly suppressed background noises
which are not suppressed by all individual saliency detection
methods on same regions. However, these existing selected
methods perform better on different regions of the image.
We exploit this advantage of each individual method to find
a saliency map which significantly improves the quality of
salient object detection.

The performance of the proposed framework is compa-
rable with DRFI [21] and RBD [62] on MSRA10K [8],
ECSSD [54], THUR15K [7], PASCAL-S [32], and DUT-
OMRON [55], SED2 [2], respectively, in terms of Recall.
Furthermore, on MSRA10K [8], the proposed framework
improves the Precision, F-Measure, and MAE scores by
approx. 3%, 2.4%, and 27.4% over the best methods, i.e.,
MC [20], DRFI [21], and RBD [62] among the exist-
ing selected methods, respectively. On DUT-OMRON [55]
dataset, the proposed framework improves Precision and F-
Measure scores by approx. 4.3% and 2.6% over the best
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Fig. 7 ROC on the six datasets: a MSRA10K [8], b DUT-OMRON [55], c ECSSD [54], d PASCAL-S [32], e SED2 [2], f THUR15K [7]

method DRFI [21] while improves MAE score by approx.
16.1% over the best method DSR [30] among the existing
selected methods.

On ECSSD [54], the proposed framework improves the
Precision, F-Measure, and MAE scores by approx. 2.4%,
0.6%, and 18.6% over the best method DRFI [21] among the
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Fig. 8 Failure cases. a Images. b Ground truth. c Our saliency maps d GMR [55] saliency maps e MC [20] saliency maps f DSR [30] saliency
maps g DRFI [21] saliency maps h RBD [62] saliency maps

existing selectedmethods. On PASCAL-S [32], the proposed
framework improves the Precision and F-Measure scores by
approx. 2.2% and 1.2% over the best method DRFI [21]
while improves MAE score by approx. 8.8% over the best
methodRBD [62] among the existing selectedmethods. Sim-
ilarly, on SED2 [2], the proposed framework improves the
Precision, F-Measure, and MAE scores by approx. 0.8%,
0.4%, and 8.8% over the best method RBD [62] among the
existing selected methods. On THUR15K [7], the proposed
framework improves the Precision and F-Measure scores by
approx. 1.9 % and 0.3% over the best method DRFI [21]
while improves MAE score by approx. 14% over the best
method DSR [30] among the existing selected methods.
Thus, the proposed model improves Precision, F-Measure,
andMAE scores by approx. 2.4%, 1.7%, and 15.6% on aver-
age over the best-performing method among the existing
selected saliency methods across all six datasets.

Aggregation saliency methods The quantitative performance
of the proposed framework with aggregation saliency meth-
ods is shown in Table 5 in terms of differentmetrics including
Precision, Recall, F-Measure MAE and Table 5 also pre-
sented computational time on MSRA10K [8] dataset. The
statistical data in Table 5 illustrate that the proposed frame-
work outperforms on all six except PASCAL-S [32] datasets
in terms of Precision, F-Measure, and MAE while it outper-
forms in terms of Precision and MAE from M-EST [25] on
PASCAL-S [32] dataset. In addition, the proposed frame-
work is more closer to CCA [43] in terms of all metrics,
i.e., the performance is almost equal. In contrast, the pro-
posed framework outperforms with AML [53] in term of
Recall across all datasets while it is comparable on other
metrics. The proposed framework performs in a consistent
and robust manner on a variety of images. Furthermore, the
computational time ofM-EST [25],AML [53], andCCA[43]
aggregation methods includes computation time of (i) indi-

vidual saliency methods and (ii) aggregation approach . As
demonstrated in Table 4, the proposed framework is very
fast in processing an image, and it is computationally more
efficient than all compared aggregationmethodswhich verify
the superiority of the proposed framework against other com-
pared aggregation methods. Table 5 displays the run time of
the aggregation component of different aggregationmethods.
The proposed framework appreciably minimizes the aggre-
gation computational time approx. 98.99%, 88.46%, and
97.20% from compared aggregation methods M-EST [25],
CCA [43] and AML [53], respectively.

Furthermore, we evaluate the effectiveness of the pro-
posed framework on varying threshold in terms of ROC
against 25 different saliency methods as shown in Fig. 7
on six datasets. It can be seen that the proposed framework
performs better than AML [53] while comparable with M-
EST [25] and CCA [43] on all datasets. Hence, the proposed
framework accurately separates the salient and non-salient
regions on different thresholds that AML [53]. It can be also
seen that DFRI [21] is better performer among all the meth-
ods on DUT-OMRON [55], SED2 [2], and THUR15K [7],
while CCA [43] is better performs on other datasets. Hence,
the performance of the proposed framework is comparable
with better performing saliency detection methods and better
than several classic state-of-the-art methods.

4.4 Failure cases

In this paper, we formulate the saliency detection problem as
saliency bagging by using existing saliency detection mod-
els. The proposed models are highly effective on most of the
saliency detection tasks. However, when the selected exist-
ing saliency detection models are simultaneously unable to
detect the particular salient region then our model also fails
to detect that particular region as shown in Fig. 8 top row.
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As shown in Fig. 8, middle row majority of existing saliency
detection models detected salient region as a background
region that influences the performance of our model. In the
bottom row of Fig. 8, the above two cases appear simultane-
ously.

5 Conclusion and future work

In this paper, we have proposed a novel framework for
saliency detection called saliency bagging. The proposed
framework gives robust performance across a variety of
images and works in three steps. Firstly, existing saliency
detectionmodels are selected and a set of initial saliencemaps
are computed. Secondly, an integrated binary map is found
from the initial saliency maps by applying adaptive thresh-
olding and majority voting. Lastly, the final saliency map is
obtained using an integrated binary map and initial saliency
maps using a novel proposed integration logic. The efficacy
of the proposed framework is supported by performing exten-
sive experiments on six publicly available datasets, and the
performance is compared with 25 state-of-the-art methods
which include 17 classic best-performing methods of the last
decade, five existing selected, and three aggregation saliency
methods. The experimental results indicate that the proposed
method significantly enhances the quality of saliency maps.
It outperforms all the compared classic and existing selected
methods in terms of Precision, F-Measure, and MAE, while
it is comparable to the best-performing methods in terms of
Recall and ROC curve across all the six datasets. It is com-
putationally efficient than all compared aggregation methods
while performance is comparable on all datasets that validate
its superiority. In future work, we shall look for improving
the performance of salient object detection in terms of Recall
and ROC curves using machine learning techniques.
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