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Abstract
In this work, we propose 3D Residual Attention Networks (3D RANs) for action recognition, which can learn spatiotemporal
representation from videos. The proposed network consists of attention mechanism and 3D ResNets architecture, and it can
capture spatiotemporal information in an end-to-end manner. Specifically, we separately add the attention mechanism along
channel and spatial domain to each block of 3DResNets. For each sliced tensor of an intermediate featuremap, we sequentially
infer channel and spatial attention maps by channel and spatial attention mechanism submodules in each residual unit block,
and the attention maps are multiplied to the input feature map to reweight the key features. We validate our network through
extensive experiments in UCF-101, HMDB-51 and Kinetics datasets. Our experiments show that the proposed 3D RANs are
superior to the state-of-the-art approaches for action recognition, demonstrating the effectiveness of our networks.

Keywords Action recognition · 3D ResNets · Video classification · Attention mechanism

1 Introduction

Human action recognition has been a very hot and challeng-
ing research task in recent decades, due to its potentially
huge application value in the real world, such as surveillance
systems, video indexing and human–computer interaction
[1,2]. Motivated by the notable success of 2D convolu-
tional neural networks (2D CNNs) in image domain, many
advanced deep models are introduced into video domain for
action recognition recently [3–8], which have obtained better
recognition accuracy compared to previous methods [9–12].
Human action recognition in video domain needs to consider
not only static appearance in each frame but also temporal
relation across multiple frames. Therefore, an efficient deep
architecture should be able to capture spatiotemporal infor-
mation and obtain high performance on action recognition
task.

Since the introduction of deep networks to this field, there
are two different categories for video classification: (1) two-
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stream CNNs [13], (2) 3D CNNs [14] and (3) 2D CNNs with
LSTM [15–17]. Two-stream CNNs use spatial and tempo-
ral streams to capture appearance (RGB frames) and motion
(stacked optical flow) information. Although it is an effective
method, there is still a signification limitation. It can only rep-
resent motion information based on optical flows. We need
to train two networks and calculate optical flows, which is
expensive to compute. In order to overcome these drawbacks,
using 3D CNNs in an end-to-end deep networks to capture
spatiotemporal information from stack RGB frames is an
effective method. 3D CNNs perform 3D convolution and 3D
pooling.However, the performance of 3DCNNs is lower than
two-stream CNNs. 2D CNNs with LSTM capture long-term
temporal information from videos, but it is difficult to learn
good representation for finer temporal relation in short-term
frame.

In this paper, we address these problems by proposing a
new deep network architecture, named 3D Residual Atten-
tion Networks (3D RANs). Our 3D RANs are composed of
3D ResNets [18] and attention mechanism [19–21]. We use
the 3D Residual Networks (3D ResNets) as our base net-
works owing to their good performance in training very deep
neural network, which relieves the gradient vanishing prob-
lem by shortcut connection. The basic architecture of 3D
RAN module is illustrated in Fig. 1. We sequentially add
the channel and spatial attention module in the 3D ResNets
building block to focus on meaningful feature along two
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Fig. 1 Diagram of 3D RAN
module. For an input 3D signal,
we first use a 3D convolution
operation to fuse the spatio-
temporal information to obtain
the intermediate feature maps
which are feed into the channel
and spatial attention module
separately to generate the
refined feature maps

dimensions: channel and spatial axis, so that each building
block of 3D RAN can learn what and where to focus in the
channel and spatial domain.As a result,weuse our network to
focus on important features and suppress unimportant ones.

A 3D Residual Attention Network is generated by sim-
ply stacking multiple 3D RAN modules. We can also use
one or more 3D RAN modules instead of its counterparts
in the original network. Moreover, the depth can be directly
extended to hundreds of layers. We validated the effective-
ness of our attention modules through numerous ablation
experiments. At the same time, compared with the base 3D
ResNet and others state-of-the-art methods, our network can
greatly improve the performance of action recognition on
multiple benchmark datasets (UCF101 [22], HMDB51 [23]
and Kinetics [24]).

2 Related work

In this section, we provide a simple overview about 3D
ResNets and attention mechanism.

3D ResNet based In the field of video action recogni-
tion, we not only capture features from spatial dimensions
but also capture motion information encoded between mul-
tiple consecutive frames. Since the success of the residual
network (ResNet) [25] in image classification, there were
several attempts to build effective residual architecture for
video classification and action recognition. Feichtenhofer et
al. [26] introduced spatiotemporal ResNets which combined
two-stream and residual network to improve action recogni-
tion performance. They show the architecture of ResNets is
effective for action recognition with 2D CNNs. Moreover,
recent studies extended the ResNet architecture to 3D CNNs
to learn spatiotemporal information for action recognition.
Hara et al. [18] extended 2D-based ResNet to the 3D ones, to
capture spatiotemporal features. 3DResNets perform convo-
lutional andpooling operatingwith the kernel size of 3×3×3.
3D ResNets also introduce shortcut connections that bypass
convolutional layer directly to the next layer. The connec-
tions pass through the gradient flows of network from later
layers to early layers and ease training of very deep network.
The 3D Residual Networks have been widely used in many
subsequent studies on action recognition, action detection,
video captioning and hand gesture detection.

To capture long-term temporal information from videos,
one general method is to use LSTM to completely model
a video. Li et al. [27] proposed a bidirectional LSTM for
action recognition by combining the segmented frames in the
temporal domain and the local key information in the spatial
domain. Song et al. [28] developed an LSTM network with
attention modules to allocate different levels of attention on
spatial and temporal dimension.

Attention mechanism It is well known that attention plays
an important role in the human visual system [29–31]. By
quickly scanning the whole scene, human vision obtains the
target area that needs to be focused on, and then invests
more attention resources in this area to obtain more detailed
information about the target. There are two main aspects
of attention mechanism: 1. Decide which part of the input
needs to focus on. 2. Allocate available processing resources
toward the most informative components of the input signal
[21,32,33].

Recently, many studies attempt to incorporate attention
mechanisms to improve the performance of convolutional
neural networks (CNNs) in a range of visual tasks, such as
image classification, image location and video understand-
ing [34,35]. Wang at al. [36] introduced Residual Attention
Network which use a trunk-and-mask module to achieve
attention mechanism. By reweighting the feature map, the
network not only has excellent performance, but also is
robust to input noise. More relevant to our work, Hu et
al. [37] propose Squeeze-and-Excitation module to recali-
brate channel-wise feature response. They use global average
pooling feature to explicitly model independencies between
channels and compute channel-wise attention. Based on this,
Woo et al. [38] introduced CBAM module sequentially,
which infers attentionmaps along channel and spatial dimen-
sions. Then the attention maps are multiplied to the input
feature maps for adaptive feature refinement. They decom-
pose the learning process to learn channel attention and
spatial attention in turn. Compared with calculating 3D fea-
turemaps directly, the separate attention process has achieved
excellent performancewith less computation cost and param-
eters and can be inserted into any preexisting classic CNN
architectures.

Toward action recognition, Sharma et al. [39] proposed
a recurrent mechanism from RGB data, which integrates
convolutional features from different parts of a space–time
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volume. Kim et al. [40] proposed Space-Time Cubic Puzzles
for self-supervised video representation learning from unla-
beled videos dataset. Wang et al. [41] proposed a non-local
block to model long-range relations among pixels based on
the self-attention mechanism. The non-local operation com-
putes the response at a position as a weighted sum of the
features at all positions. All positions can be spatial, tempo-
ral and spatiotemporal domains.

3 3D Residual Attention Networks

Our 3D Residual Attention Networks are constructed by
stackingmultiple 3D attentionmodules. Each attentionmod-
ule is generated by adding channel and spatial attention
mechanisms to the 3D ResNets counterpart module. In this
section, we start with a detailed description for our 3D RAN
module. Then, we introduce our simple and efficient network
architecture.

3.1 3D RANmodules

Given a volume F ∈ R
T×H×W×C as input, where C refers

to the number of channels, T is the temporal duration and
H and W denote the height and width in the spatial domain,
we first perform 3D convolution (a convolution or a set of
convolutions) operation on the input signal to extract spatial–
temporal features and generate an intermediate feature map
F ′ ∈ R

T ′×H ′×W ′×C ′
. Kernels of a 3D convolutional layer

can be represented as a 4D tensor K ∈ R
nk×tk×hk×wk (we

omit the channel dimension for simplicity), where nk is the
number of kernels, tk is the temporal depth of kernel and hk
and wk are the kernel size in the spatial domain. The process
of 3D convolution can be formulated as:

F ′ = K ∗ F, where

F ′
x,y,z =

[
f 1x,y,z, f 2x,y,z, . . . , f nkx,y,z

]T
,

f nx,y,z =
tk∑
t=0

hk∑
h=0

wk∑
w=0

Kn
t,h,w · F(x+t)(y+h)(z+w). (1)

Here * denotes convolution, Kn
t,h,w denotes the value at

(t, h, w) of pth filter, F(x+t)(y+h)(z+w) represents the values
that start from the position (x, y, z) in F and have the same

size as the kernel Kn . f nx,y,z denotes the value at (x, y, z) on
the nth output feature map.

For each sliced tensor qt ∈ R
H′×W′×C′

in F ′, qt repre-
sents the sliced tensor of intermediate feature map F ′ from
time t to time t+1 and t ∈ (0, T − 1). We sequentially add
a channel attention module and a spatial attention module
to infer a channel attention map Mc and a spatial attention
map Ms , illustrated in Fig. 1. Finally, the attention maps are
sequentially multiplied to the sliced tensor to reweight the
output of each 3D RAN module. The attention process of a
sliced tensor qt can be expressed as [38]:

q
′
t = Mc (qt ) ⊗ qt , (2)

q
′′
t = Ms

(
q

′
t

)
⊗ q

′
t , (3)

where⊗ refers to element-wisemultiplication. q
′
t is the chan-

nel attention output and q
′′
t is the final refined output. For

simplicity, we only discuss the specific computation process
of attention maps for a sliced tensor qt ∈ R

H ′×W ′×C ′
in

Sects. 3.1.1 and 3.1.2. Other sliced tensors repeat this pro-
cess.

3.1.1 Channel attention module

Weinfer a channel attentionmapbyutilizing the relationships
within the feature channels. Channel attention focuses on
what are the meaningful channels related to output target.
Our goal is to improve the learning ability of the network by
reweighting each channel signal in the intermediate feature
maps. Figure 2 depicts the specific computation process of
channel attention map for a sliced tensor U ∈ R

H ′×W ′×C ′

in the intermediate feature map (we use U instead of qt for
simplicity).

In order to capture the channel attention map efficiently
in each sliced tensor, we first squeeze the spatial dimen-
sion H ′ × W ′ of the tensor to generate a channel descriptor
F, which represents average-pooled feature [37]. This is
achieved by using the global average pooling operation. The
c-element of F is computed as:

Fc = 1

H ′ × W ′
H ′∑
i=1

W ′∑
j=1

Uc(i, j). (4)

Fig. 2 Diagram of channel
attention submodule in each
sliced tensor of the intermediate
feature map. The channel
attention submodule uses
average pooling outputs along
spatial axis with MLP network
to generate channel attention
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The channel descriptor is then forwarded to a multi-layer
perceptron (MLP) with one hidden layer to fully capture
channel-wise dependencies. To limit model complexity and
reduce the number of parameters, the hidden activation layer
size is set toR1×1×C ′/r , where r is reduction ratio and usually
sets to 16 for the best performance [38]. In short, the overall
channel attention is summarized as:

MC (F) = Bs(σ (MLP(F))) = Bs (σ (W1 (δ (W0F))) ,

(5)

where σ and δ separately refer to the sigmoid and ReLU
function, W0 ∈ R

C ′/r×C ′
and W1 ∈ R

C ′×C ′/r . Note that
W0 and W1 are the weights of MLP. Bs denotes broadcast
channel attention values along the spatial dimension. Then,
we use channel-wise multiplication between the feature map
U and the Mc (F) to get the channel attention feature map.

3.1.2 Spatial attention module

We infer a spatial attention map by utilizing spatial rela-
tionships of features. Different from the channel attention,
the spatial attention focuses on where we need to pay more
attention in an intermediatemap. Figure 3 depicts the specific
computation process of spatial attention map for a channel
refined feature.

In order to compute spatial attention feature map effi-
ciently, we first squeeze the channel information of feature
map to generate a 2D spatial descriptor H ∈ R

H ′×W ′×1.
This is achieved by using the global average pooling opera-
tion. Using pooling operating along the channel axis is shown
to be effective in highlighting informative regions [43]. Ele-
ments at coordinates (i, j) of H are computed as:

Hi, j = 1

C ′
C ′∑
k=1

F ′
i, j (k). (6)

We then use a convolution layer to infer a spatial attention
map Ms (F) ∈ R

H ′×W ′×C ′
, which encodes where to empha-

size and where to suppress. The detail process is summarized
as follows:

MS(F) = Bc

(
σ

(
f 7×7(Avg P ool(F ′))

))

= Bc

(
σ

(
f 7×7(H)

))
, (7)

where σ refers to the sigmoid function and f 7×7 denotes
a convolutional operation with the kernel size of 7 × 7. Bc

denotes broadcast spatial attention values along the chan-
nel dimension. Then, we use element-wise multiplication
between the channel refined feature F

′
and the Ms (F) to

reweight each pixel value and get the spatial refined feature
map.

Note Two attention modules, channel and spatial, can be
placed in various manners: parallel or sequentially man-
ner. We opt for simplest but the most effective, sequential
channel—spatial. The effect of different module placement
manners is demonstrated in Sect. 4.2.

3.2 Network architecture

After introducing the 3D RAN modules, we show the orig-
inal 3D ResNet-34 [46] and our 3D RAN-34 architecture
specifications in Table 1. For simplicity, we omit the batch
normalization [44] layer and ReLU layer in the network
architectures. Each network uses clipswith the size of 3 chan-
nels × 16 frames × 112 pixels × 112 pixels as input to keep
balance between model capacity and processing efficiency.
A spatial down-sampling is performed at Conv1_X with a
stride of 1×2×2. Then amax pooling layer beforeConv2_X
with a stride of 2× 2× 2 is also applied for down-sampling,
and three spatiotemporal down-samplings are performed at
Conv3_X ,Conv4_X andConv5_X with a stride of 2×2×2.
When the number of feature maps increased, we use projec-
tion shortcut to match dimension. The difference between
our networks and original 3D ResNets is that we add some
fully connected and convolutional layers after the last 3D
convolution layer of each module.

3.3 Implementation

Training and evaluation We use stochastic gradient descent
(SGD) with momentum of 0.9 to train our network models
on Kinetics training set from scratch. Initial learning rate is
0.1 and is divided by 10 after the validation loss saturates.
For all datasets, the dropout ratio and weight decay rate are
set to 0.5 and 10e−3, respectively. The optimization is done
at 150 epochs.

Fig. 3 Diagram of spatial
attention submodule in an sliced
tensor of the intermediate
feature map. The spatial
submodule uses average pooling
outputs along channel axis and
forwards them to convolutional
layer to generate spatial
attention
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Table 1 3D RAN architecture
details for the Kinetics dataset:
convolution residual blocks are
shown in external brackets, next
to the number of times each
block is repeated in the stack

Layer name Output size Architecture

3D ResNet-34 3D RAN-34

conv1 16 × 56 × 56 7 × 7 × 7, 64, stride1 × 2 × 2

conv2_x 8 × 28 × 28 3 × 3 × 3,maxpool, stride2

[
conv, 3 × 3 × 3, 64
conv, 3 × 3 × 3, 64

]
× 3

⎡
⎢⎢⎣
conv, 3 × 3 × 3, 64
conv, 3 × 3 × 3, 64[

f c, 16, 64
conv, 7 × 7

]
× 8

⎤
⎥⎥⎦ × 3

conv3_x 4 × 14 × 14

[
conv, 3 × 3 × 3, 128
conv, 3 × 3 × 3, 128

]
× 4

⎡
⎢⎢⎣
conv, 3 × 3 × 3, 128
conv, 3 × 3 × 3, 128[

f c, 16, 128
conv, 7 × 7

]
× 4

⎤
⎥⎥⎦ × 4

conv4_x 2 × 4 × 7

[
conv, 3 × 3 × 3, 256
conv, 3 × 3 × 3, 256

]
× 6

⎡
⎢⎢⎣
conv, 3 × 3 × 3, 256
conv, 3 × 3 × 3, 256[

f c, 16, 256
conv, 7 × 7

]
× 2

⎤
⎥⎥⎦ × 6

conv5_x 1 × 4 × 4

[
conv, 3 × 3 × 3, 512
conv, 3 × 3 × 3, 512

]
× 3

⎡
⎢⎢⎣
conv, 3 × 3 × 3, 512
conv, 3 × 3 × 3, 512[

f c, 16, 512
conv, 7 × 7

]
× 1

⎤
⎥⎥⎦ × 3

1 × 1 × 1 Global average pool, 400-d fully connected, softmax

Attention blocks (channel + spatial) are shown in inner brackets, next to the number of each inner block is
parallel place in the stack. The values followed by fc and conv indicate the output dimension of two fully
connected layers and convolution kernel size

During training, we will perform data augmentation for
all training datasets to enhance the perform of network archi-
tectures. Our data augmentation includes temporal sampling,
randomclipping, brightness and contrast adjustment [45].We
first select the temporal location of a sample frame, and we
randomly select the remaining 15 frames around the selected
frame. If the videos are not enough, we can loop the videos
many times until reaching 16 frames. Next, we use random
cropping strategy which selects a spatial position from 4
corners and 1 center. In addition to the positions, we use
multi-scale cropping methods with scales selected from to
train our networks. The procedure is similar to [45]. Finally,
we spatially resize each frame to 112×112 pixels. All oper-
ations are consistent across all frames in each training clip.

During evaluation, we generate test clips (16-frame clips)
by sliding window manner on kinetics validation set. Each
clip uses spatially cropped around center position with scale
1. We use trained network to evaluate each clip in validation
set and get the class scores. The maximum recognition score
denotes the corresponding class label.

4 Experiments

4.1 Dataset

We evaluate our models on three well-known benchmark
datasets: UCF-101 [22], HMDB-51 [23] and Kinetics [24].

UCF101 is a realistic action videos database, collected
from YouTube, with 13320 short videos from 101 differ-
ent categories. The action categories can be divided into five
types: (1)Human–Object interaction, (2)Body-MotionOnly,
(3) Human–Human Interaction, (4) Playing Musical Instru-
ments, and (5) Sports. The average length of each video is 7
seconds. This dataset is random spilt into three subdatasets,
70% of which are used to train and 30% for testing.

HMDB-51 was released by Brown University, most of
which comes from movies and some from public databases
and online video libraries such as YouTube. The dataset con-
tains 6766 videos, divided into 55 different categories, each
of which contains at least 101 samples. Similar to UCF-101,
the videos were temporally trimmed. This dataset provides 3
subdatasets, 70% of which are used to train 30% for testing.

Kinetics contains approximately 300,000 video clips from
400 different categories. Each clip is about 10 seconds long
and is tagged with an action category. All clips are subject
to multiple rounds of manual annotation, so the quality of
annotation is extremely high. These actions include a wide
range of human–object interactions and human–human inter-
actions.

4.2 Ablation studies

Arrangement of the attention submodules In this experiment,
we verify the effectiveness of the basic network with dif-
ferent ways of arranging attention submodules. The design
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of proposed network mentioned above can be spilt into two
steps: We first infer and add the channel to attention sub-
module and then the same to spatial attention submodule.
Except this manner, we also could first place a spatial atten-
tion submodule and then a channel attention submodule or
two submodules can be added in a parallel. We compare
different ways of adding the channel and the spatial atten-
tion submodules: single channel, single spatial, sequential
channel–spatial, sequential spatial–channel and parallel use
two attention submodules.

We use 3D ResNet-34 as the basic network architecture.
Hara et al. [46] showed Kinetics dataset is big enough to
train 3D ResNet-34 without over-fitting; thus, all networks
are trained at kinetics dataset from scratch using its train-
ing and validation datasets. Table 2 shows the comparison
results of using different attention submodules. From these
results, we can find that the accuracy of using the single
channel attention submodule is better than using the single
spatial attention submodule and both higher than the original
network. We can also observe that adding channel attention
maps and spatial attention maps simultaneously could fur-
ther increase performance. Obviously, the order of arranging
channel and spatial submodules may affect the performance
of overall network. Adding feature maps in sequence can
achieve better performance than doing in parallel. In addi-
tion, the channel first order could get the best performance.

By comparing the experimental results in Table 2, we
choose to arrange the channel and spatial submodules
sequentially as our final module design, as shown in Fig. 1.
Our final module (3D RAN) outperforms benchmark net-
work (3D ResNet-34) by a certain margin with a 1.6%
improvement on top-1 accuracy and a 1.3% improvement
on top-5 accuracy, as shown in Table 2.
Comparison with the Baseline 3DCNN on KineticsWe com-
pare the 3DRANs against 3DResNetswith different network
depths. All networks are trained on theKinetics datasets from
scratch. As shown in Table 3, the 3D RANs consistently
improved the performance of action recognition separately
under different depths, demonstrating that introducing atten-
tion mechanism to 3D ResNets works well on Kinetics.

Particularly, the 3D ResNet-34 has achieved validation
accuracy over top-1 of 61.7% and top-5 of 83.2% and even
outperforms the deeper ResNet-50 network (61.3% over
top-1 accuracy and 83.1 top-5 accuracy) with very fewer
parameters. We can also see that accuracy over top-1 and
top-5 increases with the raise in network depth. This result
supports that Kinetics dataset is sufficiently large for training
3D CNNs, just like ImageNet dataset for 2D CNNs.

Note We can find that attention modules can improve net-
work performance at minimal addition parameters.
Comparison with the Baseline 3D CNN on UCF-101 and
HMDB-51. We further compare our proposed 3D RANs

Table 2 Action recognition
accuracy rates (%) for different
ways of arranging attention
submodules on the kinetics
validation set

Method Params Top-1 Top-5 Average

3D ResNet-34 [46] 63.72M 60.1 81.9 71.0

3D ResNet-34 + channel 63.96M 61.2(1.1) 82.6(0.7) 71.9(0.9)

3D ResNet-34 + spatial 63.73M 61.0(0.9) 82.4(0.5) 71.7(0.7)

3D ResNet-34 + channel + spatial 63.97M 61.7(1.6) 83.2(1.3) 72.5(1.5)

3D ResNet-34 + spatial + channel 63.97M 61.5(1.4) 83.0(1.1) 72.3(1.3)

3D ResNet-34 + channel & spatial in parallel 63.97M 61.4(1.3) 82.9(1.0) 72.2(1.2)

It can be observed that 3D ResNet with sequential channel and spatial attention submodule is the best com-
bining strategy. The numbers in brackets denote the performance improvement over the basic network

Table 3 Accuracy rates (%) on Kinetics validation set with data augmentation

Original 3D RAN

Params Top-1 Top-5 Average Params Top-1 Top-5 Average

3D ResNet-18 [46] 33.41M 54.2 78.1 66.1 33.53M 55.3(1.1) 79.0(0.9) 67.2(1.1)

3D ResNet-34 [46] 63.72M 60.1 81.9 71.0 63.97M 61.7(1.6) 83.2(1.3) 72.5(1.5)

3D ResNet-50 [46] 47.02M 61.3 83.1 72.2 50.89M 62.9(1.6) 84.1(1.0) 73.5(1.3)

3D ResNet-101 [46] 86.06M 62.8 83.9 73.3 94.39M 63.3(0.5) 84.5(0.6) 73.9(0.6)

3D ResNet-152 [46] 118.22M 63.0 84.4 73.7 130.49M 63.5(0.5) 84.8(0.4) 74.2(0.5)

3D ResNet-200 [46] 127.42M 63.1 84.4 73.7 141.78M 63.7(0.6) 84.8(0.4) 74.3(0.6)

Average is averaged accuracy over top-1 and top-5. The original column indicates the results experimented in original papers. The 3D RAN
column indicates the experiment results after we added the attention module in original networks. The numbers in brackets denote the performance
improvement over the original networks
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Table 4 Top-1 accuracy rates
(%) on UCF-101 and HMDB-51
datasets with data augmentation

Method Pre-trained Original 3D RAN

UCF-101 HMDB-51 UCF-101 HMDB-51

3D ResNet-18 None (scratch) 42.4 17.1 47.6 21.3

3D ResNet-18 Kinetics 84.4 56.4 86.7 58.3

3D ResNet-34 Kinetics 87.7 59.1 88.6 60.5

3D ResNet-50 Kinetics 89.3 61.0 89.9 61.8

3D ResNet-101 Kinetics 88.9 61.7 89.4 62.4

3D ResNet-152 Kinetics 89.6 62.4 90.5 63.4

3D ResNet-200 Kinetics 89.6 63.5 91.0 64.7

All accuracies are averaged over three splits

with advanced methods on two common datasets, UCF-101
and HMDB-51 datasets. According to previous experiments,
since the parameters of 3D CNNs are far more than 2D coun-
terparts, training them in a relatively small data set will lead
to over-fitting problems and have lower performance com-
pared to 2DCNNs pre-trained in large-scale datasets, such as
ImageNet. Specifically, we use 3D ResNet-18 and 3D RAN-
18 as our test model, which are the shallowest model in all
modules, and we trained these two models from scratch on
UCF-101 and HMDB-51, respectively. Table 4 reports the
comparison result in terms of accuracy over top-1. It can be
seen that both ResNet-18 and RAN-18 pre-trained on kinet-
ics obviously outperformed counterparts trained onUCF-101
and HMDB-51 from scratch. These results show that the net-
work has suffered seriously over-fitting problems when they
trained from scratch in UCF-101 and HMDB-51 datasets.
So, we trained our model in Kinetics datasets and fine-tune
on UCF-101 and HMDB-51 datasets, respectively. We can
also notice from Table 4 that the recognition performance
gradually increases when the layers increase. At the same
time, 3D RANs consistently outperform all baselines net-
works significantly across different depth. Moreover, unlike
the results of training on the Kinetics dataset in Table 3, the
RAN-200 still improves recognition accuracy on these two
datasets.We think this is because the fine-tuning only trained

the full connected layer, and the number of parameters for
pre-trained is the same from RAN-50 to RAN-200. These
results show that the pre-trained early layers of RAN-200
are more suitable for UCF-101 and HMDB-51 datasets.

4.3 Comparison with the state-of-the-art methods

Table 5 shows the accuracy of our 3D RAN-200, which
achieved best performance on both datasets when compared
with other state-of-the-art network architectures. Our 3D
RANs capture spatial–temporal information using only RGB
frames as input. For fairness, all networks in Table 5 use
only RGB frames as input, which is reported by these works.
The results are achieved by using inputs at length of 16
frames. Simultaneously, for 3D networks, we pre-trained on
the Kinetics dataset, and for 2D networks, we pre-trained on
the ImageNet dataset. Here, we can see that RAN-200 also
achieves the best performance compared with C3D, P3D,
two-stream CNN and TDD. In particular, we can see TSN
and two-stream I3D, which use optical flow and RGB frames
as input, achieved higher accuracy. We believe that the time
domain information provided by optical flow directly is more
than we extracted through 3D convolution, but it is time-
consuming to train two networks and calculate optical flow.
Based on these results, we can draw a conclusion that out pro-

Table 5 Action recognition
accuracy rates (%) comparison
with the state of the art on
UCF-101 and HMDB-51
datasets with only RGB frames
as input

Method Dim Pre-trained UCF-101 HMDB-51

RAN-200 3D Kinetics 91.0 64.7

ResNeXt-101 [47] 3D Kinetics 90.7 63.8

C3D [1] 3D Kinetics 82.3 –

P3D ResNet [48] 3D Kinetics 88.6 –

MiCT-Net [4] 3D/2D Kinetics+ImageNet 88.9 63.8

Two-stream I3D [3] 3D Kinetics+ImageNet 98.0 80.7

Two-stream CNN [13] 2D ImageNet 88.0 59.4

TDD [4] 2D ImageNet 90.3 63.2

TSN [6] 2D ImageNet 94.0 68.5

All accuracies are averaged over three splits. Dim denotes the dimension of convolution kernel
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posed 3D RAN significantly promoted the research of video
classification on multiple benchmark datasets.

4.4 Visualization

In order to understand the role of the attention mechanism
more intuitively, we apply the Grad-CAM to basic network
architectures (3D ResNet-34 and 3D RAN-34) to visualize
some video sequences from the UCF101 validation set in
Fig. 4. The frames are selected from the long video sequence.
From the Grad-CAM mask which covers the object regions
in the input, we can clearly see that they are important

Fig. 4 Examples of visualization results of 3DResNet-34 and3DRAN-
34 on the UCF101 validation set

regions for predictions. We can also notice that, compared to
3D ResNet-34, 3D RAN-34 generates more accurate mask
regions for prediction.

5 Conclusion

In this paper, we propose the 3D Residual Attention Net-
works (3D RANs) by introducing the attention mechanism
into residual networks (ResNets). The benefits of our network
are that it can significantly improve the capacity of capturing
spatiotemporal information. Extensive experiments demon-
strate that our 3D RAN outperforms traditional 3D ResNets
onKinetics dataset and other state-of-the-artmethods on both
UCF-101 and HMDB-51 datasets with RGB input.

One explanation of our network that could obtain great
performance improvements for action recognition is that our
network could learn what and where to emphasize or sup-
press.We reweight each channel and pixel of the intermediate
feature map. This allows the system to focus more on find-
ing useful information in the input data. In this way, we can
enhance the representation of the network. In our futurework,
we will transfer our networks to other video-related tasks.

Acknowledgements This work was supported in part by the 2016
Guangzhou Innovation and Entrepreneurship Leader Team under
Grant CXLJTD-201608 and the Development Research Institute of
Guangzhou Smart City.

References

1. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learn-
ing spatiotemporal features with 3d convolutional networks. In:
Proceedings of the IEEE International Conference on Computer
Vision, pp. 4489–4497 (2015)

2. Li, Y., Wang, Z., Yang, X., Wang, M., Poiana, S.I., Chaudhry,
E., Zhang, J.: Efficient convolutional hierarchical autoencoder for
human motion prediction. Vis. Comput. 35, 1143–1156 (2019)

3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new
model and the kinetics dataset. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4724–4733 (2017)

4. Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-
pooled deep-convolutional descriptors. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
4305–4314 (2015)

5. Wang, X., Farhadi, A., Gupta, A.: Actions∼ transformations. In:
Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 2658–2667 (2016)

6. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van
Gool, L.: Temporal segment networks: towards good practices for
deep action recognition. In: European Conference on Computer
Vision, pp. 20–36 (2016)

7. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R.,
Fei-Fei, L.: Large-scale video classification with convolutional
neural networks. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1725–1732 (2014)

8. Zhang, B., Wang, L., Wang, Z., Qiao, Y., Wang, H.: Real-time
action recognition with enhanced motion vector CNNs. In: Pro-

123



3D RANs: 3D Residual Attention Networks for action recognition 1269

ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2718–2726 (2015)

9. Wang, H., Schmid, C.: Action recognition with improved trajec-
tories. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 3551–3558 (2013)

10. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor
and its application to action recognition. In: Proceedings of the
15th ACM International Conference on Multimedia, pp. 357–360
(2007)

11. Wang, H., Kläser, A., Schmid, C., Liu, C. L.: Action recognition by
dense trajectories. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3169–3176 (2011)

12. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning
realistic human actions frommovies. In: IEEEConference onCom-
puter Vision and Pattern Recognition. CVPR, pp. 1–8 (2008)

13. Simonyan, K., Zisserman, A.: Two-stream convolutional networks
for action recognition in videos. Adv. Neural Inf. Process. Syst. 27,
568–576 (2014)

14. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks
for human action recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 35, 221–231 (2013)

15. Wang, Y., Jiang, L., Yang, M. H., Li, L. J., Long, M., Fei-Fei,
L.: Eidetic 3D LSTM: A Model for Video Prediction and Beyond
(2013)

16. Ma, Z., Sun, Z.: Time-varying LSTM networks for action recogni-
tion. Multimed. Tools Appl. 77, 32275–32285 (2018)

17. Liang, D., Liang, H., Yu, Z., Zhang, Y.: Deep convolutional BiL-
STMfusion network for facial expression recognition.Vis. Comput
(2019). https://doi.org/10.1007/s00371-019-01636-3

18. Hara, K., Kataoka, H., Satoh, Y.: Learning spatio-temporal features
with 3D residual networks for action recognition. In: Proceedings
of the ICCV Workshop on Action, Gesture, and Emotion Recog-
nition, pp. 4 (2017)

19. Nair, V., Hinton, G. E.: Rectified linear units improve restricted
boltzmann machines. In: Proceedings of the 27th International
Conference onMachine Learning (ICML-10), pp. 807–814 (2010)

20. Ba, J.,Mnih,V., Kavukcuoglu,K.:Multiple object recognitionwith
visual attention (2014)

21. Mnih, V., Heess, N., Graves, A.: Recurrent models of visual atten-
tion. Adv, Neural Inf. Process. Syst. 27, 2204–2212 (2014)

22. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101
human actions classes from videos in the wild (2012)

23. Kuehne, H., Jhuang, H., Stiefelhagen, R., Serre, T.: Hmdb51: a
large video database for human motion recognition. High Perform.
Comput. Sci. Eng. 12, 571–582 (2013)

24. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijaya-
narasimhan, S., Suleyman, M.: The kinetics human action video
dataset (2017)

25. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778 (2016)

26. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-
streamnetwork fusion for video action recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 1933–1941 (2016)

27. Li,W., Nie,W., Su, Y.: Human action recognition based on selected
spatio-temporal features via bidirectional LSTM. In: IEEEAccess,
pp. 44211–44220 (2018)

28. Song, S., Lan, C., Xing, J., Zeng,W., Liu, J.: Spatio-temporal atten-
tion basedLSTMnetworks for 3Daction recognition and detection.
IEEE Trans. Image Process. 27, 3459–3471 (2018)

29. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual
attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 11, 1254–1259 (1998)

30. Rensink, R.A.: The dynamic representation of scenes. Vis. Cognit.
7, 17–42 (2000)

31. Corbetta, M., Shulman, G.L.: Control of goal-directed and
stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201
(2002)

32. Larochelle, H., Hinton, G.E.: Learning to combine foveal glimpses
with a third-order Boltzmann machine. Adv. Neural Inf. Process.
Syst. 23, 1243–1251 (2010)

33. Olshausen, B. A., Anderson, C. H., Van Essen, D. C.: A neurobio-
logical model of visual attention and invariant pattern recognition
based on dynamic routing of information. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 4700–
4719 (1993)

34. Cao, C., Liu, X., Yang, Y., Yu, Y., Wang, J., Wang, Z., Ramanan,
D.: Look and think twice: capturing top-down visual attention with
feedback convolutional neural networks. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2956–
2964 (2015)

35. Jaderberg, M., Simonyan, K., Zisserman, A.: Recurrent spatial
transformer networks. In: Computer Science, (2015)

36. Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Tang, X.:
Residual attention network for image classification. In: Computer
Vision and Pattern Recognition, pp. 6450–6458 (2017)

37. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks (2017)
38. Woo, S., Park, J., Lee, J. Y., Kweon, I. S.: CBAM: Convolutional

Block Attention Module. In: Proceedings of European Conference
on Computer Vision (2018)

39. Sharma, S., Kiros, R., Salakhutdinov, R.: Action recognition using
visual attention. In: Computer Science (2015)

40. Kim, D. , Cho, D. , Kweon, I. S.: Self-supervised video repre-
sentation learning with space-time cubic puzzles. arXiv preprint
arXiv:1811.09795 (2018)

41. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural net-
works. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7794–7803 (2018)

42. Hinton, G. E.: Rectified linear units improve restricted Boltzmann
machines Vinod Nair (2010)

43. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learn-
ing deep features for discriminative localization. In: Proceedings of
the IEEEConference onComputerVision and PatternRecognition,
pp. 2921–2929 (2016)

44. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep net-
work training by reducing internal covariate shift. pp. 448–456
(2015)

45. Wang, L., Xiong, Y., Wang, Z., Qiao, Y.: Towards good practices
for very deep two-stream ConvNets. In: Computer Science (2015)

46. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs
retrace the history of 2D CNNs and ImageNet?. In: Proceedings of
the IEEEConference onComputerVision and PatternRecognition,
pp. 18–22 (2017)

47. Xie, S., Girshick, R., Dollár, P., Tu, Z., He,K.:AggregatedResidual
transformations for deep neural networks. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5987–5995 (2017)

48. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation
with Pseudo-3D residual networks. In: 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 5534–5542 (2017)

49. Zhou, Y., Sun, X., Zha, Z. J., Zeng, W.: MiCT: mixed 3D/2D con-
volutional tube for human action recognition. In: Proceedings of
the IEEEConference onComputerVision and PatternRecognition,
pp. 449–458 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s00371-019-01636-3
http://arxiv.org/abs/1811.09795


1270 J. Cai, J. Hu

Jiahui Cai received his bache-
lor’s degree from the University
of Wuhan Institute of Technol-
ogy, Wuhan, China, in 2016. He
is currently pursuing the master’s
degree at the University of Sun
Yat-sen, Guangzhou, China. His
research interest includes
computer vision, machine learn-
ing and deep learning.

Jianguo Hu received the B.S.
and M.S. degrees in National Uni-
versity of Defense Technology, in
2000 and 2004, respectively, and
Ph.D. degree in Sun Yat-sen Uni-
versity, Guangzhou, China, in
2010. He is currently a profes-
sor in the Sun Yat-sen Univer-
sity. And he is also the director
of Development Research Insti-
tute of Guangzhou Smart City. He
is a Scientific and Technological
Innovation Leader of the Guang-
dong Special Branch Project. He
is also an Innovative Team Leader

in Guangzhou City. His research interests include mixed-signal ICs,
RFID, Internet of things and artificial intelligence.

123


	3D RANs: 3D Residual Attention Networks for action recognition
	Abstract
	1 Introduction
	2 Related work
	3 3D Residual Attention Networks
	3.1 3D RAN modules
	3.1.1 Channel attention module
	3.1.2 Spatial attention module

	3.2 Network architecture
	3.3 Implementation

	4 Experiments
	4.1 Dataset
	4.2 Ablation studies
	4.3 Comparison with the state-of-the-art methods
	4.4 Visualization

	5 Conclusion
	Acknowledgements
	References




