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Abstract
In this paper, we propose an end-to-end deep metric network (DMN) for visual tracking, where any target can be accurately
tracked given only a bounding box of the first frame. Our main motivation is to make the network learn to learn a deep distance
metric by following the philosophy of one-shot learning. Instead of utilizing a hand-crafted distance metric like Euclidean
distance, our DMN focuses on providing a learnable metric, which is more robust to appearance variations. Furthermore,
we are the first to properly combine mean square errors and contrastive loss into a joint loss function for back-propagation.
During online tracking, DMN firstly applies our instance initialization for obtaining sequence-specific information and then
straightforwardly tracks the target without the help of box refinement, occlusion detection and online updating. The final
tracking score considers both our DMN scalar output and the constrain of motion smoothness. Ablation analyses are carried
out to validate the effectiveness of our proposed method. And experiments on the prevalent benchmarks show that our method
can achieve a competitive performance when compared with some representative trackers, especially those existing metric
learning-based algorithms.

Keywords Metric learning · Visual tracking · Deep neural networks · One-shot learning

1 Introduction

Visual tracking has been extensively studied on account of
its wide applications, such as human–computer interaction
[25,28], augmented reality [18] and video surveillance [37].
Even though a large fraction of tracking methods have been
developed, there are still some challenging factors like scale
variation, occlusions, deformation, cluttered backgrounds
and illuminations to be overcome [45,46].

The core of many existing trackers is to measure simi-
larities between the template patch and candidate patches.
For the moment current visual tracking methods that employ
similarity measurement are mainly based on matching func-
tion or metric learning. The former one aims to construct
an appearance model with more powerful feature represen-
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tations and utilize the pre-defined distance metrics, such
as normalized cross-correlation [2], Bhattacharyya coeffi-
cient [4], cosine distance [1], Euclidean distance [26,34] and
Kullback–Leibler [7] to track the target. However, due to
large appearance and scale variations, pre-defined metrics
are not precise enough to estimate the target distribution
in the feature space. Different from aforementioned meth-
ods, the latter one puts a lot more attention on finding
a discriminative linear or nonlinear metric, which makes
positive pairs close and negative pairs remote. As we all
know, metric learning has achieved some satisfactory results
in visual tracking [6,16,22,35,43,47]. For instance, Maha-
lanobis distance-based algorithms [22,47] were proposed to
learn a linear metric for visual tracking. Subsequently, Hu
et al. [15] and Lu et al. [23] introduced a nonlinear metric
learning methods under the particle filter framework. Never-
theless, although a linear or nonlinear transformation f has
been learnt, previous metric learning-based methods eventu-
ally have to recognize the tracked object by the isotropous
Euclidean distance d f (xi , x j ) = || f (xi ) − f (x j )||2.

Sung et al. [33] initially proposed to learn a deep distance
metric in ameta-learningway for few-shot learning.And they
clearly illustrated the feasibility of the learnt deep metric via
a 2D example. Inspired by this [33], we aim to enable the
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Fig. 1 Illustration of tracking procedure. DMN firstly learns trans-
ferrable knowledge from training set. Then, the incipient model is
fine-tuned with sample and query sets in the first frame. Based on this
model, we locate the target in remaining unseen clips. The network out-
put is a scalar value that evaluates whether the sampled patch is similar
to the template patch or not. According to Eq. (8), we determine the
best box that will guide sampling in the next frame xi+1. The top row
represents the coming frame, candidate patches and similar scores from
left to right

network to learn what distance metric a specific sequence
should apply during online tracking phase, which can be seen
as providing a learnable rather than hand-crafted metric.

Therefore, we propose a novel end-to-end deepmetric net-
work for visual tracking. A radically new intention is that
online tracking can be seen as a one-shot learning prob-
lem, and deep feature embedding and coupled nonlinear
metric can be trained in a joint manner to replace conven-
tional hand-crafted metrics. Concretely, a joint loss function,
which favorably combines mean square errors and con-
trastive loss, is put forward purposively to reduce regression
errors of metric module and enhance discernment of fea-
ture module. By jointly learning feature embedding and deep
nonlinear metric, our network can directly output a scalar
value instead of manually choosing a hand-crafted metric
for target tracking. We hold that the learnt metric can better
distinguish between matching and mismatching pairs suf-
fering from various challenges. During training phase, the
deep metric network trained with external video datasets can
capture common properties, such as robustness to illumi-
nation changes and motion blur. For online tracking phase,
we use sample set and query set to fine-tune the incipi-
ent model in a one-shot learning manner so as to learn
sequence-specific information. The whole tracking proce-
dure, as shown in Fig. 1, is straightforwardly conducted
without online updating, occlusion detection, date augmen-
tation and box refinement. Experiments on the prevalent
benchmarks demonstrate that our method can obtain com-
petitive results compared with some state-of-the-art methods
and its speed is over three times than existingmetric learning-
based trackers.

Our main contributions are three-fold:

– An end-to-end deep metric network framework without
additional tedious step, such as box refinement, is pro-
posed, which directly outputs scalar similarity and can
reach 16 FPS. And the instance initialization using one-
shot learning manner is adopted for a specific sequence
tracking.

– A radically new idea of jointly learning deep feature
embedding module and nonlinear metric module is
presented in contrast to using pre-defined metric like
Euclidean distance to recognize the tracked object. And
ablation experiments indicate that two modules can well
couple with each other.

– An efficient joint loss function that favorably blends dis-
criminative feature learning and powerfulmetric learning
is purposively put forward.

2 Related work

In this section, we briefly review some relatedworks from the
following three aspects: matching function-based methods,
deep learning-based methods, as well as metric learning-
based methods.

2.1 Matching function-based trackers

Numerous matching function-based trackers have been pro-
posed in the past few years. By means of similarity score
with respect to the template, these trackers can find the best
candidate from interest regions in the coming frame. For
instance, starting from the point of image patch retrieval, [2]
tracks the target using normalized cross-correlation. Based
on mean shift iterations, MST [4] finds the most probable
target position by Bhattacharyya coefficient. IVT [29] uti-
lizes incremental principal component analysis to obtain the
object appearance feature. SPT [42] builds an appearance
model based on superpixels and obtain the most likely target
location with maximum a posteriori estimates. Many sparse
representation methods [26,38,49,50] have achieved memo-
rable performance with particle filters. Specially, RSST [50]
obtains appreciable improvement by capturing the under-
lying relationships among all local patches and outliers.
SINT [34] and SiamFC [1] learn a generic matching func-
tion by Siamese network from video dataset. Although
these methods obtained a powerful matching function and
satisfied results, they put more attention on appearance
modeling approach rather than suitable and effective met-
ric.
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2.2 Deep learning-based trackers

With the remarkable success of deep learning, many meth-
ods using convolution neural network (CNN) have achieved
state-of-the-art performance. DLT [40] initially brings
stacked denoising autoencoder network into visual tracking.
SO-DLT [39] presents a structured output CNN instead of
treating tracking as classification task. SINT [34] trains a
Siamese network to learn the matching mechanism. SINT++
[44], the improved version of SINT, concentrates on data
augmentation using variational autoencoder and deep rein-
forcement learning. Based on the rich hierarchical features
of CNN, HCFT* [24] utilizes correlation filter framework
to locate the target in a coarse-to-fine manner. MDNet [27]
firstly learns general feature representation from multiple
annotatedvideo sequences and then captures domain-specific
information through online learning. GOTURN [12] learns
a generic relationship between appearance and motion, and
directly predicts the target location. SiamFC [1] addresses a
more general similarity learning problem by fully convolu-
tional Siamese network. Subsequently, in order to obtain a
suitable template, CFNet [36] integrates correlation filter into
SiamFC, and RASNet [41] proposes three attention mecha-
nisms. SA-Saim [11] introduces semantic branch, which is
trained in the classification task, to enhance the robustness
of SiamFC. SiamRPN [21] combines Siamese network and
region proposal network [8] to predict the label and location
of the anchor. Recently, by incorporating discriminative fea-
ture fine-tuning, adaDDCF [9] introduces an adaptive deep
correlation filter. Its main differences with ours lie in that
1) deep correlation filter aims to represent the target appear-
ance using convolution kernel and generate the correlation
responsemap of each frame, whereasDMN focuses on learn-
ing a reasonable metric which can precisely estimate the
target distribution in the feature space andmeasure similarity
between the template patch and candidate patch; 2) adaDDCF
has no offline training and directly uses fisher discriminative
analysis layer to fine-tune the pre-trained VGGNet model
[31] online,whileDMNelaborately trains discriminative fea-
tures and nonlinear metric from scratch.

2.3 Metric learning-based trackers

To address various challenging factors, based on advanced
metric learning approaches, many algorithms have been
proposed to learn a powerful similarity measure. For exam-
ple, ITML [6] uses an information-theoretic approach to
learn a Mahalanobis distance function. Jiang et al. [16] pro-
posed a sparsity-regularized metric learning method. Li et al.
[22] introduced an online reservoir metric learning method
for appearance-based visual tracking. Wu et al. [47] pre-
sented a metric learning-based structural appearance model
(MLSAM) for structure object representation and matching.

With the particle filter framework, Hu et al. [15] introduced
a deep metric learning (DML) approach, which learns met-
ric bymultiple fully connected layers.Meanwhile, NML [23]
trains a set of hierarchical nonlinear transformations tomatch
the most similar candidate box. Nevertheless, during online
tracking phase, all of abovemethods still resort to pre-defined
metrics to calculate the similarity. Different from those met-
ric learning-based methods, our deep metric network, which
jointly learns deep feature embedding and nonlinear metric,
directly outputs a scalar value during both offline and online
phase.

3 Proposedmethod

Conventionalmetric learning-basedmethods for visual track-
ing learn either a Mahalanobis distance metric [22,47] or
a nonlinear transformation [15,23], which still possesses
the potentiality of performance improvement. As shown in
Fig. 2, ourDMN tracker consists of learning a functionmapϕ

from image spaceΛ to feature spaceΩ and seeking an appro-
priate metric φ corresponding to the above feature space.
These two modules are modeled with deep convolution net-
work in an end-to-end manner and can be well coupled with
each other. We firstly train the deep metric network offline
with annotated video dataset. Then, given one target shot in
the first frame, sample and query sets can be generated for
the instance initialization. Finally the fine-tuned model can
be utilized to track new object. The network outputs a scalar
value for each candidate patch, which mainly determines the
optimal location selection.

3.1 Problem formulation

Let xi be a single frame and bs = [xlts , ylts , xrbs , yrbs ] be a
rectangular bounding box in the frame xi , where (xlts , ylts )

is the left-top position and (xrbs , yrbs ) is the right-bottom
position. The image patch ps cropped within the bounding
box bs is called region of interest (ROI). The next section
will detailedly describe sample strategy of box pairs for
network input. Given a pair of frames (xi , x j ) and their cor-
responding box pair (bs, bt ), DMN jointly learns a function
map ϕ : Λ → Ω and a tightly coupled nonlinear metric
φ : Ω × Ω → R to measure similarity between cropped
patches ps and pt , as illustrated in Fig. 2.

To begin with, two frames xi and x j are fed into feature
embedding module ϕ, which produces feature maps ϕ(xi )
and ϕ(x j ). Here, we consider different feature blocks for
more precise location. Secondly, their ROI feature maps can
be obtained by ROI pooling operation fP [8], which gener-
ates the same size feature map for any different size ROI.
Because outputs of conv4 and conv5 (Fig. 4) are utilized as
intermediate feature, we design an operation fC to fuse dif-
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Fig. 2 Framework of our deep metric network. The network is com-
posed of feature embedding module and metric module. Firstly, frames
and ROIs are fed into feature embedding module for feature extraction,
where fP is ROI pooling operation and fC is fusion operation. Then,

the paired feature maps are concatenated by operation C . Taking this
concatenated feature as input, metric module outputs a scalar value.
Note that C is only channel concatenation when fC consists of channel
concatenation and 1 × 1 convolution transformation

ferent layer features. Specifically, the fusion operation fC
consists of channel concatenation and 1×1 convolution, and
the fused features can be formulated as

F[bs] = fC ( fP (ϕ(xi ), bs)),

F[bt ] = fC ( fP (ϕ(x j ), bt )).
(1)

Subsequently, the feature maps F[bs] and F[bt ] are
further combined with operator C , and subnetwork gφ is
responsible to predict their similarity. In this work, we define
operator C as concatenation of feature maps in channel.
Finally, the learnable metric φ can be represented as

φ(F[bs], F[bt ]) = gφ(C(F[bs], F[bt ])), (2)

which is a scalar value ranged from 0 to 1.
In Fig. 3, three confidence maps of the sequence KieSurf

are shown to validate how the proposed deep metric net-
work works. We scanned the whole frame using a bounding
box with the same size as regions of interest and passed
them through DMN. The resulting scalar value of each cor-
responding ROI can be aggregated to form confidence map.
Figure 3 clearly demonstrates that the learnt metric network
outputs a high similarity score for target and a low one for
background. Furthermore, the second column and third col-
umn are results without and with the instance initialization,
respectively. Because the network obtains generic feature
representation by offline training from coverall dataset, pix-
els of the person have a more higher output score in Fig. 3b.
After the instance initialization, DMN already knows that
the head of this person is what it is supposed to track. There-
fore, in Fig. 3c, the head has a high output score when others
reduce to a small value.

Fig. 3 Visualization results of similarity score. The heat map is gener-
ated based on the network outputs. a Is frame to be tracked. b, c Are
results without and with the instance initialization, respectively

3.2 Network input

Network inputs include frame pairs and corresponding box
pairs. Since expecting the network to be robust to many
types of object appearance variations, we randomly choose
some frame pairs (xi , x j ) during training phase. And these
frame pairs from the same video sequence do not need
to be adjacent with each other. Then, a set of box pairs
(bs, bt ) can be generated in the following way. One ele-
ment bs in such box pair is ground-truth bounding box in
frame xi . The other element bt is a box sampled around
the corresponding ground truth in frame x j . Thus, we
can obtain a large quantity of triples (bs, bt , os,t ), where
os,t is a label value determined by intersection-over-union
(IoU) overlap between sampled box bt and its corre-
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sponding ground truth G. The formula is defined as the
following

os,t =
{
1 if I oU (bt ,G) > ρ+,

0 otherwise.
(3)

where the threshold ρ+ is used to decide whether a sample
is positive or not.

3.3 Loss function

The top of the network outputs a scalar value which repre-
sents similarity of pairs. We simply regress this predicted
value to ground truth using mean square errors (MSE) for
making positive pairs close and negative pairs remote. This
loss can be written as

LS(bs, bt , os,t ) = 1

m

∑
‖φ(F[bs], F[bt ]) − os,t‖22, (4)

where m is batch size and os,t ∈ {0, 1}. The binary label os,t
is determined by Eq. (3).

In addition, considering that more discriminative feature
embeddings could facilitate the learning of a proper metric,
we also adopt contrastive loss for feature embeddingmodule.
This loss aims to minimize the distance of positive pairs and
enable the distance of negative pairs to be large than amargin
α. Following [3], the large margin contrastive loss function
can be written as

LF (bs, bt , os,t ) = 1

m

∑
os,t D

2
s,t + (1 − os,t )[α − Ds,t ]2+,

(5)

where Ds,t = ‖F[bs] − F[bt ]‖2, operation [·]+ indicates
the hinge function max(0, ·). Bearing these two aspects in
mind, we train the network with the joint loss function

L(bs, bt , os,t ) = LS(bs, bt , os,t ) + λLF (bs, bt , os,t ), (6)

where λ is a balance factor. To illustrate the necessity of the
joint loss function, we separately use Eq. (4) and Eq. (6) to
train the network. As can be seen from Fig. 6, the joint loss
function has an obvious improvement when compared with
mean square errors.

3.4 Network architecture

Many visual tracking network models utilize popular clas-
sification network like VGGNet [31] and AlexNet [20] as
backbone with subtle modification, most of which present
a standout performance. In fact, compared to AlexNet,
VGGNet has a more stronger feature representation and
shows the superiority of applying to visual tracking [34]. In

Fig. 4 The architecture detail of
our proposed network. The
feature concatenation is the
operator C . The ‘conv,’ ‘ROI
pool’ and ‘max-pool’ are
convolution, ROI pooling
operation and max pooling
operation, respectively. The
‘FC,’ ‘ReLU’ and ‘Sigmoid’ are
fully connected layer, ReLU
activation function and Sigmoid
function, respectively. Contents
in braces are how many
sublayers are included in current
convolution block. Contents in
square brackets are kernel size,
kernel number and stride, aside
from the last two FCs where
content in square brackets is
neuron’s number
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this work, we use VGGNet as our backbone to learn jointly
feature embedding and nonlinear metric. The visual archi-
tecture is shown in Fig. 4.

As for feature embedding module, its architecture is
composed of five convolution blocks. The kernel size and
activation function of each convolution layer are 3 × 3 and
ReLU, respectively.As ablation studies suggest in SINT [34],
max pooling layer deteriorates tracking accuracy and causes
poor localization, due to the reduction in the featuremaps res-
olution. So, considering the susceptiveness of visual tracking
to rough discretizations, we adopt the SINT’s strategy that
the first two blocks contain a 2 × 2 max pooling, while the
rest do not. In addition, we use outputs from the last two
blocks as the intermediate feature embedding.

Regardingmetric learningmodule, the fused feature maps
are fed into the subnetwork which is composed of two con-
volution blocks and two fully connection layers. Each of
convolution block is a 3× 3 convolution with 512 filters fol-
lowed by ReLU activation function and 2 × 2 max pooling.
The two fully connection layers have 512 and 1 units. The
first fully connection layer which has 512 units is followed
by ReLU. The last one which has 1 unit ends in Sigmoid
function for generating a scalar value ranged from 0 to 1.
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Fig. 5 Illustration of sampling strategy. During instance initialization,
a is Gaussian sampling for positives on the Tiger sequence; b, c are
global sampling and uniform sampling for negatives, respectively. Dur-
ing tracking phase, d shows results of Gaussian sampling in the next
frame, and these candidate boxes serve the purpose of the decision of
new location

4 Online tracking

4.1 Instance initialization in tracking

This section mainly introduces how to track the target when
given a specified sequence. Once we completed the training
procedure, the instance initialization using one-shot learning
is employed to make the whole network possess video-
specific knowledge, without any further online adapting. In
each training iteration, we treat the instance initialization as
2-way 1-shot problem. Firstly, Nneg negative samples and
Npos positive samples are generated around the target box.
Then, we randomly select one positive and negative sample
as sample set, and the rest of positive samples and negative
samples are pushed into query set. Exploiting these two sets,
we can further fine-tune the network in a one-shot learn-
ing way. Here the sampling strategy is implemented in three
ways. Assuming that object motion abides by Gaussian dis-
tribution, we apply Gaussian random sampling [27] to obtain

positive samples {b̃i }Npos
i=1 (Fig. 5a). For negative samples

{b̃i }Nneg
i=1 , uniform sampling and global sampling (Fig. 5b, c)

are adopted to cover as much backgrounds as possible.When
initializing the network, we select different learning rate for
two modules. This is because feature embedding module
has generic representation ability and the metric module has
video-specific ability for a given video instance. Therefore, it
is natural that the learning rate of feature embedding module
(0.0001) should be smaller than the latter (0.001). In Fig. 3b,
c, it is worth noting that a more higher-quality confidence
map can be obtained after instance initialization.

4.2 Candidate sampling and decision of location

In the coming frame, we employ Gaussian random sampling
around the predicted box of previous frame to generate Ndet

target candidates {b̃i }Ndet
i=1 (Fig. 5d). Since what we can only

trust is the bounding box b̃tep in the first frame, we regard it
as the template patch and compare all candidate boxes with it
in each frame. Using deepmetric network fine-tunedwith the
instance initialization, we can eventually obtain their similar-
ity scores φ(F[b̃i ], F[b̃tep]). During online tracking phase,
there is no need to compute the template feature repeatedly
in every frame. To be efficient, we just calculate and store it
after the instance initialization.

In addition, it is pretty reasonable that most objects in
the real world tend to move smoothly through space [12].
In other words, most situations ought to be that the target
in the next frame should be near to the location where it
is observed on the previous frame. So, taking into account
motion smoothness, we utilize Gaussian kernel function to
control space relationship of two sequential frames

κ(ci , cpre) = e−‖ci−cpre‖2/σ 2
, (7)

where ci = (cxi , c
y
i ) is the center of the candidate box b̃i , cpre

is the center of the previous tracked box, and σ is bandwidth.
The optimal location is determined by finding the candidate
box with the maximum similarity score

b∗ = argmax
b̃i

φ(F[b̃i ], F[b̃tep]) + βκ(ci , cpre), (8)

where β is a balance factor.

5 Experiments

This program was implemented on the following configu-
ration: Python using Tensorflow1.3.0, 4.00GHz Intel Core
i7-4790K CPU with 8 cores, 32GB RAM, Nvidia GeForce
GTX 1080Ti GPU. The speed of our method runs at approx-
imately 16 frames per second. To evaluate the performance
of our proposed DMN, experiments were conducted on two
prevalent benchmarks: OTB [45,46] and VOT2017 [19].

OTB includes two dataset: OTB2013 [45] with 51 video
sequences, OTB2015 [46] with 100 video sequences. These
sequences are labeled with ground-truth bounding box and
cover various challenging situations in visual tracking, such
as illumination variation, background clutter, deformation,
occlusion and so on. The tracking performances were eval-
uated by conducting one-pass evaluation (OPE) based on
two metrics: center location error and overlap ratio. The
overlap ratio measures IoU between the predicted bound-
ing box and the ground-truth bounding box, i.e., (area(BT ∩
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BG)/area(BT ∪ BG)), where BT is the predicted bounding
box and BG is the ground-truth bounding box. The center
location error measures Euclidean distance between the cen-
ter of BG and BT . Based on these two metrics, success ratio
plot and precision ratio plot on the whole benchmark can be
drawn with a series of thresholds. Generally, the area under
curve (AUC) of each success plot and the precision ratio at
the specific threshold (Prec.@20) are calculated to rank dif-
ferent trackers.

VOT2017 [19] contains 60 challenging video clips. And
the tracking performance is measured by expected average
overlap (EAO), accuracy (A) and robustness (R). Accu-
racy measures the average overlap between the predicted
and ground-truth bounding boxes. Robustness measures how
many times the tracker fails. The primary one, EAO, evalu-
ates the average overlap that a tracker is expected to perform
on plenty of sequences with the same attribute.

We first introduced implementation details of our exper-
iment and then analyze DMN with ablation experiments to
validate the effectiveness of each part. Afterward, we com-
pared our DMN tracker with metric learning-based trackers.
Finally, we performed comparison experiments with some
representative trackers.

5.1 Implementation details

5.1.1 Network training

For offline training of DMN,we used theAmsterdamLibrary
of Ordinary Videos (ALOV) [32] as it covers diverse cir-
cumstances, such as illuminations, specularity, confusion
with similar objects, occlusion, zoom, severe shape changes,
motion patterns and so on. ALOV consists of 314 video
sequences whose total frames are more than 89000. Before
training, we removed twelve video sequences that are also
included inOTB[45,46] in case of overfitting. For eachvideo,
we randomly chose dozens of frame pairs and resized its res-
olution to 512× 512. Then, we drawn a number of box pairs
for each frame pair without any data augmentations. One
element in a box pair was the ground-truth bounding box in
one frame, and the other element was a box sampled around
the ground-truth box of the other frame. The box pair was
regarded as positive training data if the IoU ratio of sampled
box and its corresponding ground-truth box was larger than
0.7 and negative training data if the IoU ratio was smaller
than 0.5. The rest of the box pairs was discarded.

During training procedure, we totally had more than 9000
framepairs coming fromALOVand each framepair included
128 box pairs. And we applied stochastic gradient descent
(SGD) with momentum of 0.9 to train DMN and set the
weight decay to 0.0001. The learning rate of feature embed-
ding module and metric module was 0.0001 and 0.001,
respectively. The parameter λ aims to balance the magnitude

of two losses LS and LF , and is smaller than 0.01 practi-
cally. Here, we set it as 0.001. The parameter ρ+, which is
usually larger than 0.65, determines whether a sample is pos-
itive or not. Here, we set ρ+ as 0.7. The parameter α makes
the feature distance between positive and negative samples
large than a margin. In this work, α were experimentally set
as 1.2.

5.1.2 Online tracking

In the first frame, we firstly drawn Npos = 33 positive sam-
ples and Nneg = 96 negative samples roughly according to
the ratio of 1:3, and then fine-tuned the network with 100
iterations. After the instance initialization, DMN began to
track the target in the coming frame, without updating one
by one. In order to generate candidate boxes in the coming
frame, we drawn Ndet = 200 samples from the Gaussian
distribution in three dimensions: x-axis cxi , y-axis cyi and
scale si . The mean of Gaussian distribution was the center
of the previous target box b∗, and covariance was a diagonal
matrix diag[(0.5r)2, (0.5r)2, 0.52], where r was the mean
of the width and height of the b∗. The scale of each candi-
date bounding box was computed by multiplying 1.05si to
the initial target scale. Finally, the candidate box with the
highest similarity was determined as the target location. In
this phase, the parameter σ , bandwidth of Eq. (7), was empir-
ically set as 10. The parameter β aims to balance the weight
of similarity score and motion smoothness, and its value is
generally between 0 and 1. Here, it was empirically set as
0.15.

5.2 Analyses of DMN

5.2.1 Self-comparison

To validate the effectiveness of our proposed deep metric
network (DMN), we designed three ablation experiments
conducted on OTB2013 and OTB2015 benchmarks. Firstly,
DMN-MSE, which was trained with the mean square errors
(Eq. 4), was designed to verify the feasibility of jointly learn-
ing feature embedding module and deep metric module. And
its parameter settings kept the same with DMN. Secondly,
DMN-Cosin replaced the metric module of DMN with the
specific cosin metric, aiming to evaluate whether the learnt
matric in a joint manner is better than hand-crafted matric or
not. Lastly, in order to validate the significance of the fusion
operation fC , DMN-NoFusion removed the fusion operation
fC and only utilized featuremaps of the last block to train the
network, while its configurations were also consistent with
DMN.

As shown in Fig. 6, DMN completely outperformed all
the variants according to the precision and success plots
on OTB2013 and OTB2015. Here, we tersely introduced
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(a) OTB2013

(b) OTB2015

Fig. 6 The success plots andprecisionplots of our variants onOTB2013
and OTB2015. The different variants in the left and right figures are
ranked according to AUC and Prec.@20, respectively

Fig. 7 Tracking results of our variants on the Bird1, Dragonbaby and
Skaterd2 sequences coming from OTB benchmark. Frame number is
shown in the left-top of each image

the performances on OTB2015 benchmark. Compared with
DMN, DMN-MSE decreased by 4.3% and 2.8% in precision
ratio and AUC on OTB2015, which favorably proved that
the network was benefit from our joint loss. The results that
DMN gained 2.2% and 3.8% additional improvement than
DMN-NoFusion in precision ratio and AUC on OTB2015
provided compelling evidences for the necessity of the fusion
operation fC in feature embedding module. In addition,
DMN-Cosin only obtained 62.6% and 45.6% performance,
while DMNachieved 72.1% and 53.4% in precision ratio and
AUC,which clearly demonstrated that the feature embedding
and the learnt matric can be well coupled with each other.
Visualization results of some video sequences further illus-
trated that every part of our design could play an appreciable
role in DMN, as can be seen from Fig. 7. Concretely, in the
Bird1 sequence, we can clearly observed that DMN captured

Table 1 Ablation studies of the instance initialization. We fix the
weights of feature module and metric module, respectively, to show
their impacts. The area under curve (AUC) of success plots on OTB
benchmark is reported

Variants OTB2013 OTB2015

DMN 0.568 0.534

DMN-updateMetric 0.555 0.528

DMN-updateFeat 0.518 0.482

the target, while three variants lost it over time. In the Drag-
onbaby and Skaterd2 sequences, it was apparent that DMN
predicted more tighter boxes than three variants to cover the
target.

Moreover, in order to explore how two modules impact
the final results during the instance initialization, we frozen
feature module and metric module, respectively, and test
their performance on OTB benchmark. In Table 1, DMN-
updateFeat only fine-tunes feature module, and DMN-
updateMetric only fine-tunes metric module. As shown in
Table 1,DMN-updateMetric is superior toDMN-updateFeat.
Thus, the instance initialization process focuses on adjust-
ing the metric module, which enables the network to learn
what metric a specific sequence should apply during tracking
phase.

5.2.2 Comparison with existing metric learning-based
methods

Based on the conventional Mahalanobis distance, MLSAM
[47] and ITML [6] were designed to learn a linear metric for
visual tracking. In contrast toMLSAMand ITML,DML [15]
brought the idea of deep metric learning into single object
tracking, which aimed to learn a set of hierarchical nonlinear
transformations using fully connected network architecture.
It projected the template patch and candidate patches into a
latent feature subspace and eventually determines the best
bounding box in the next frame by Euclidean distance. How-
ever, we introduced an end-to-end deep metric network with
jointly learning deep feature embedding and deep nonlinear
metric, which directly outputted a scalar value.

The comparison results in Table 2 demonstrated that our
DMN was superior to DML, MLSAM and ITML in terms
of AUC and precision ratio on OTB2013 benchmark and
the speed of DMN achieved considerable improvement. As
shown in Table 2, we observed that our method obtained
approximately 10−20% and 18−28% improvement in pre-
cision ratio and AUCwhen compared with three other metric
learning-based methods. Moreover, the speed of our method
can reach 16 frames per second, which was thrice as fast as
DML.
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Table 2 Performances of different metric learning-based methods on
OTB2013. Frames per second (FPS) evaluate the speed of tracker. Our
results are bold

Tracker AUC Prec.@20 FPS

DMN 0.568 0.781 16

DML [15] 0.466 0.603 5

MLSAM [47] 0.380 0.526 –

ITML [6] 0.365 0.501 –

Table 3 Comparison results with state-of-the-art methods on
OTB2013. RSST-Color, RSST-HOG and RSST-Deep are three variants
of RSST with different features. Our results are bold

Tracker AUC Prec.@20 FPS

DMN 0.568 0.781 16

RSST-Color [50] 0.520 0.691 4

RSST-HOG [50] 0.543 0.726 –

RSST-Deep [50] 0.590 0.789 1

HCPT* [24] 0.638 0.923 7

adaDDCF [9] 0.643 0.882 9

5.3 Comparison with others

5.3.1 Quantitative evaluation

OTB benchmark We compared our DMN with state-of-
the-art methods including HCPT* [24], RSST [50], and
adaDDCF [9] on OTB2013. Particularly, we fully reported
the results of RSST with three different features: gray color
(RSST-color), HistogramofOrientedGradient (RSST-HOG)
and VGGNet (RSST-deep). For through evaluations, we
also compared the proposed method with 11 representative
trackers on OTB2013 and OTB2015. These trackers include
three correlation filter-based methods (CSK [14], KCF [13],
DSST [5]), twomatching function-basedmethods (IVT [29],
MTT [49]), three deep learning-based methods (DLT [40],
SINT1 [34], SiamFC [1]), and three other track-by-detection
methods (Struck [10], MIL [17], CT [48]). All results were
obtained fairly using the OTB toolkit [45].

As illustrated in Table 3, our DMN, which can be seen
as the extension of DML [15], achieved comparable per-
formance against five state-of-the-art trackers. Concretely,
while DMN was slightly inferior to RSST-Deep in AUC
and precision ratio, it was superior to both RSST-Color and
RSST-HOG.This indicated that RSSTgreatly benefited from
a powerful feature. In addition, both HCPT* and adaDDCF
adopted the VGGNet deep features, which lays a solid foun-
dation for accurate tracking results. And although HCPT*

1 SINT is a version without optical flow, and its results were obtained
on our own PC using the pre-trained Caffe model.
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Fig. 8 The success plots and precision plots of different trackers on
OTB2013 and OTB2015. The trackers in the left and right figures are
ranked according to AUC and Prec.@20, respectively. The results of
SiamFC-3s were obtained using three scale estimation

and adaDDCF obtained better performance, their speeds
were significantly slower than DMN.

Figure 8 further shows the comparison experiments
between the proposed DMN and another 11 representative
trackers on OTB2013 and OTB2015 benchmarks. Without
box refinement, occlusion detection and online updating,
our method virtually surpassed all trackers in terms of AUC
and precision ratio on two benchmarks, except for two deep
learning-based methods: SiamFC, SINT. Specially, DMN
significantly increased by 15.4% and 20.7% against DLT
according to the AUC and precision on OTB2015. The rea-
sons were that the proposed joint loss facilitated the learning
of features, and DMN measured the underlying relation
between two samples by the learnt metric when DLT scantily
predicted the classification score of one sample by sigmoid
layer. Moreover, due to the effective feature embedding and
coupled nonlinear metric, DMN considerably achieved 9.4%
and 12.5% improvements against Struck in terms of the AUC
and precision on OTB2013. On the other hand, the AUC and
precision ratio of SiamFC was slightly superior to that of
DMNbecause 1) DMNpaid attention to the learnablemetric,
using a single branch network rather than Siamese network;
2) SiamFC used an ample enough dataset (ILSVRC [30]) to
train the fully convolution Siamese network; and 3) SiamFC
densely convolved the search region with the template. Fur-
thermore, it was worth to mention that SINT ranked first, but
it ran at 3 FPS. And our DMNwas over five times faster than
SINT.
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Table 4 The tracking performances onVOT2017 benchmark are shown partly. EAO,A andR are expected average overlap, accuracy and robustness,
respectively [19]. Our result is bold

DMN LSART ECOhc MEEM SiamFC Staple KCF SRDCF MIL DSST IVT

EAO ↑ 0.159 0.323 0.238 0.192 0.188 0.169 0.135 0.119 0.118 0.079 0.076

A ↑ 0.451 0.493 0.494 0.463 0.502 0.530 0.447 0.490 0.393 0.395 0.400

R ↓ 0.492 0.218 0.435 0.534 0.585 0.688 0.773 0.974 1.011 1.452 1.639

Fig. 9 Visual tracking results on three sequences with out-of-view, out-of-plane rotation and in-plane rotation. Frame number is shown on the
left-top of each image. The sequences from top to bottom are Freeman1, Bird1 and FleetFace

VOT2017 benchmark We also compared our DMN with
some state-of-the-art trackers on VOT2017 baseline sub-
challenge. As shown in Table 4, DMN obtained satisfying
performance under the measurement of expected average
overlap (EAO ↑), accuracy (A ↑) and robustness (R ↓).
Specially, according to EAO, A and R, DMN was com-
pletely superior to KCF, SRDCF, MIL, DSST and IVT.
And the robustness of DMN (0.492) was better than MEEM
(0.534), SiamFC (0.585) and Staple (0.688) though the EAO
of DMN was lightly inferior to theirs. The reason is that
DMN captured some common properties, such as robustness
to illumination and blur, and could properly handle variations
in each individual sequence by the instance initialization. It is
worth mentioning that the accuracy of DMN achieved com-
parable performance (0.451) against LSART (0.493) which
is the top-ranked trackers on VOT2017 benchmark. In the
future box regression may possess the potential to improve
the accuracy of DMN.

5.3.2 Qualitative evaluation

From Figs. 9, 10 and 11, many representative sequences with
different challenging factors were tested for comprehensive
comparison. Generally, our DMN could obtain satisfying

visualization tracking results when confronted with various
challenges.

Specially, Fig. 9 shows the qualitative tracking results on
several sequences, where out-of-view, out-of-plane rotation
and in-plane-rotation occurred. DMN obtained considerably
stable results on the Freeman1 and Bird1 sequences. Unfor-
tunately, SINT and DLT, which had no joint loss function,
gradually lost the target. And DMN had a better performance
than SiamFC on the FleetFace sequence, as the hand-crafted
metric, inner product, was not discriminative enough for
abrupt appearance variation.

Figure 10 presents the visualization results of the Coke,
FaceOcc1, Tiger1 and David3 sequences. With the instance
initialization and video-specific metric, the proposed DMN
performed well on the Coke and Tiger1 sequences, whereas
some discriminative models (Struck, MIL, DSST, KCF,
CSK) drifted to the background due to blur, occlusion and
fast motion. It was also noted that SiamFC lost the target of
the David3 sequence as a result of the occlusion of a tree.

Furthermore, in Fig. 11, the visualization tracking results
from several representative frames are illustrated, where the
targets from top to bottom suffer from scale variation, illumi-
nation variation and background clutters. As we can see, due
to the instance initialization that gives the network sequence-
specific information, DMN could favorably adapt the scale

123



End-to-end deep metric network for visual tracking 1229

Fig. 10 Visual tracking results on four sequences with motion blur, occlusion and fast motion. Frame number is shown on the left-top of each
image. The sequences from top to bottom are Coke, FaceOcc1, Tiger1 and David3

Fig. 11 Visual tracking results on three sequences with background clutters, scale variation, illumination variation. Frame number is shown on the
left-top of each image. The sequences from top to bottom are Dog1, Human2 and Lemming
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Fig. 12 Failure cases of our DMN. The sequences from top to bottom
areCoupon and Diving. Green boxes are the results of our method. And
red boxes are the ground-truth bounding boxes. Both sequences fail to
track their target

change on the Dog1 and Human2 sequences. However, lim-
ited by the fixed metric, some matching function-based
methods (MTT and IVT) cannot successfully track these
two sequences. Note that, as a result of the three sampling
strategies used in the instance initialization, DMN could ade-
quately suppress distractors in the first frame. Our tracker
therefore obtained satisfactory tracking results on the Lem-
ming sequence.

5.4 Failure case

Figure 12 shows a few failure cases of our method. Firstly,
DMNfailed to track the target on theCoupon sequence.There
were three indispensable reasons: (1) the coupon appearance
was changed abruptly due to the fold; (2) our method had no
online updating; and (3) the background was extremely sim-
ilar to the template. Secondly, with the drastic deformations
of the athlete, DMN cannot also generate accurate bounding
boxes on the Diving sequence.

6 Conclusion

In this paper, we present a simple yet efficient track-
ing framework DMN, which differs from existing metric
learning-based trackers. The proposedDMNcan jointly learn
feature embedding and couplednonlinearmetric, anddirectly
output a scalar to determine the best candidate box. More-
over, we design three ablation experiments to illustrate the
validity of each part of DMN. Compared with existing met-
ric learning-based methods, the proposed tracker expectably
learns a coupled nonlinear metric to locate the target and
achieves a superior performance. Furthermore, experiments
on theOTBandVOTbenchmarks show that ourDMNtracker
obtains competitive results against other representative track-
ers. However, there still remain several failure scenarios. In
the future, it ought to be elaborately considered to improve
the performance bymeans of online updating, an ample train-

ing dataset and data augmentation strategies of hard positive
and negative samples.
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