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Abstract
For deformable objects modeled as a uniform grid of voxels connected by links, an octree for the voxels is constructed. Cut-
ting is performed by disconnecting links swept by the cutting tool and reconstructing cut surface mesh using the dual contour 
method. The cubes of the voxel octree are not directly used because their edges generally do not remain straight when the 
objects deform. Instead, the voxel octree is used to mark active voxels and links and is therefore called “pseudo.” Voxels and 
links located in the interiors of voxel octree cubes are deactivated. For collision between the cutting tool and the deformable 
objects, only active voxels and links are considered. Then, voxel octree cubes with newly cut links on their boundaries are 
recursively subdivided, and new voxels and links are activated accordingly. These algorithms are implemented with multi-
threading techniques. Simulation tests show that when compared to previous methods using a uniform grid of voxels, our 
voxel octree method can increase cutting tool collision speed by 11–96% and can increase overall simulation speed by 7–43%.

Keywords Deformable object · Physically based modeling · Interactive cutting · Octree

1 Introduction

To simulate cutting of deformable objects, traditional 
methods split each component element swept by the cutting 
tool into several smaller elements. However, this process 
may create very small or degenerated elements that make 
deformation calculation numerically unstable. One type 
of methods to get around this problem embeds a uniform 
grid of voxels with fine resolution inside an octree mesh of 
hexahedral elements with coarse resolution. Deformation 
is only applied to the hexahedral elements. Adjacent voxels 
are connected by links. During cutting, links swept by the 
cutting tool trajectory are disconnected and related hexa-
hedral elements are adaptively refined and duplicated. The 
cut surfaces are reconstructed from disconnected links using 
either the splitting cube method or the dual contour method.

For this type of methods, one of the major bottlenecks for 
simulation performance is the collision between the cutting 
tool and the deformable objects. The main contribution of 
this paper is using a voxel octree to accelerate this type of 
collision, while maintaining surface details and deforma-
tion accuracy of the deformable objects. The voxel octree 
is used to mark active voxels and links that will participate 
in the collision processing. Voxel octree cubes with newly 
cut links on their boundaries are recursively subdivided, and 
new voxels and links are activated accordingly. The voxel 
octree has no restriction on the level differences between 
adjacent cubes and is therefore easier to be constructed and 
subdivided than a restricted octree.

2  Previous work

Compared with simulating fractures in rigid bodies [1–3], 
simulating cuts in deformable objects is much more diffi-
cult, especially for simulations with real-time requirements, 
such as surgical simulations. Brief descriptions of previous 
deformable cutting methods are given in this section. Most 
details can be found in the survey by Wu et al. [4].

The traditional element splitting method [5, 6] splits each 
element swept by the cutting tool into smaller elements. 
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This may result in degenerated or very small elements that 
decrease the numerical stability of deformation. To over-
come this problem, several advanced cutting methods have 
been proposed.

The virtual node method [7–10] embeds cut fragments in 
virtual copies of the original uncut elements. The extended 
finite element method (XFEM) [11–13] uses enriched shape 
functions to model displacement discontinuities across the 
cut surfaces. The cutting method based on the meshfree 
deformation method (MDM) [14, 15] inserts new nodes 
around the cut surfaces and updates visibility between nodes 
occluded by the cut surfaces. The position based dynamics 
has been used to simulate deformable cutting in combina-
tion with voxel representations [16], or geometric metaballs 
and MDM [17].

The cutting method based on adaptive octree mesh uses 
an octree mesh of hexahedral elements for deformation. 
Hexahedral elements intersected by the cutting tool are 
recursively subdivided. Surface meshes for rendering and 
collision are embedded in the octree mesh. Jeřábková et al. 
[18] simply removed the finest level elements intersected by 
the cutting tool and reconstructed the cut surfaces using the 
level set method. Seiler et al. [19] embedded a tetrahedral 
mesh inside the octree mesh. Tetrahedrons intersected by 
the cutting tool were removed, and octree nodes were split 
according to tetrahedral mesh connectivity. The cut surfaces 
were formed using clipping and Delaunay triangulation. 
Dick et al. [20] embedded a uniform grid of voxels inside 
the octree mesh. Adjacent voxels are connected by links, and 
links swept by the cutting tool were disconnected. The cut 
surfaces were reconstructed from disconnected links using 
the splitting cube method [15]. Wu et al. [21] proposed an 
efficient collision detection method for the cutting method 
in [20] and changed the cut surface reconstruction method 
to the dual contour method [22]. Jia et al. [23] designed a 
parallel framework utilizing both CPU and GPU to accel-
erate deformable cutting simulation based on the methods 
proposed in [20] and [21].

3  Methods

Our deformable cutting method is based on the linked voxel 
model and the adaptive octree mesh proposed in [20] and 
[21]. The major performance bottlenecks for this type of 
methods are: deformation; inter-object collision and object 
self collision (referred to simply as “object collision” from 
now on); and the collision between the cutting tool and the 
deformable objects (referred to simply as “cutting tool col-
lision” from now on). In this paper, a voxel octree is used to 
accelerate the cutting tool collision. The easiest way to uti-
lize this voxel octree one may think of is to treat the edges of 
the voxel octree cubes as coarser resolution links and check 

collisions between the cutting tool and these edges. How-
ever, this will not work because these edges may not remain 
straight when the objects deform. Instead, our method uses 
the voxel octree to mark active voxels and links that will par-
ticipate in the cutting tool collision. Voxel octree cubes with 
newly cut links on their boundaries will be recursively sub-
divided, and new voxels and links are activated accordingly. 
Therefore, we call this voxel octree “pseudo”. To further 
increase the simulation performance, the parallel framework 
from [23] is modified to accommodate our new method.

The modified deformable cutting method will be 
described in Sect. 3.1, and the modified parallel framework 
will be described in Sect. 3.2.

3.1  Deformable cutting method using a pseudo 
voxel octree

Deformable objects are internally represented by voxels, with 
adjacent voxels connected by links (Fig. 1). These voxels are 
embedded in an octree of deformable hexahedral elements 
(Fig. 2). The most popular method for deformation is the 
finite element method (FEM). The original method proposed 
in [20] and [21] uses a uniform grid of voxels, as shown in 
Fig. 1a. Links intersected by the original object surface or 
the cutting tool trajectory are marked as disconnected. The 
object surface mesh and cut surface mesh are constructed 
using the intersection information of the disconnected links. 
Our method constructs an octree on top of this uniform voxel 
grid, as shown in Fig. 1b. The vertices of each octree cube are 
voxels and the edges of each octree cube consist of links. To 
avoid confusion, this octree will be referred to as the “voxel 
octree”, while the octree of deformable hexahedral elements 
will be referred to as the “deformation octree”.

The size of an octree cube is  2L times the size of 
a voxel. L is called the level of the octree cube. Two 
parameters for each material need to be specified to 
control the voxel octree structure: a maximum internal 
level and a maximum inter-material boundary level. The 
voxel octree is constructed iteratively from level 0 in 
level ascending order. For each potential octree cube 
with level L, if all  (2L +1)3 voxels it contains exist and 
are inside, and all 3 ×  2L ×  (2L + 1)2 links it contains 
exist and are connected, then it is further tested for level 
restriction. Otherwise it is rejected. There are two cases 
for the level restriction test. If all voxels the cube con-
tains belong to the same material, then the cube passes 
the test if L is no more than the maximum internal level 
of the material. If all voxels the cube contains belong to 
more than one material, then the cube passes the test if 
L is no more than the maximum inter-material bound-
ary levels of all relevant materials. The octree cube is 
constructed if it passes the level restriction test. In the 
example shown in Fig. 1b, there are two materials. The 
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maximum internal level is 2 for the green material and 
1 for the blue material. The maximum inter-material 
boundary level is 0 for both materials.

This voxel octree is used to mark active voxels and 
links. Deactivated voxels and links are ignored by the 
cutting tool collision process, but they are still used nor-
mally in deformation and object collision. Note that Fig. 1 
shows 2D representations. For an actual 3D voxel octree, 
the process to mark active voxels and links consists of the 
following steps:

(1) Deactivate all voxels and links.

(2) For each connected link, if it is not completely sur-
rounded by voxel octree cubes with levels higher than 
0, then it is activated.

(3) Activate all links on edges of voxel octree cubes with 
levels higher than 0.

(4) Activate all voxels connected to at least one active link.

Note that, step (2) creates a “protective outer shell” 
around each material region, and step (3) creates a “pro-
tective frame” around each voxel octree cube with a level 
higher than 0. These are created to reduce the possibility of 
the cutting tool intersecting an inside inactive link without 

Inside voxel (different color 
represents different material) 

Connected link 
Disconnected link

(a) A uniform grid of voxels (b) Voxel octree (c) Voxel octree subdivision 
after cutting 

Outside voxel 

Deactivated voxel 

Re-activated voxel 

Connected cross-material link 
Disconnected cross-material link 
Deactivated link 
Re-activated connected link 
Re-activated disconnected link 

Surface mesh 
Inter-material 
boundary mesh 

Cutting tool trajectory 

Fig. 1  Voxel representation of deformable objects

(a) Deformation octree (b) Deformation octree 
subdivision after cutting 

(c) Hexahedral element duplication after 
subdivision and object deformation

Hexahedral element 

Hexahedral element that 
needs to be duplicated 

Cutting tool trajectory 

Duplicated hexahedral element 

Cut surface mesh 

Fig. 2  Octree of hexahedral elements for deformation. (Symbols with the same meaning as in Fig. 1 are not annotated)
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intersecting any active links on the boundary, for either a 
material region or a voxel octree cube.

For the cutting tool collision, positions of active voxels 
are first calculated, and then, active links intersected by the 
cutting tool are detected and disconnected. To speed up the 
intersection detection, a spatial hash table is constructed for 
the deformation octree as proposed in [21]. Each hexahedral 
element in the deformation octree is added to hash table 
entries corresponding to the spatial cells its AABB covers. 
This spatial hash table is also used in the object collision, but 
that is beyond the scope of this paper. An approximate OBB 
for the cutting tool trajectory is constructed. All hexahe-
dral elements in hash table entries corresponding to spatial 
cells covered by this OBB are marked. Then, all connected 
and active links with at least one connected voxel belonging 
to a marked hexahedral element are marked. Finally, these 
marked links are checked for intersection with the cutting 
tool.

Compared to previous methods with a uniform grid of 
voxels, our method needs an additional step after the inter-
section detection of links: recursive subdivision of voxel 
octree cubes affected by cutting. This recursive subdivision 
step is crucial in making both geometry accuracy and defor-
mation accuracy of the cut surfaces the same as those from 
previous methods. As shown in Fig. 1c, each voxel octree 
cube with at least one newly disconnected link on its bound-
ary (including edges and faces) and with a level higher than 
0 is recursively subdivided until no cube has newly discon-
nected links on its boundary or level 0 is reached. During 
the subdivision process, the positions of voxels located on 
boundaries between sub-cubes are calculated, and links 
located on boundaries between sub-cubes are checked for 
intersection with the cutting tool. After the subdivision pro-
cess finishes, voxels and links located on the edges of newly 
created voxel octree cubes are activated if they are currently 
inactive.

After the cutting tool collision, hexahedral elements in 
the deformation octree containing newly disconnected links 
are recursively subdivided (Fig. 2b). Then, hexahedral ele-
ments containing more than one connected voxel parts are 
duplicated, with each connected voxel part distributed to one 
duplicate (Fig. 2c).

The deformation octree is restricted, meaning that the 
level differences between adjacent octree cubes are no 
more than one. This makes it easier to deal with constraints 
imposed on octree vertices shared between octree cubes with 
different levels. The voxel octree has no such problem and is 
therefore not restricted.

This paper has no new contribution to the deformation 
algorithm. Figure 2 shows that the edges of voxel octree 
cubes with levels higher than 0 generally do not remain 
straight when the objects deform and therefore cannot be 
treated as line segments for intersection test with the cutting 

tool. This is the reason why our method uses the voxel octree 
indirectly to mark active voxels and links. For hexahedral 
elements using a linear interpolation function, the edges of 
a voxel octree cube can indeed remain straight if the cube 
is entirely contained in a hexahedral element. However, it 
is impossible for every voxel octree cube to be contained 
in a hexahedral element, because the voxel octree and the 
deformation octree are defined on two grids that are off by 
half a voxel.

3.2  Parallel implementations

Our deformable cutting method is implemented in a paral-
lel framework shown in Fig. 3. This framework is derived 
from the framework designed in [23] with several modifi-
cations. As in [23], both CPU and GPU are utilized in the 
framework, and a single CPU thread is used specifically for 
dispatching GPU commands.

The explicit time integration method in [23] is now 
replaced with an implicit backward Euler time integration 
method. The resulting differential equations are solved using 
the preconditioned conjugate gradient method. Simulation 
tests show that the equation solution times are approximately 
doubled, but the time steps are nearly quadrupled compared 
to [23].

In [23], the voxel position update step is placed in the 
deformation stage, after velocities and positions of the defor-
mation octree vertices are updated. In our framework, this 
step is moved to the collision stage, before intersection test 
between active links and the cutting tool, and in parallel 
to GPU’s object collision step. The reason for this is that 
the voxel positions are only used in checking intersections 
between links and the cutting tool. Making the voxel posi-
tion update step to run in parallel to GPU can potentially 
reduce the total simulation time.

The voxel octree data structure is only accessed by the 
CPU. It is only used for the cutting tool collision and remains 
solely in the CPU memory. As mentioned in Sect. 3.1, after 
intersection test between active links and the cutting tool, 
an additional step performing voxel octree subdivision is 
added. This step can potentially consume a large amount of 
time and its parallel implementation needs to be carefully 
designed.

Since the voxel octree is not restricted, subdivision of 
each voxel octree cube can almost be performed indepen-
dently, except for shared boundaries (edges and faces). 
Therefore, our implementation first processes voxels and 
links on shared boundaries and then subdivides voxel octree 
cubes in parallel. The processing sub-steps are:

(1) Mark affected voxel octree cubes. (“Affected” means 
affected by cutting.) Quit if there are no affected voxel 
octree cubes.
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(2) Mark voxels and links on the boundaries of affected 
voxel octree cubes.

(3) Calculate positions of inactive voxels that are also 
marked in sub-step (2).

(4) For each connected link that is also marked in sub-step 
(2), check if it intersects the cutting tool.

(5) Recursively subdivide each affected voxel octree cube.
(6) Go to sub-step (1).

Sub-steps (1) to (4) are implemented using lock-free 
multi-threading techniques.

Sub-step (1) processes each active and newly cut link and 
marks all voxel octree cubes surrounding the link with levels 
higher than 0. Each voxel octree cube has a special affected 
flag indicating if it is marked. Note that different threads 
processing different links may mark the same voxel octree 
cube multiple times, but there is no racing condition here 
because raising an already raised affected flag does not cre-
ate any state conflicts.

Sub-step (2) processes each voxel octree cube marked 
in sub-step (1) and marks voxels and links on the voxel 
octree cube’s boundary. Each voxel and link also has a 
special affected flag indicating if it is marked. Again, there 
is no racing condition here for the same reason as for sub-
step (1).

For sub-step (5), each thread uses a mutex to get the next 
affected voxel octree cube it needs to subdivide. The subdi-
vision itself has the following sub-steps:

 (5-1) Calculate positions of voxels located on boundaries 
between sub-cubes.

 (5-2) Check collisions between the cutting tool and links 
located on boundaries between sub-cubes.

 (5-3) If current voxel octree cube has level 1, then activate 
all 27 voxels and 54 links it contains, mark current 
voxel octree cube as deleted, and return.

 (5-4) Allocate storage space for seven new voxel octree 
cubes. Subdivide current voxel octree cube into eight 

Fig. 3  Parallel framework of a 
single simulation frame. Dashed 
lines represent thread synchro-
nization points. Text boxes rep-
resent processing steps. Steps 
in grey boxes are implemented 
using multi-threading tech-
niques. Boxes with thick edges 
represent steps different from 
the previous method

CPU GPU

Calculate solution matrix 
and right-hand side vector

Convert forces: voxels to octree vertices

Cutting

Convert forces: surface vertices to voxels

Process collision between non-
cutting tools and objects

Construct spatial hash table Copy deformation states to GPU

Object collision

Read back collision forces from GPU

Add collision forces to octree vertices

Update deformation octree 
vertex velocities and positions

Update surface vertex 
velocities and positions

Apply topological changes to 
data arrays in GPU memory

Copy spatial hash table to GPU

Use the preconditioned conjugate 
gradient method to solve for velocity 

increments of deformation octree 

Update active voxel positions

Check intersections between 
the cutting tool and active links

Subdivide voxel octree

Update voxel octree data 
affected by subdivision

Collision

Cutting

Deformation

Apply external forces

Cutting tool 
collision
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sub-cubes and store them in the original storage space 
and the newly allocated storage space.

 (5-5) Check if any of the eight sub-cubes need to be further 
subdivided. A sub-cube needs to be subdivided if any 
links on its boundaries are disconnected.

 (5-6) Recursively subdivide sub-cubes that need to be sub-
divided.

After the voxel octree subdivision step, some related data 
structures need to be updated. Some of these data structures 
are not needed in the following cutting and deformation 
stages of the same simulation frame, and therefore, their 
updates can be delayed. These updates include the following:

(a) Compaction of the voxel octree cube array Our simula-
tion system does not store level 0 voxel octree cubes, 
since they have no contribution to inactive voxels and 
links. Voxel octree cubes with levels higher than 0 are 
stored in a linear array. When a level 1 voxel octree 
cube is subdivided, it is temporarily marked with a 
deleted flag. After subdivision, the voxel octree cube 
array needs to be compacted to actually remove the 
voxel octree cubes marked with deleted flags.

(b) Activation of voxels and links on edges of newly cre-
ated voxel octree cubes As mentioned in Sect. 3.1, this 
creates a “protective frame” around each newly created 
voxel octree cube.

(c) Construction of the active voxel index array The indices 
of active voxels are stored in a linear array to facilitate 
parallel implementations. This array needs to be recon-
structed after voxel octree subdivision.

Notice that while deformation calculation is being per-
formed, the GPU command dispatch thread is updating top-
ological changes to GPU data structures. Simulation tests 
show that the former usually takes much longer time than the 
latter. Therefore, to increase the simulation performance, the 
task to update the data structures that are affected by voxel 
octree subdivision but not needed by cutting and deforma-
tion is assigned to the GPU command dispatch thread, after 

the step that updates topological changes to GPU data struc-
ture, and in parallel to the deformation steps.

4  Simulation results and analyses

Our simulation software is written in C++ for CPU and 
OpenCL for GPU. It runs on a PC with an Intel Core i5-3450 
CPU (four cores, 3.1 GHz, Max Turbo 3.5 GHz), 8 GB 
RAM, an AMD Radeon R9 380 GPU with 4 GB Video 
RAM, one Phantom Premium 6DOF haptic device and one 
Phantom Desktop haptic device. The operating system is 
Windows 7 Ultimate 64bit. A file containing incomplete 
source codes just enough to illustrate the algorithms in this 
paper is provided in the supplemental materials.

Table 1 shows the three models used for our simulation 
tests. Time steps for the implicit backward Euler time inte-
gration are also included in the table.

The maximum inter-material boundary level for the voxel 
octree is set to 0 for all models, while the maximum internal 
level for the voxel octree varies from 1 to the maximum 
allowable value for each model. The numbers of voxel octree 
cubes with different maximum internal levels are shown in 
Table 2. For the rest of this paper, unless specifically stated, 
the maximum internal level of each model is set to the maxi-
mum allowable value (4 for the bunny and the liver with 
tumor, 3 for the starfish).

4.1  Single‑frame cutting tests

In this suit of tests, the simulation is only run for a single 
frame. The cutting tool is positioned at one side of the model 
at the beginning of the frame and moves instantaneously to 
the other side of the model at the end of the frame. The cut 
surfaces resulted from these single-frame cutting tests are 
shown in Fig. 4.

This test is run for ten times for each model, and the 
execution times of simulation steps related to the cutting 
tool collision are averaged. These steps are: voxel posi-
tion update, cutting tool intersection test and voxel octree 

Table 1  Test models

Model Voxel resolution # Voxels # Links # Surface vertices # Surface triangles # Deformation 
octree vertices

# Deformation 
octree cubes

Time 
step 
(ms)

Bunny 101 × 78 × 100 242,930 635,744 70,810 141,616 999 557 (level 3) 4
11 (level 4)

Liver with tumor 100 × 62 × 88 185,259 483,596 55,736 111,448 820 498 (level 3) 5
2 (level 4)

Starfish 180 × 166 × 30 207,594 506,610 88,526 177,048 1056 574 (level 3) 3
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subdivision. Table 3 shows the averaged execution times of 
these steps under different numbers of threads. The num-
bers in the parentheses are speedup factors relative to single-
threaded implementations. The thread scaling is good for all 
three steps.

Table 4 shows comparisons between the three-threaded 
implementation of our method using the voxel octree and 
that of the previous method [23] not using the voxel octree. 

The cutting tool collision total includes all three steps for 
our method, and only the voxel position update step and the 
cutting tool intersection test step for the previous method. 
Although the speedup from using the voxel octree is impres-
sive for the voxel position update time and the cutting tool 
intersection test time, it is somewhat limited for the total 
time, ranging from 1.1 for the starfish to 1.96 for the bunny. 
The reason is that the previous method does not have the 
voxel octree subdivision step. Therefore, the speedup gained 

from the voxel position update and the cutting tool intersec-
tion test is offset by the addition of the voxel octree sub-
division. Compared to the other two models, the starfish 
has a lower maximum internal level, and therefore, its ratio 
between the number of voxel octree cubes affected by cutting 
and the number of links cut along the cutting tool trajectory 
is higher. This results in a higher ratio between the voxel 

Table 2  Number of voxel octree cubes under different maximum internal levels for the test models

Model Max internal level 1 Max internal level 2 Max internal level 3 Max internal level 4

Bunny 21,580 (level 1) 3580 (level 1), 2250 (level 2) 3580 (level 1),
722 (level 2),
191 (level 3)

3580 (level 1),
722 (level 2),
103 (level 3),
11 (level 4)

Liver with tumor 15,002 (level 1) 3754 (level 1), 1406 (level 2) 3754 (level 1),
662 (level 2),
93 (level 3)

3754 (level 1),
662 (level 2),
77 (level 3),
2 (level 4)

Starfish 15,248 (level 1) 4952 (level 1), 1287 (level 2) 4952 (level 1),
1015 (level 2),
34 (level 3)

Fig. 4  Model cut surfaces for the single-frame cutting tests

Table 3  Averaged execution times (in milliseconds) under different numbers of threads for the single-frame cutting tests

“T” represents “thread.” The numbers in the parentheses are unitless speedup factors relative to single-threaded implementations

Model Voxel position update Cutting tool intersection test Voxel octree subdivision

1 T 2 Ts 3 Ts 1 T 2 Ts 3 Ts 1 T 2 Ts 3 Ts

Bunny 3.95 2.13 (1.85 ×) 1.66 (2.38 ×) 78.0 41.1 (1.90 ×) 28.2 (2.77 ×) 87.5 50.5 (1.73 ×) 37.4 (2.34 ×)
Liver with tumor 4.03 2.24 (1.80 ×) 1.68 (2.40 ×) 107 56.1 (1.91 ×) 37.9 (2.82 ×) 63.7 36.8 (1.73 ×) 28.0 (2.28 ×)
Starfish 4.66 2.63 (1.77 ×) 1.94 (2.40 ×) 38.9 20.7 (1.88 ×) 14.7 (2.65 ×) 37.3 21.4 (1.74 ×) 16.9 (2.21 ×)

Table 4  Averaged execution times (in milliseconds) with and without the voxel octree for the single-frame cutting tests

Three threads are used for all simulations. Speed ratio is between simulation with the voxel octree and simulation without the voxel octree

Model Voxel position update Cutting tool intersection test Cutting tool collision total

Without 
voxel octree

With voxel 
octree

Speed ratio Without 
voxel octree

With voxel 
octree

Speed ratio Without 
voxel octree

With voxel 
octree

Speed ratio

Bunny 4.96 1.66 2.99 127 28.2 4.50 132 67.2 1.96
Liver with tumor 3.62 1.68 2.15 104 37.9 2.74 108 67.6 1.60
Starfish 3.65 1.94 1.88 33.5 14.7 2.28 37.2 33.6 1.11
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octree subdivision time and the total time of the previous 
method, and in turn a smaller speedup for the total time.

4.2  Complex cutting and deformation tests

In this suit of tests, each model undergoes a complex simu-
lation test scenario while user interacts with it using both 
a poking tool and a cutting tool. Screen captures of these 
simulation tests are shown in Fig. 5. Video files showing the 
entire simulation sequences are provided in the supplemen-
tal materials. For each model, movements of the interaction 
tools are recorded once and later played back for each test.

Figure 6 shows the simulation FPS (frames per second) as 
functions of the simulation time under different numbers of 
threads assigned to the cutting tool collision. The numbers 
of threads assigned to other simulation steps (object colli-
sion, cutting and deformation) remain three for all cases. The 
results using the previous method without the voxel octree 
are also shown for comparison.

As shown in Fig. 6, the simulation FPS with three threads 
are significantly higher than those with one thread, showing 
the effectiveness of our multi-threaded implementations. 
However, when compared to the results using the previous 
method without the voxel octree, the simulation FPS with 
three threads have only moderate increases at the beginning 
of the simulation tests, about 43% for the bunny model, 
24% for the liver with tumor model and 15% for the starfish 
model. At the end of the simulation tests, the increases are 
changed to about 17% for the bunny model, 29% for the liver 

with tumor model and 7% for the starfish model. As more 
cuts are performed on the deformable objects, more voxel 
octree cubes are subdivided and more voxels and links are 
activated. This in turn lowers the advantages of our method 
over the previous method. In the extreme case, all voxels and 
links are activated and our method is essentially the same as 
the previous method. This explains the lowered increases for 
the bunny and the starfish models at the end. For the liver 
with tumor model, the FPS increase at the end is actually a 
little higher. This anomaly can be attributed to the cutting 
tool trajectory. In this case, the cutting tool mostly cuts into 
the boundary regions between the liver and the tumor. Since 
the maximum inter-material boundary level is set to 0, the 
number of voxel octree cubes with levels higher than 1 is 
small in the boundary regions; thus, the number of newly 
activated voxels and links due to cutting is small. Therefore, 
the performance reduction in the cutting tool collision does 
not outweigh the performance reduction in an entire simula-
tion frame.

Figure 7 shows the simulation FPS as functions of the 
simulation time under different maximum internal levels for 
the voxel octree. The numbers of threads are three for all 
cases. Again, the results using the previous method without 
the voxel octree are shown for comparison.

As shown in Fig. 7, the simulation FPS have significant 
increases when going from not using the voxel octree to 
using a voxel octree with maximum internal level 1. This is 
also true when going from maximum internal level 1 to max-
imum internal level 2. After that, increasing the maximum 

Fig. 5  Complex simulation tests for the bunny, the liver with tumor and the starfish models
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internal level only increases the simulation FPS slightly, and 
in some cases even decreases the simulation FPS slightly. 
This is because the number of voxel octree cubes in a cer-
tain level drops as the level increases (see Table 2); thus, 
diminishing returns kick in when a certain level is reached.

Looking at Figs. 6 and 7 again, we can see that the simu-
lation FPS increase in our method relative to the previous 
method only exist in the non-cutting periods, i.e., the time 
periods during which the cutting tool does not cut into the 
deformable objects. During cutting periods, represented by 
valleys in Figs. 6 and 7, the simulation FPS of our method 

are about the same as those of the previous method. This 
problem needs further analyses.

Figure 8 shows the execution times of the cutting tool 
collision total, the cutting tool collision total minus the voxel 
octree subdivision (the same as the voxel position update 
plus the cutting tool intersection test), and the voxel octree 
subdivision under different numbers of threads for the bunny 
model. The results using the previous method without the 
voxel octree are yet again shown for comparison.

As shown in Fig. 8, the combined execution time of the 
voxel position update and the cutting tool intersection test 

10
20
30
40
50
60
70
80
90

0 10 20 30 40 50 60
Simulation Time (s)

Fr
am

es
 p

er
 S

ec
on

d 
(H

z)
Voxel Octree (1 Thread)
Voxel Octree (2 Threads)
Voxel Octree (3 Threads)
Without Voxel Octree

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25
Simulation Time (s)

Fr
am

es
 p

er
 S

ec
on

d 
(H

z)

(a) Bunny

(b) Liver with tumor

(c)Starfish

10

20

30

40

50

60

70

0 10 20 30 40 50
Simulation Time (s)

Fr
am

es
 p

er
 S

ec
on

d 
(H

z)

Fig. 6  Simulation FPS as functions of the simulation time under dif-
ferent numbers of threads
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has good thread scaling, in both non-cutting periods and 
cutting periods. With three threads, it is also significantly 
lower than that of the previous method. However, the voxel 
octree subdivision time has poor thread scaling in cut-
ting periods, although it is zero in non-cutting periods. 
Adding the voxel octree subdivision time nearly cancels 
out the time reduction from the voxel position update and 
the cutting tool intersection test relative to the previous 
method. This is why the simulation FPS of our method 

are almost the same as those of the previous method in 
cutting periods.

However, the single-frame cutting tests show that the 
voxel octree subdivision has good thread scaling. Why is its 
thread scaling poor in the complex cutting tests?

In the single-frame cutting tests, the cutting tool moves 
from one side of the model to the other side in a single 
frame. In the complex cutting tests, the cutting tool is con-
trolled by the user and moves much slower. Therefore, the 
number of voxel octree cubes to be subdivided in a single 
frame in the complex cutting tests is much smaller than 
that of the single-frame cutting tests. Our multi-threaded 
implementation of the voxel octree subdivision has signifi-
cant overheads. It needs to first process voxels and links on 
shared boundaries before it can subdivide the voxel octree 
cubes in parallel. When the number of voxel octree cubes to 
be subdivided is low, the time saved due to parallel subdivi-
sion cannot offset the overheads. This is the reason why the 
thread scaling for the voxel octree subdivision is good in the 
single-frame cutting tests, but poor in the complex cutting 
tests. We also constructed figures similar to Fig. 8 for the 
liver with tumor model and the starfish model and came to 
the same conclusion. To save space, these figures are not 
shown in this paper.

5  Conclusions and future work

In this paper, a pseudo voxel octree is used to accelerate 
collision between a cutting tool and deformable objects 
modeled as voxels connected by links. Voxels and links in 
the interiors of voxel octree cubes are deactivated, and only 
active voxels and links are considered. Voxel octree cubes 
with newly cut links on their boundaries are recursively sub-
divided, and new voxels and links are activated accordingly. 
Due to this recursive subdivision, the cut surface details are 
the same as those using previous methods without the voxel 
octree. Multi-threading techniques are used to implement 
our method.

In the single-frame cutting tests, our method shows good 
thread scaling for all three steps of the cutting tool collision: 
voxel position update, cutting tool intersection test and voxel 
octree subdivision. Compared to previous methods without 
the voxel octree, which do not have a voxel octree subdivi-
sion step, our method is still 11–96% faster.

In the complex cutting tests, our method has good thread 
scaling for the voxel position update step and the cutting 
tool intersection test step, and the overall simulation speed 
is 7–43% faster than those using previous methods without 
the voxel octree in non-cutting periods. However, in cut-
ting periods, the thread scaling is almost non-existent for 
the voxel octree subdivision step due to overheads and low 

(a) Cutting tool collision total

(b) Voxel position update + Cutting tool intersection test

(c) Voxel octree subdivision
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parallel workload. Thus, the overall simulation speed in cut-
ting periods has no improvements over those using previous 
methods without the voxel octree.

In the future, we plan to turn the pseudo voxel octree 
into a real octree, i.e., making edges of voxel octree cubes 
straight during deformation so that they can be treated as 
coarser resolution links. Theoretically, this can make the 
cutting tool collision even faster. However, this requires 
aligning the voxel octree and the deformation octree in the 
same grid and necessitates a complete redesign of current 
deformable object models as well as deformation, cutting 
and collision algorithms. We also plan to use XFEM for 
deformation octree cubes containing cut surfaces to achieve 
better deformation accuracy near cut surfaces.
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