
The Visual Computer (2020) 36:1385–1399
https://doi.org/10.1007/s00371-019-01738-y

ORIG INAL ART ICLE

Deep generative smoke simulator: connecting simulated and real data

Jinghuan Wen1 · Huimin Ma1 · Xiong Luo2

Published online: 29 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We propose a novel generative adversarial architecture to generate realistic smoke sequences. Physically based smoke simu-
lation methods are difficult to match with real-captured data since smoke is vulnerable to disturbance. In our work, we design
a generator that takes into account the temporal movement of smoke as well as detailed structures. With the help of convo-
lutional neural networks and long short-term memory-based autoencoder, our generator can predict the future frames using
temporal information while preserving details. We use generative adversarial networks to train the model on both simulated
and real-captured data and propose a combined loss function that reflects both the physical laws and the data distributions. We
also demonstrate a multi-phase training strategy that significantly speeds up convergence and increases stability of training
on real-captured data. To test our approach, we set up experiments to capture real smoke sequences and show that our method
can achieve realistic visual effects.

Keywords Smoke simulation · Generative adversarial networks · Real data · Autoencoder · LSTM

1 Introduction

Generating realistic and detailed smoke is a long-standing
challenge for smoke simulation in computer graphics. Most
physically based smoke simulation methods improve accu-
racy by using finer meshes, or using detail preserving
methods such as vorticity confinement [12]. Physically based
methods suffer from high computational costs. And it is diffi-
cult for thesemethods to synthesize a smoke sequence similar
to given real-captured one, because smoke is susceptible to
disturbance. Moreover, it is difficult to determine the exact
physical parameters in real scenes.

Recently, data-driven methods are showing advantages
in producing more detailed and diverse results. Data-driven

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00371-019-01738-y) contains
supplementary material, which is available to authorized users.

B Huimin Ma
mhmpub@tsinghua.edu.cn

Jinghuan Wen
wenjh14@mails.tsinghua.edu.cn

Xiong Luo
xluo@ustb.edu.cn

1 Tsinghua University, Beijing, China

2 University of Science and Technology Beijing, Beijing, China

methods extend fluid simulation in three ways: accelerating
simulation steps that require massive computation [19,55],
synthesizing high-resolution details based on low-resolution
simulation [9,60], and predicting future states of input initial
states [11,30,59]. Although real-captured data are not used in
these methods, it is possible to train data-driven models over
real data and produce more realistic results. However, a new
architecture is needed to combine both simulated data and
real-captured data into training process. Also, such architec-
ture should be able to generate sequences that are similar to
real data while being aware of physical laws.

In this paper, we present a novel network architecture that
generates realistic sequences, as shown inFig. 1. Thenetwork
is trainedonboth simulateddata and real-capturedvideodata.
Our generator takes into account short-term and long-term
transformations of overall smoke shape, in addition to a detail
preservation network that increases the detailedmovement of
smoke. We use generative adversarial networks (GAN) and
a combined loss that consists of physical loss and adversarial
loss to make the simulation physically accurate and similar
to real-captured data.

The purpose of our method is to predict future sequence
of a given previous sequence. Our generator takes an ini-
tial sequence as input and generates subsequent sequences,
which is similar to a video prediction problem. There exist
networks based on long short-termmemory (LSTM) autoen-
coder for natural video prediction [31,51]. However, directly

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-019-01738-y&domain=pdf
https://doi.org/10.1007/s00371-019-01738-y

1386 J. Wen et al.

ecneuqeS
suoiverP

LSTM
Encoder

LSTM
Decoder

Temporal Branch

Detail Branch

Down
Sample

+

+

Up
Sample

Vi
su

al

En
co

de
r

Vi
su

al
D

ec
od

er

Multi - Scale Fully
Conv. NN

(Shared Weights)

Up
Sample

Down
Sample

Latent
Vectors

Latent
Vectors

State

Database

Simulated Data

Real- Captured Data

Generated Sequence

Stack

Train

Output

Fig. 1 General architecture of the generator proposed in this paper. The generator is composed of a temporal branch and a detail branch. Our
network is trained on a database consisting of both simulated and real data and can produce smoke image sequences that are similar to real data

applying such methods to smoke simulation will generate
blurred and physically incorrect results. We propose a gener-
ator structure consisting of two branches: a temporal branch
and a detail branch. The temporal branch uses convolutional
neural networks (CNN) as visual autoencoder andLSTMnet-
works as sequence autoencoder. The combination of visual
autoencoder and sequence autoencoder produces a general
estimation of the sequence and meanwhile limits the size of
state variables in LSTM for less memory usage. The detail
branch is a multi-scale fully convolutional network, which
takes into account the physical invariance of smoke transfor-
mation on different scales.

Generative adversarial networks show promising results
on image generation [42] and video prediction [28,34]. These
methods train a generator network and a discriminator net-
work alternately, with generator trying to generate fake data
similar to ground truth and the discriminator trying to distin-
guish between fake data and the ground truth. We use GAN
to enhance the reality of generated sequences by sending
discriminator real-captured data as well as simulated data.

Another challenge of our smoke simulation network is the
difficulty judging whether a generated sequence is realistic.
We hope the generated sequences to have similar characteris-
tics to real-captured data, as well as being physically correct.
We use an adversarial loss term to force the output similar
to real-captured data and an error term to limit the output to
physical laws. We also use L1 loss and gradient difference
loss to reduce blurred results, as introduced in [34].

To summarize, the major contributions of this paper are:

– a smoke simulation method connecting real-captured
smoke data and physically based simulation data, based
on deep generative adversarial networks,

– a novel generative smoke simulation network consist-
ing of a temporal branch based on visual autoencoder

and LSTM autoencoder, and a detail branch composed
of multi-scale fully convolutional layers,

– and a combined loss for adversarial training of fluid sim-
ulation that reflects both the physical laws and the data
distribution.

2 Related work

Physically based smoke simulation methods typically solve
discretized Navier–Stokes (N–S) equations over a regular or
irregular grid. Stam’swork [52] introduced a stable fluid sim-
ulation method. It is later extended by Fedkiw [12], which
gives a basic routine of smoke simulation, consisting of a
semi-Lagrangian advection step, a diffusion step, a pressure
projection step, and a vorticity confinement step. The major
challenge of physically based smoke simulation, especially
Euler methods, is that details such as turbulence vanish along
simulation. To preserve details, there are many researches
that focus on improving accuracy of advection [21,29,47], or
restoringmissing vorticity by solving vorticity–velocity form
ofNavier–Stocks equations [58,62]. There are vortex particle
[46,61], vortex filament [2,3,36], and vortex sheets methods
[7,41] that use the Lagrangian nature of vorticity and other
methods that are widely used to improve the accuracy and
reality of smoke simulation [6,26,63]. Physically based sim-
ulation methods also suffer from high computational costs.
Many works focus on this issue, such as developing fast
solvers [35] and using super-resolution techniques to gen-
erate higher-resolution results based on lower ones [24,37].
In this paper, we use physically based simulation to generate
a massive amount of training data to train an initial smoke
generator, which is further extended by fine-tuning on real
data.

123

Deep generative smoke simulator: connecting simulated and real data 1387

Data-driven fluid simulation extends the diversity and ran-
domness of fluid synthesis. Instead of solving fixed partial
differential equations (PDEs) iteratively, data-driven meth-
ods train models over large dataset. These models extract the
characteristic of fluid flows andmake it possible to synthesize
fluid flow using real-captured data. This is especially impor-
tant for smoke simulations where smoke simulations are
more diverse and random than liquids. Data-driven methods
can accelerate computational heavy steps in fluid simula-
tions, e.g., regression forests are introduced to predict the
SPH force of fluid simulation [19], and CNNs are intro-
duced to solve pressure projections [55]. Um et al. [56]
use neural networks to model liquid splash. There are also
data-driven super-resolution methods that refine a coarse
simulated sequence to a higher resolution [9,60]. However,
these methods require an underlying low-resolution simula-
tion, which makes it difficult for generating flow sequences
that match real-captured ones. Another method byWiewel et
al. [59] is proposed to predict the future fluid flow sequences
based on CNN and LSTM, which is similar to the temporal
branch of our method. Kim et al. [22] present a genera-
tive network for fluid simulation using CNN. The novelty
of our method includes introducing a fully convolutional
detail preserving network that takes into account the physi-
cal invariance, a combined loss that makes our model more
realistic as well as being aware of physical laws, and an
adversarial training process that helps ourmodel extract char-
acteristics of real data.

Connecting physically based methods to real-captured
data is quite a challenge. The exact physical parameters of
certain specified scene are often difficult to determine and
may not be constant in space and time. In addition, smoke
is vulnerable to disturbance. A very small disturbance may
seriously affect the movement of smoke over a long period of
simulation. Previous works [14,40] show how to recover the
3D density field of fluids. Wang et al. [57] couple real video
data with SPH system to produce guided simulation of fluids.
A research by Gregson et al. [15] shows an interesting way to
connect forward and inverse problems in fluids, by applying
a velocity estimationmethod to track themovement of fluids.
This method is used in our work to process the real-captured
data.

Another topic in using real-captured data is to make gen-
erated images having similar characteristics to real data,
rather than only comparing them pixel by pixel. There are
researches that look up similar sequences or patches in
databases [9,39]. Interpolation between key frames can also
synthesize sequence from given data [8,53]. In our work,
we use adversarial training in the final phase. Therefore, our
model is not forced to match the given sequence exactly, but
generates the future sequences based on statistical features
of the training dataset.

Generative Adversarial Networks have shown promising
results in image and video generation. The original GAN
is introduced by Goodfellow et al. in [13]. Later on, a deep
convolutionalGAN (DCGAN) is introduced as a basic gener-
ator structure [42].However, thesemethods aim at generating
images or videos out of a random noise, which cannot be
directly applied on our prediction problem.ConditionalGAN
(cGAN) is developed to generate images under certain con-
ditions [38] and has many applications on image synthesis
such as [18]. There are also temporal GANs that generate
predicted future sequences [34,45,59]. Although adversarial
networks show interesting visual results, training the origi-
nal form of GAN is unstable and requires careful adjustment
on parameters. The major issue as stated in [4] is that the
original GAN training minimizes the Jensen–Shannon (JS)
divergence between generated data and real data distribu-
tions, whose gradient tends to be zero when two distributions
are barely overlapped. A Wasserstein GAN is introduced to
minimize Earth Mover’s (EM) distance (or Wasserstein dis-
tance), which is proved to have better stability. Further, an
improved WGAN is introduced to solve the lack of diver-
gence of weights in the network by using gradient penalty
instead ofweight clipping,which is referred to asWGAN-GP
[16]. For better stability and easier training, the adversarial
networks in this paper are based onWGAN-GP, although our
method can fluently transport to other GAN architectures.

Video prediction is another related topic to our work. The
generator proposed in this paper can be seen as a video pre-
dictor, although our generator takes into account physical
invariance and physical laws. First work on natural video
prediction is proposed using a recurrent convolutional neu-
ral network (rCNN) [43]. Mathieu et al. introduced a deep
generative video prediction method in [34] that uses a multi-
scale structure. In this paper, we design a multi-scale detail
preserving network sharing the similar idea, in addition to the
consideration of physical invariance. [34] also proposed an
L1-normand a gradient-based loss term for less blurred effect
in prediction problems. Srivastava et al. introduced an LSTM
autoencoder for video representations [51]. There are also
similar structures for video prediction such as CNN-LSTM-
deCNN [31] and video pixel networks [20]. The LSTM
autoencoder, together with a CNN based visual autoencoder,
is adopted in the temporal branch of our generator.

3 Temporal and detail generator networks

The generator of our model consists of a temporal branch
based on visual autoencoder and LSTM autoencoder and a
detail branch composed of multi-scale fully convolution lay-
ers. The temporal branch generates a rough sequence which
is further refined by the detail network.

123

1388 J. Wen et al.

Fig. 2 Proposed generator. The generator consists of two branches.
The temporal branch (above) combines visual autoencoder and LSTM
autoencoder andpredicts a rough image sequence Ĩ [t]. Thedetail branch
(below) is composed of multi-scale fully convolutional networks. Con-
volutional kernel weights are shared on different scales. The detail

branch runs iteratively on each frame, refining Ĩ [t] to J̃ [t], and out-
put predicted sequence J̃ [t]. All of the images I [t], Ĩ [t], J̃ [t] have
three channels: a density channel ρ and two velocity channels ux and
uy . The illustration above only shows the density channels

The input of the generator is a provided sequence (with
length ti) of smoke images, I [−ti], . . . I [−1]. The images
here (same below) consist of three channels: a density chan-
nel ρ and two velocity channels ux and uy . The output of
the generator is a subsequent sequence (with length to) of
smoke images, J̃ [0], . . . , J̃ [to −1]. The ground truth of out-
put sequence is denoted by I [0], . . . , I [to−1]. The images I
and J̃ can be either 2D or 3D (i.e., volumetric data), and for
3D image I should consist of four channels, i.e., a density
channel and three velocity channels. In this paper, we focus
on 2D images due to implementation limitations, although
our method can be extended to 3D images.

The structure of generator is shown in Fig. 2.

3.1 Temporal branch

The temporal branch of the generator is a combination of
visual autoencoder and LSTM autoencoder, as shown in
Fig. 3. Visual autoencoder is widely used in computer vision
as an unsupervised learning technique to efficiently encode
images.We apply the encoder on each frame I [t] to get latent
vector

z[t] = Ev(I [t]) , (1)

where Ev stands for visual encoder. And we can decode the
latent vector back to the original frame

Î [t] = Dv(z[t]) , (2)

where Dv stands for visual decoder. An ideal autoencoder
will have

Î [t] = I [t] . (3)

The visual autoencoder extracts low-rank representa-
tions (i.e., the latent vectors) of images, which are then
used in LSTM autoencoder to predict the future sequences.
The LSTM autoencoder takes a sequence of latent vectors
as input, i.e., z[−ti], . . . , z[−1], and predicts the subse-
quent latent vector sequence, i.e., z̃[0], . . . , z̃[to − 1]. LSTM
autoencoder also contains an encoder and a decoder. The
LSTM encoder extracts the representation of the final state
of the input sequence, and such state (denoted by se[0]) is
copied to LSTM decoder as initial state. The LSTM decoder
runs iteratively and predicts a frame z̃[t] at each step, and the
predicted latent vectors can then be decoded to images, i.e.,

Ĩ [t] = Dv(z̃[t]) . (4)

The underlying structure of visual autoencoder is CNN
[27]. The encoder consists of several convolutional layers
and pooling layers, while the decoder consists of several
transposed convolutional layers. Activation functions such as
ReLU are applied following each of the convolutional layers.
There are some pre-trained convolutional units such as VGG

123

Deep generative smoke simulator: connecting simulated and real data 1389

Fig. 3 Visual autoencoder. The encoder Ev encodes the input image
I [t] to a latent vector z[t], while the decoder Dv restores image Î [t]
from latent vector z[t]

Fig. 4 LSTM autoencoder for unsupervised video representation. The
encoder extracts the final state se[0] of input sequence z[t] for t < 0.
The final state is then copied to the decoder as initial state sd [0]. Decoder
runs iteratively and generates predicted future sequence z[t] for t ≥ 0

[50]; however, we find a simple CNN with much less depth
(4 convolutional layers in our implementation) works well
in our method. There are other autoencoders that work well
on various problems, such as variational autoencoder (VAE)
[25]. However, note that the purpose of using autoencoder
in the temporal branch is to reduce the dimension of input
image, and we hope to reconstruct the original image from
the extracted latent vector. Therefore, random autoencoders
such as VAE should not be adopted. It is also demonstrated
in [59] that VAE is not suitable for temporal problems.

Since our model is composed of a complicated set of
networks, we designed several training phases for better con-
vergence, which will be explained in Sect. 4. Here, as the first
training phase, we pre-train the visual autoencoder before
training the rest parts of generator using random generated,
independent smoke images (instead of sequences).We define
a loss function that considers each smoke image indepen-
dently:

LEv,Dv = EI∼psim

[
‖ Î − I‖

]

= EI∼psim [‖Dv(Ev(I)) − I‖] , (5)

where psim is the data distribution of simulated smoke
images, EI∼psim [·] is the expectation over the distribution
of simulated smoke images, and ‖ · ‖ is L1 or L2 norm.

The LSTM autoencoder consists of two LSTM units.
LSTM is a recurrent neural network (RNN) that is composed
of a cell, an input gate, an output gate, and a forget gate [17].
LSTM is successfully used in neural networks on sequences.
In ourmethod, we use LSTM to solve the sequential data pre-
diction problem, although other RNN models can be used as
alternatives. The LSTM autoencoder structure for unsuper-
vised video representation is shown in Fig. 4. This structure
and its training strategy are first presented in [51].

The LSTM encoder runs iteratively and updates its own
state, which can be represented as

se[t + 1] = El(z[t], se[t]) , (6)

where se[t] is the state of encoder after processing z[t] and
El is the LSTM encoder. In our method, the initial state
se[−ti] can be an arbitrary state vector. For convenience, we
set se[−ti] = 0. The LSTM decoder also runs iteratively to
generate output as well as updating its own state, which can
be represented as

〈z̃[t], sd [t + 1]〉 = Dl(z[t − 1], sd [t]) , (7)

where sd [t] is the state of decoder before generating the out-
put of z̃[t] and Dl is the LSTM decoder. The connection
between the LSTM encoder and the LSTM decoder is that
the final state of the encoder is copied to the initial state of
the decoder, i.e.,

sd [0] = se[0] . (8)

To train an LSTM autoencoder, we first train an encoder–
decoder pair that encodes a sequence and decodes it back. An
ideal encoder and the corresponding decoder D∗

l (·) should
satisfy

z̃[t] = z[t], t = −ti , . . . ,−1 . (9)

Therefore, for this training phase (phase 2) we have loss
function

LEl = EI∼psim

[−1∑
t=−ti

‖z̃[t] − z[t]‖
]

= EI∼psim

[−1∑
t=−ti

‖D∗
l (El(Ev(I [t]))) − Ev(I [t])‖

]
,

(10)

where El(·) and D∗
l (·) are simplified form of El(·, ·) and

D∗
l (·, ·) that omit the states, and z[t] is generated from pre-

trained visual autoencoder Ev . This training phase is for the
encoder to learn a valid representation of sequences. The

123

1390 J. Wen et al.

Fig. 5 Dynamic predicting length for trainingLSTMdecoder and detail
branch. Left: At first, when Tp = 1, the ground truth is provided on
each iteration. Right: As training step grows, a larger Tp is used. And
the ground truth is provided every Tp iteration

temporary decoder D∗
l is discarded, and a predictive decoder

is trained using future sequences, i.e.,

se[t + 1] = El(z̃[t], se[t]), t = −ti , . . . ,−1

sd [0] = se[0]
〈z̃[t], sd [t − 1]〉 = Dl(z[t − 1], sd [t]), t = 0, . . . , to − 1 ,

(11)

whereDl(·, ·) is the decoder that canpredict future sequences.
We hope the predicted sequence is close to ground truth,
which gives a loss function for phase 3:

LDl = EI∼psim

[to−1∑
t=0

‖z̃[t] − z[t]‖
]

= EI∼psim

[to−1∑
t=0

‖Dl(El(Ev(I [t]))) − Ev(I [t])‖
]

.

(12)

It should be noticed that the ground truth z[t], t =
0, . . . , to − 1 should be provided during training. However,
there is no ground truth during the test (nor in actual use).
Therefore, an iterative prediction function substitutes z[t] by
z̃[t] in Eq. 11, giving

〈z̃[t], sd [t − 1]〉 = Dl(z̃[t − 1], sd [t]), t = 0, . . . , to − 1 .

(13)

In practice, however, we find that splitting training and
test is not a good strategy, because the model tends to learn
only short-term transformation of sequence if ground truth
is provided for every iteration of Dl . We apply a dynamic
predicting length that gradually increases during training pro-
cess, as shown in Fig. 5. A predicting length of Tp means we
use iterative method (Eq. 13) in training for continuous Tp

frames (i.e., the 0-th to (Tp − 1)-th frames) and reset the
input to ground truth for the Tp-th frame. Therefore, as Tp

Algorithm 1: Temporal Branch
Input: Input sequence: I [t] | t = −ti , . . . ,−1
Output: Rough prediction: Ĩ [t] | t = 0, . . . , to − 1

1 begin
2 for t = −ti , . . . ,−1 do
3 z[t] ←− Ev(I [t])
4 se[t + 1] ←− El (z[t], se[t])
5 sd [0] ←− se[0]
6 z̃[−1] ←− z[−1]
7 for t = 0, . . . , to − 1 do
8 〈z̃[t], sd [t − 1]〉 = Dl (z̃[t − 1], sd [t])
9 Ĩ [t] ←− Dv(z̃[t])

grows, the model is forced to learn longer sequences. When
Tp = to, the decoder decodes as it does during the test. The
same strategy is also used in the training of detail branch.
To summarize, the algorithm of temporal branch is listed in
Algorithm 1.

Algorithm 2: Detail Branch

Input: Rough prediction: Ĩ [t], t = 0, . . . , to − 1, and I [−1]
Output: Refined Prediction: J̃ [t], t = 0, . . . , to − 1

1 begin
2 J̃ [−1] ←− I [−1]
3 for t = 0, . . . , to − 1 do
4 J (0)[t] ←− Concatenate(J̃ [t − 1], Ĩ [t])
5 for i = 1, . . . , nscales do
6 J (i)[t] ←− DownSample(J (i−1)[t])
7 for i = 0, . . . , nscales do
8 J̃ (i)[t] ←− FullyConv(J (i)[t])
9 J̃ [t] ←− J̃ (0)[t]

10 for i = 1, . . . , nscales do
11 J̃ [t] ←− J̃ [t] +UpSample(J (i))

3.2 Detail branch

The output of temporal branch is an approximation of future
image sequences, although it is usually blurred. The visual
autoencoder reduces the dimension of input images, making
the number of trainable parameters feasible in implemen-
tation. However, it prevents the network from generating
detailed results. To address this issue, we add a detail
branch to the generator that refines the detailed movement
of smoke. The detail branch is composed of multi-scale fully
convolutional networks, as shown in Fig. 2.We use fully con-
volutional network without pooling for better performance
on detail preserving. We use multi-scale structure according
to the fact that there is certain physical invariance at differ-
ent scales. For example, the advection schemes are the same
regardless of the scale. Therefore, we apply shared convo-

123

Deep generative smoke simulator: connecting simulated and real data 1391

lutional weights over multiple scales. There do exist some
physical quantities that vary in scales. Thus, we add four
1 × 1 convolution kernels before and after down-sampling
and up-sampling. We also apply residual structures [23] on
multiple scales, in which lower resolution data are added
back to higher-resolution data after convolution, to improve
the accuracy of the network.

The input of detail branch includes the rough sequence
from the temporal branch Ĩ [t], t = 0, . . . , to, as well as the
last frame as reference. The output of detail network is the
refined sequence J̃ [t], t = 0, . . . , to. The full algorithm of
detail branch is listed in Algorithm 2. J (i)[t] and J̃ (i)[t] are
data before and after the shared convolutional layers at the
i-th scale. The loss for training detail branch (in phase 4) is
the difference between J̃ [t] and ground truth I [t], which will
be further discussed in Sect. 4.

4 Adversarial training on real data

4.1 Generative adversarial networks

We use adversarial training to improve the generator by
making the generated smoke similar to real smoke. Adver-
sarial networks consist of two networks: a generator G and
a discriminator D. Instead of considering only the L2 or L1

distance to ground truth, the discriminator extracts features
of smoke sequences and uses these features to determine
whether a smoke sequence is real or fake. For better training,
we use WGAN with gradient penalty proposed in [16], with
the loss defined as

LD = E J̃∼pgen

[
D(J̃)

]
− EI∼pgt [D(I)]

+ λE Ǐ∼pinterp

[
(‖∇ Ǐ D(Ǐ)‖2 − 1)2

]
, (14)

where J̃ is the generated image sequence and its distribution
is pgen. I is the ground truth sequence either from simulated
data pgt = psim or real-captured data pgt = preal. Ǐ is sam-
pled from the interpolation between distributions pgen and
pgt. λ is the penalty coefficient. We use λ = 10 as suggested
in [16].

The discriminator network in our method is based on
CNN. In GAN training, discriminator and generator should
be balanced. Therefore, a simple discriminator with only 4
layers of 3D convolution is used. Instead of applying con-
volution over the entire generated sequence, we use a patch
discriminator that runs on a short sequence at a time. We
apply the patch discriminator on a sliding window over the
sequence and generate a probability map that reflects the
probability of generated images over time. The patch dis-
criminator is similar to the local adversarial loss proposed
in [49], except that the patch in [49] is spatial while ours is

temporal. We calculate a weighted sum over the probability
map and obtain the output of discriminator. In practice, we
find the beginning of the sequence should have largerweights
because the smoke tends to vanish over a long period of time,
leading to much smaller average error for long-term predic-
tions.

4.2 Loss functions

In prediction problems, the predicted images tend to be
blurred.The loss functionhas a significant effect on this issue.
Since there are multiple possibilities of future sequences, a
model trained on L2 loss tends to fit the mean value of tar-
get distribution and median value for model trained on L1

loss. [34] shows that L1 loss works better in video prediction
problems and introduces a new image gradient difference
loss (GDL) to improve the sharpness of predicted images.
The GDL between two images X and Y is defined as the
difference between the gradients of the two images, i.e.,

Lgdl(X ,Y) =
∑
i, j

∣∣∣ ∣∣Xi, j − Xi−1, j
∣∣ − ∣∣Yi, j − Yi−1, j

∣∣ ∣∣∣
p

+
∑
i, j

∣∣∣ ∣∣Xi, j − Xi, j−1
∣∣ − ∣∣Yi, j − Yi, j−1

∣∣ ∣∣∣
p
,

(15)

where p = 1 or 2 for L1 or L2 norm. An ordinary L p loss is
also applied, i.e.,

L p(X ,Y) = ‖X − Y‖p . (16)

In our generator, the temporal branch controls the gen-
eral movement of smoke, which is significant for generating
proper long-term results. However, the output of temporal
branch Ĩ does not directly connect to loss computing, which
causes the temporal branch to lose its function of predicting
a rough sequence. We add an intermediate L p loss term

Ltp = L p(Ĩ , I). (17)

that limits the output of temporal branch. We also apply a
divergence loss term to ensure the generated sequence fits
the conservation of mass, i.e.,

Ldiv(u) =
∑
i, j

|∇ · u|2 . (18)

where u = (ux , uy)
T is the velocity field. According to

Gauss’s law, a velocity field should have ∇ · u = 0 for mass
conservation. Therefore, a large Ldiv indicates there is sig-
nificant loss (or gain) of mass.

123

1392 J. Wen et al.

The final loss for generator is

LG = −E J̃∼pgen

[
D(J̃)

]
+ L p(J̃ , I)+ L p(Ĩ , I)+ Ldiv(u) .

(19)

4.3 Training phases

Our network includes two autoencoders (visual and LSTM
autoencoders): an iterative convolutional network (detail
branch) and a discriminator network. Such complicated net-
works should be trained under multiple phases to prevent
the loss from being too large. Our major concern is that
the iterative networks, including the LSTM autoencoder
and the detail branch, are hard to perform end-to-end train-
ing. We address this issue by applying dynamic predicting
length (shown in Fig. 5). We also find that the pre-trained
autoencoders allow training to converge faster than direct
end-to-end training. Therefore, we introduce a training strat-
egy consisting of 6 phases:

– Phase 1Train visual autoencoder Ev and Dv , minimizing
LEv,Dv (Eq. 5).

– Phase 2 Train the LSTM encoder El , minimizing LEl

(Eq. 10), with fixed Ev and Dv . After phase 2, discard
the temporary decoder D∗

l .
– Phase 3 Train the LSTM decoder Dl , minimizing LDl

(Eq. 12), with fixed Ev , Dv , and El .
– Phase 4 Train the detail branch, minimizing L p(J̃ , I),
with fixed Ev , Dv , El , and Dl . The pre-training of gen-
erator G ends in this phase.

– Phase 5 Train G and D in conjunction. Minimize LG

(Eq. 19) for G and LD (Eq. 14) for D. All of the training
in phase 1 to 5 use simulated data.

– Phase 6 Fine-tune the modelG and D with real-captured
data.

5 Implementations

5.1 Network configurations

The configurations of networks are listed in Table 1. The
layers listed in the table are all convolutional layers, except
that the visual decoder uses transposed convolutional layers.
All of the convolutional layers use ReLU activation functions
except for output layers. The size of input and output images
is 64×64.More complicated networks can be used for better
performance.

Our network is implemented using TensorFlow [1], and
the training process runs on NVIDIA TITANGPUs. We also
implemented a Navier–Stokes smoke solver using CUDA.
The NS Solver is used to generate massive amount of simu-

Table 1 Network configurations

Kernel sizes Num. of features

Visual encoder Ev 5, 3, 3, 3 3, 8, 16, 32, 32

Visual decoder Dv 3, 3, 3, 5 32, 32, 16, 8, 3

Fully conv. 3, 5, 5, 3 6, 16, 64, 16, 3

Discriminator D 7, 5, 5, 3 3, 16, 32, 16, 1

Fig. 6 Experiment setup for capturing smoke videos. A white LED
panel is used as background. A transparent box with size of 32 cm ×
32 cm × 0.5 cm is used to limit the smoke moving mainly in 2D space.
The special smoke generators (bottom left) can generate smoke (denser
than the air) while burning

lated training data. The simulated data is used for pre-training
models from phases 1 to 5. Each training phase uses 800,000
sequences of simulated data. The simulated data are initial-
ized with a random noise map, so that almost every part of
the image is valuable for training. In contrast, if we use a spe-
cific scene for smoke (e.g., rising smoke scene used in many
physically based simulation), the majority part of the data
would be blank and would cause unnecessary computation.
Finally, we fine-tune the model on a real-captured dataset of
2000 sequences.

5.2 Capturing real smoke

Our adversarial networks use real-captured training data to
improve their fidelity. To this end, we build a 2D real smoke
dataset using the similar technique to [14,15]. A photograph
of the experiment setup is shown in Fig. 6. We set up a high
frame rate camera to capture the movement of real smoke.
A container with size of 32 cm × 32 cm × 0.5 cm is used

123

Deep generative smoke simulator: connecting simulated and real data 1393

Table 2 Computational time

Grid size CFD solver (ms) Ours (ms)

64 × 64 9.564 8.260

to limit the smoke moving mainly in 2D space. We use a
special kind of smoke that is denser than air for better con-
trol. Thus, our smoke moves downwards instead of moving
upwards like most smoke. A white LED panel is placed as
a background for illumination. We assume an image forma-
tion model where light is absorbed according to the density
of smoke. Therefore, the luminance of a grayscale video
represents the density of smoke (in negative correlation).
However, the mapping function between smoke density and
image luminance is unknown; we use a simple linear model
to get the density of smoke.

The captured video is undistorted and clipped, removing
the distortion and redundant surroundings.We then adjust the
luminance of video for better contrast between smoke and
the background. We apply V-BM4D video denoising [32,
33] on the video and obtain a relatively clean video. It is
resized and sampled before used as the density field of smoke.
We use Horn–Schunck method [5] to get an optical flow of
the video and use it as a initial guess of velocity field. We
solve an optimization problem introduced in [15] to obtain
the velocity field of smoke.

6 Results and discussions

6.1 Quantitative evaluation

The computational time is shown in Table 2. Both methods
are implemented on GPU. Our method can accelerate simu-
lation speed by approximately 16%.

To evaluate the quality of generated smoke sequences, we
measure the L2 and L1 error between the predicted sequences
and the ground truth, represented by mean squared error
(MSE) andmean absolute error (MAE), respectively.We also
measure the sharpness difference using gradient difference
loss (GDL) in Eq. 15with p = 1. Another metric, divergence
loss in Eq. 18, is introduced to evaluate whether the models
conform to the conservation of mass. The numerical results
of simulated dataset are listed in Table 3. The minimal of
each column is marked bold.

Table 3 is divided into 3 groups: video prediction network
[34], our model pre-trained in phase 3 and phase 4, and our
model trained with different loss functions. It shows that the
average prediction error decreases as the network structure
and the loss function become more complex. We can see a
significant performance gain from phases 4 to phase 5, which
indicates the effect of introducing the adversarial training.

Table 3 Average prediction error on simulated dataset

Models MSE MAE GDL Ldiv

[34] w/o Adv. 151.36 574.18 544.93 7.444

[34] w/ Adv. 83.08 429.54 506.05 8.078

Temporal (phase 3) 89.19 426.40 601.04 3.263

+Detail (phase 4) 91.53 436.65 581.80 4.475

+Adv. (phase 5)

L2 82.54 416.29 574.84 5.441

L2 + Lgdl 85.80 422.77 540.38 5.497

L1 + Lgdl 74.22 391.85 522.53 5.465

L1 + Lgdl + L tp 74.18 391.74 522.54 5.473

L1 + Lgdl + L tp + Ldiv 74.24 391.89 522.52 5.469

Loss functions also make differences in training predictive
model. By training ourmodelwith L2 or L1 loss on simulated
data, it is interesting to see an L1 loss function minimizes the
errors, even for error that based on L2 metric (MSE). This is
partly due to the fact that simulated data have sharp borders,
and an L1 loss is better at preserving sharpness. We will see
in Table 4 that this is different for real data.

More experiments are done using real-captured dataset,
and results are shown in Table 4. The two minimals of each
columns are marked bold. We can see that the fine-tuned
model has the best performance. Further, we focus on how
the prediction error changes through iteration steps. To this
end, we list errors of average prediction, next frame predic-
tion, and long-term prediction in Table 4. Although video
prediction network [34] performs well on next frame predic-
tion, our model works better in long-term predictions. We
should also see that our models in phase 5 have similar MSE
to the model in phase 3. This is becauseMSE is an L2 metric,
and minimizing L2 loss finds the mean value of target distri-
bution. Since smoke sequences (as well as video sequences)
are continuous over time, the mean value of target distri-
bution (i.e., expectation) gives a decent estimate of future
sequences. Our model in phase 3 is a temporal branch using
LSTM autoencoder, and its training is based on L2 metric.
Therefore, the temporal branch plays an important role in
long-term prediction.

We can also compare the error terms in Fig. 7. Our model
has stable errors over time and therefore is more suitable for
long-term prediction. The models without fine-tuning have
similar performance on real dataset. It is due to the difference
between distributions of training and test samples. The GDL
and Ldiv decrease on long-term prediction. This is mostly
because the smoke tends to be dissipate after 50 steps, and
an image with dissipated smoke has smaller gradient and
divergence.

123

1394 J. Wen et al.

Table 4 Prediction error on real dataset

Avg. prediction error (50 frames) Next frame prediction error Long-term (50th frame) prediction error

Models MSE MAE GDL MSE MAE GDL MSE MAE GDL

[34] w/o Adv. 338.30 832.52 437.54 53.71 305.20 190.33 459.22 1036.26 485.14

[34] w/ Adv. 261.53 683.89 455.16 52.82 305.73 191.04 309.44 767.06 544.62

Temporal (phase 3) 186.47 576.72 213.30 127.78 475.55 244.53 203.75 615.86 208.16

+Detail (phase 4) 200.49 592.04 227.30 154.44 523.14 225.19 209.69 617.03 236.26

+Adv. (phase 5)

L2 192.80 583.31 302.76 150.60 513.04 311.77 207.70 614.85 291.56

L2 + Lgdl 196.34 590.01 262.31 164.52 542.61 246.04 208.95 614.70 252.68

L1 + Lgdl 187.06 569.52 252.97 113.58 430.52 223.10 204.39 615.22 247.87

L1 + Lgdl + L tp 187.13 569.11 252.30 110.90 424.47 222.52 204.95 615.02 246.38

L1 + Lgdl + L tp + Ldiv 187.28 568.47 251.86 111.30 425.65 223.04 204.82 614.28 246.23

Fine-tuned (phase 6) 99.70 373.55 132.51 24.41 207.49 111.67 131.06 428.99 137.55

Fig. 7 Prediction errors versus time. aMSE. Video prediction network
[34] produces very little error on the first frame, but its MSE increases
rapidly after a few frames. Our models have stable MSE over time. b

MAE. Similar to MSE. c GDL(L1). The GDLs of our models hardly
change with time and sometimes even decrease. d Ldiv. Our model
preserves mass over long-term prediction

6.2 Visual results

Visual results are shown in Fig. 8. We render the output and
the corresponding ground truth to show the effectiveness of
our method. The generated sequence of our model shows
similar shape and movement to the ground truth. There are
less details generated for the frames of long-term predic-
tion, but the overall shape remains similar. This can be seen

as a compromise between short-term prediction and long-
term prediction. In contrast, the video prediction network
[34] shows much details on the first few frames, but fails to
track the correct shape of smoke, especially for long-term
prediction.

Figure 9 visualizes the density field in pseudo-color to
show the effect of introducing temporal branch, detail branch,
and adversarial training. The images are from the evaluation

123

Deep generative smoke simulator: connecting simulated and real data 1395

Fig. 8 Visual results of real
dataset. Each row is a sequence
(frames 4, 8, 12, 16, 20, 24). All
images are rendered under the
same renderer. Our model shows
similar shape and motion to the
ground truth

Fig. 9 Visualization of density
field for results on simulated
dataset. Each row is a sequence
(frames 0, 5, 10, 15, 20, 25)

Fig. 10 Velocity field of our model and ground truth. The red and green
channels of the image represent the velocity on x and y directions. Our
model uses the prior knowledge to construct a detailed velocity field

dataset which is simulated by N–S solver. We can see from
Fig. 9 that themodel consisting of only temporal branch gives
blurred images. However, the overall trend of movement is
the same as the real data. Phase 4 introduces the detail branch,
and we can see a significant detail enhancement on each
frame, even on heavily blurred image (to the right of the first
row). In phase 5, a discriminator network is introduced for

Fig. 11 A demonstration showing that our method can match real-
captured data. Left: The next frame prediction of a sequence in real-
captured test dataset.Right:The raw captured video frame. Both images
have been adjusted for better reading using the same parameter

adversarial training. We can see that the values around peak
and valley points are getting nearer to the real value. Thus, we
can conclude that the temporal branch in this model is used to
generate a decent estimate of future sequences. It is blurred,
but on L2 metric it is near to the real sequences. A detail
branch adds details such as turbulences. Adversarial training
is useful for balancing the long-term trends and short-term

123

1396 J. Wen et al.

Fig. 12 Visual results on large real-captured images. For each row t = 0, 10, 20, 30. The images are in 1280 × 720

details. All of these parts are crucial for the network to learn
representative features of smoke sequences.

In Fig. 10, we visualize the velocity field of our result.
The velocity field of ground truth lacks details because it
is calculated by solving an optimization problem. However,
our model use the prior knowledge from the pre-train phases
of simulated data to construct a detailed velocity field. We
also render a smoke with the similar background color to the
real-captured video, as shown in Fig. 11. We can see that our
model canmatch real-captured video. A video of these visual
results is found in the supplement materials.

Figure 12 shows how to use our model on larger test
images. Due to the translation invariance of convolution ker-
nel and the locality of smoke motion, we can use larger
image in testing and generate arbitrarily large smoke image
sequences with only forward iterations. The results in Fig. 12
are generated by replacing the LSTM model to ConvLSTM
[48]. The testing data are from internet videos [10,54]. It
should be noticed that the videos are smoke in 3D motion,
which does not apply to the divergence loss, resulting in
less realistic visual effects. Also the images tend to be more
blurred with larger t .

The major limitation of this work is that we only focus
on 2D smoke sequences, but a majority of smoke simulation
applications require 3D scenes. Although the network struc-
ture proposed in this paper can be extended to 3D cases, the
network capacity limits the target resolution and mini-batch
size of training. Another issue limiting us on 2D scene is the

difficulty in capturing 3D real data. There exist researches
that capture real fluid data in 3D [14,15], but only for liquids
and are difficult to apply on real smoke scene. Currently,
using our method for 3D scene requires extra expansions,
such as using 2D to 3D extension methods such as [44], or
use a 3D coarse physically based solver and enhance it with
our method. Also, our method is only trained on free bound-
ary conditions to match the real-captured data. We expect
future works to extend our method to 3D complicated scenes
and to simulating other physical materials.

7 Conclusions

We have presented a novel architecture for generating realis-
tic smoke sequences using deep adversarial networks. Our
approach uses a temporal branch and a detail branch for
learning long-term and detail representations. To ensure the
practicality of our model, we set up environment to capture
real smoke videos and use them to improve our model. Our
model is trained using amulti-phase training strategy that can
be extended to similar networks. Results show that ourmodel
is capable of learning long-term features of smokemovement
as well as preserving details. Using rendering techniques, we
can produce smoke sequences that match real-captured ones.

123

Deep generative smoke simulator: connecting simulated and real data 1397

Funding This work was funded by National Key Basic Research Pro-
gram of China (No. 2016YFB0100900) and National Natural Science
Foundation of China (No. 61773231).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin,M., Ghemawat, S., Irving, G., Isard,M., et al.: Tensorflow: a
system for large-scalemachine learning. OSDI 16, 265–283 (2016)

2. Angelidis, A., Neyret, F.: Simulation of smoke based on vortex
filament primitives. In: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on computer animation, ACM,
pp. 87–96 (2005)

3. Angelidis, A., Neyret, F., Singh, K., Nowrouzezahrai, D.: A con-
trollable, fast and stable basis for vortex based smoke simulation.
In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics sym-
posium on computer animation, Eurographics Association, pp.
25–32 (2006)

4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. (2017).
arXiv:1701.07875

5. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical
flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

6. Brackbill, J., Ruppel, H.: Flip: a method for adaptively zoned,
particle-in-cell calculations of fluid flows in two dimensions. J.
Comput. Phys. 65(2), 314–343 (1986)

7. Brochu, T., Keeler, T., Bridson, R.: Linear-time smoke anima-
tion with vortex sheet meshes. In: Proceedings of the ACM
SIGGRAPH/Eurographics symposium on computer animation,
Eurographics Association, pp. 87–95 (2012)

8. Browning, M., Barnes, C., Ritter, S., Finkelstein, A.: Stylized
keyframe animation of fluid simulations. In: Proceedings of the
workshop on non-photorealistic animation and rendering, ACM,
pp. 63–70 (2014)

9. Chu, M., Thuerey, N.: Data-driven synthesis of smoke flows with
cnn-based feature descriptors. ACMTrans.Graph. 36(4), 69 (2017)

10. Digital meals Smoke atmosphere. (2012). http://digitalmeals.
blogspot.com/2012/03/smoke-atmosphere.html

11. Farimani, A.B., Gomes, J., Pande, V.S.: Deep learning the physics
of transport phenomena. (2017). arXiv:1709.02432

12. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In:
Proceedings of the 28th annual conference on computer graphics
and interactive techniques, ACM, pp. 15–22 (2001)

13. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley,D.,Ozair, S., Courville,A.,Bengio,Y.:Generative adversar-
ial nets. In: Advances in Neural Information Processing Systems,
vol. 27, pp. 2672–2680 (2014). http://papers.nips.cc/paper/5423-
generative-adversarial-nets.pdf

14. Gregson, J.,Krimerman,M.,Hullin,M.B.,Heidrich,W.: Stochastic
tomography and its applications in 3d imaging of mixing fluids.
ACM Trans. Graph 31(4), 52–61 (2012)

15. Gregson, J., Ihrke, I., Thuerey, N., Heidrich, W.: From capture
to simulation: connecting forward and inverse problems in fluids.
ACM Trans. Graph. 33(4), 139 (2014)

16. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville,
A.C.: Improved training of wasserstein gans. In: Advances in Neu-
ral Information Processing Systems, vol. 30, pp. 5769–5779 (2017)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735–1780 (1997)

18. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image transla-
tion with conditional adversarial networks. (2017). arXiv Preprint

19. Jeong, S., Solenthaler, B., Pollefeys, M., Gross, M., et al.: Data-
driven fluid simulations using regression forests. ACM Trans.
Graph. 34(6), 199 (2015)

20. Kalchbrenner, N., Oord, A., Simonyan, K., Danihelka, I., Vinyals,
O., Graves, A., Kavukcuoglu, K.: Video pixel networks. (2016).
arXiv:1610.00527

21. Kim, B., Liu, Y., Llamas, I., Rossignac, J.R.: Flowfixer: Using
bfecc for fluid simulation. Technical report, Georgia Institute of
Technology (2005)

22. Kim, B., Azevedo, V.C., Thuerey, N., Kim, T., Gross, M., Solen-
thaler, B.: Deep fluids: a generative network for parameterized fluid
simulations. (2018). arXiv:1806.02071

23. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-
resolution using very deep convolutional networks. In: Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 1646–1654 (2016)

24. Kim, T., Thürey, N., James, D., Gross, M.: Wavelet turbulence for
fluid simulation. In: ACMTrans. Graph. (2008). https://doi.org/10.
1145/1360612.1360649

25. Kingma, D.P., Welling, M.: Auto-encoding variational bayes.
(2013). arXiv:1312.6114

26. Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for
fragmentation of incompressible fluid.Nucl. Sci. Eng. 123(3), 421–
434 (1996)

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. In: Pereira, F., Burges,
C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in neural
information processing systems, vol. 25, pp. 1097–1105 (2012)

28. Lee, A.X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., Levine, S.:
Stochastic adversarial video prediction. (2018). arXiv:1804.01523

29. Li, X., Liu, L., Wu, W., Liu, X., Wu, E.: Dynamic bfecc character-
istic mapping method for fluid simulations. Vis. Comput. 30(6–8),
787–796 (2014)

30. Long, Z., Lu, Y., Ma, X., Dong, B.: Pde-net: learning pdes from
data. (2017). arXiv:1710.09668

31. Lotter, W., Kreiman, G., Cox, D.: Unsupervised learning of
visual structure using predictive generative networks. (2015).
arXiv:1511.06380

32. Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denois-
ing using separable 4d nonlocal spatiotemporal transforms. In:
Image processing: algorithms and systems IX, International Soci-
ety for Optics and Photonics, vol. 7870, p. 787003 (2015)

33. Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denois-
ing, deblocking, and enhancement through separable 4-d nonlocal
spatiotemporal transforms. IEEE Trans. Image Process. 21(9),
3952–3966 (2012). https://doi.org/10.1109/TIP.2012.2199324

34. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video
prediction beyond mean square error. (2015). arXiv:1511.05440.
https://doi.org/10.1109/TIP.2012.2199324

35. McAdams, A., Sifakis, E., Teran, J.: A parallel multigrid Pois-
son solver for fluids simulation on large grids. In: Proceedings
of the 2010 ACM SIGGRAPH/Eurographics symposium on com-
puter animation, Eurographics Association, pp. 65–74 (2010)

36. Meng, Z., Weixin, S., Yinling, Q., Hanqiu, S., Jing, Q., Heng, P.A.:
Vortex filaments in grids for scalable, fine smoke simulation. IEEE
Comput. Graph. Appl. 35(6), 60–68 (2015)

37. Mercier, O., Beauchemin, C., Thuerey, N., Kim, T.,
Nowrouzezahrai, D.: Surface turbulence for particle-based
liquid simulations. ACM Trans. Graph. 34(6), 202 (2015)

38. Mirza, M., Osindero, S.: Conditional generative adversarial nets.
(2014). arXiv:1411.1784

123

http://arxiv.org/abs/1701.07875
http://digitalmeals.blogspot.com/2012/03/smoke-atmosphere.html
http://digitalmeals.blogspot.com/2012/03/smoke-atmosphere.html
http://arxiv.org/abs/1709.02432
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1610.00527
http://arxiv.org/abs/1806.02071
https://doi.org/10.1145/1360612.1360649
https://doi.org/10.1145/1360612.1360649
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1804.01523
http://arxiv.org/abs/1710.09668
http://arxiv.org/abs/1511.06380
https://doi.org/10.1109/TIP.2012.2199324
http://arxiv.org/abs/1511.05440
https://doi.org/10.1109/TIP.2012.2199324
http://arxiv.org/abs/1411.1784

1398 J. Wen et al.

39. Okabe, M., Anjyor, K., Onai, R.: Creating fluid animation from
a single image using video database. Comput. Graph. Forum.
30(7), 1973–1982 (2011). https://doi.org/10.1111/j.1467-8659.
2011.02062.x

40. Okabe, M., Dobashi, Y., Anjyo, K., Onai, R.: Fluid volume mod-
eling from sparse multi-view images by appearance transfer. ACM
Trans. Graph. 34(4), 93 (2015)

41. Pfaff, T., Thuerey, N., Gross, M.: Lagrangian vortex sheets for
animating fluids. ACM Trans. Graph. 31(4), 112 (2012)

42. Radford, A., Metz, L., Chintala, S.: Unsupervised representation
learning with deep convolutional generative adversarial networks.
(2015). arXiv:1511.06434

43. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R.,
Chopra, S.: Video (language) modeling: a baseline for generative
models of natural videos. (2014). arXiv:1412.6604

44. Rasmussen, N., Nguyen, D.Q., Geiger, W., Fedkiw, R: Smoke
simulation for large scale phenomena. ACM Trans. Graph. 22(3),
703–707 (2003). https://doi.org/10.1145/882262.882335

45. Saito, M., Matsumoto, E., Saito, S.: Temporal generative adver-
sarial nets with singular value clipping. In: IEEE international
conference on computer vision (ICCV), pp. 2830–2839 (2017)

46. Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for
smoke, water and explosions. ACM Trans. Graph. 24(3), 910–914
(2005). https://doi.org/10.1145/1073204.1073282

47. Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An uncon-
ditionally stable maccormack method. J. Sci. Comput. 35(2–3),
350–371 (2008)

48. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.-
C.: Convolutional lstm network: a machine learning approach for
precipitation nowcasting. Adv. Neural Inf. Process. Syst. 28, 802–
810 (2015)

49. Shrivastava,A., Pfister, T., Tuzel,O., Susskind, J.,Wang,W.,Webb,
R.: Learning from simulated and unsupervised images through
adversarial training. In: The IEEE conference on computer vision
and pattern recognition (CVPR), vol. 3, p. 6 (2017)

50. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. (2014). arXiv:1409.1556

51. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised
learning of video representations using lstms. In: International con-
ference on machine learning, pp. 843–852 (2015)

52. Stam, J.: Stable fluids. In: Proceedings of the 26th annual con-
ference on computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., pp. 121–128 (2015)

53. Thuerey, N.: Interpolations of smoke and liquid simulations. ACM
Trans. Graph. 36(1), 3 (2017)

54. Thuong, H.: Video background HD—smoke HD—style proshow.
(2014). https://www.youtube.com/watch?v=B6H34IccWks

55. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerat-
ing Eulerian fluid simulation with convolutional networks. (2016).
arXiv:1607.03597

56. Um, K., Hu, X., Thuerey, N.: Liquid splash modeling with neural
networks. Comput. Graph. Forum. 37(8), 171–182 (2018). https://
doi.org/10.1111/cgf.13522

57. Wang, C., Wang, C., Qin, H., Zhang, T.: Video-based fluid recon-
struction and its coupling with sph simulation. Vis. Comput. 33(9),
1211–1224 (2017)

58. Wen, J., Ma, H.: Real-time smoke simulation based on vorticity
preserving lattice Boltzmann method. Vis.Comput. 35(9), 1279–
1292 (2019)

59. Wiewel, S., Becher, M., Thuerey, N.: Latent-space physics:
Towards learning the temporal evolution of fluid flow. (2018).
arXiv:1802.10123

60. Xie, Y., Franz, E., Chu, M., Thuerey, N.: tempogan: a temporally
coherent, volumetric gan for super-resolution fluid flow. (2018).
arXiv:1801.09710

61. Yoon, J.C., Kam, H.R., Hong, J.M., Kang, S.J., Kim, C.H.: Proce-
dural synthesis using vortex particle method for fluid simulation.
Comput. Graph. Forum. 28(7), 1853–1859 (2009). https://doi.org/
10.1111/j.1467-8659.2009.01563.x

62. Zhang, X., Bridson, R., Greif, C.: Restoring the missing vorticity
in advection-projection fluid solvers. ACMTrans. Graph. 34(4), 52
(2015)

63. Zhu,Y., Bridson, R.: Animating sand as a fluid. ACMTrans. Graph.
24(3), 965–972 (2005)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

JinghuanWen received the B.Eng.
degree in Electronic Engineering
from Tsinghua University, Beijing,
China, in 2014, where he is cur-
rently pursuing the Ph.D degree.
His research interests include com-
puter graphics, physically based
simulation, and deep learning.

Huimin Ma received the M.S.
and Ph.D. degrees in Mechanical
Electronic Engineering from Bei-
jing Institute of Technology, Bei-
jing, China, in 1998 and 2001,
respectively. She is an associate
professor in the Department of
Electronic Engineering of Tsinghua
University and the director of 3D
Image Simulation Lab. She worked
as an visiting scholar in Univer-
sity of Pittsburgh in 2011. She is
also the executive director and the
vice secretary general of China
Society of Image and Graphics.

Her research and teaching interests include 3D object recognition
and tracking, system modeling and simulation, psychological base of
image cognition.

123

https://doi.org/10.1111/j.1467-8659.2011.02062.x
https://doi.org/10.1111/j.1467-8659.2011.02062.x
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1412.6604
https://doi.org/10.1145/882262.882335
https://doi.org/10.1145/1073204.1073282
http://arxiv.org/abs/1409.1556
https://www.youtube.com/watch?v=B6H34IccWks
http://arxiv.org/abs/1607.03597
https://doi.org/10.1111/cgf.13522
https://doi.org/10.1111/cgf.13522
http://arxiv.org/abs/1802.10123
http://arxiv.org/abs/1801.09710
https://doi.org/10.1111/j.1467-8659.2009.01563.x
https://doi.org/10.1111/j.1467-8659.2009.01563.x

Deep generative smoke simulator: connecting simulated and real data 1399

Xiong Luo received the Ph.D.
degree in computer applied tech-
nology from Central South Uni-
versity, Changsha, China, in 2004.
He is currently a Professor with
the School of Computer and Com-
munication Engineering, Univer-
sity of Science and Technology
Beijing, Beijing, China. His cur-
rent research interests include
machine learning, computer vision,
and computational intelligence. He
has published extensively in his
areas of interest in several jour-
nals, such as IEEE Transactions

on Industrial Informatics, IEEE Transactions on Human-Machine Sys-
tems, and IEEE Transactions on Network Science and Engineering.

123

	Deep generative smoke simulator: connecting simulated and real data
	Abstract
	1 Introduction
	2 Related work
	3 Temporal and detail generator networks
	3.1 Temporal branch
	3.2 Detail branch

	4 Adversarial training on real data
	4.1 Generative adversarial networks
	4.2 Loss functions
	4.3 Training phases

	5 Implementations
	5.1 Network configurations
	5.2 Capturing real smoke

	6 Results and discussions
	6.1 Quantitative evaluation
	6.2 Visual results

	7 Conclusions
	References

