
Vol.:(0123456789)1 3

The Visual Computer (2020) 36:1017–1028
https://doi.org/10.1007/s00371-019-01716-4

ORIGINAL ARTICLE

Using pseudo voxel octree to accelerate collision between cutting tool
and deformable objects modeled as linked voxels

Shiyu Jia1 · Weizhong Zhang1 · Zhenkuan Pan1 · Guodong Wang1 · Xiaokang Yu1

Published online: 20 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
For deformable objects modeled as a uniform grid of voxels connected by links, an octree for the voxels is constructed. Cut-
ting is performed by disconnecting links swept by the cutting tool and reconstructing cut surface mesh using the dual contour
method. The cubes of the voxel octree are not directly used because their edges generally do not remain straight when the
objects deform. Instead, the voxel octree is used to mark active voxels and links and is therefore called “pseudo.” Voxels and
links located in the interiors of voxel octree cubes are deactivated. For collision between the cutting tool and the deformable
objects, only active voxels and links are considered. Then, voxel octree cubes with newly cut links on their boundaries are
recursively subdivided, and new voxels and links are activated accordingly. These algorithms are implemented with multi-
threading techniques. Simulation tests show that when compared to previous methods using a uniform grid of voxels, our
voxel octree method can increase cutting tool collision speed by 11–96% and can increase overall simulation speed by 7–43%.

Keywords Deformable object · Physically based modeling · Interactive cutting · Octree

1 Introduction

To simulate cutting of deformable objects, traditional
methods split each component element swept by the cutting
tool into several smaller elements. However, this process
may create very small or degenerated elements that make
deformation calculation numerically unstable. One type
of methods to get around this problem embeds a uniform
grid of voxels with fine resolution inside an octree mesh of
hexahedral elements with coarse resolution. Deformation
is only applied to the hexahedral elements. Adjacent voxels
are connected by links. During cutting, links swept by the
cutting tool trajectory are disconnected and related hexa-
hedral elements are adaptively refined and duplicated. The
cut surfaces are reconstructed from disconnected links using
either the splitting cube method or the dual contour method.

For this type of methods, one of the major bottlenecks for
simulation performance is the collision between the cutting
tool and the deformable objects. The main contribution of
this paper is using a voxel octree to accelerate this type of
collision, while maintaining surface details and deforma-
tion accuracy of the deformable objects. The voxel octree
is used to mark active voxels and links that will participate
in the collision processing. Voxel octree cubes with newly
cut links on their boundaries are recursively subdivided, and
new voxels and links are activated accordingly. The voxel
octree has no restriction on the level differences between
adjacent cubes and is therefore easier to be constructed and
subdivided than a restricted octree.

2 Previous work

Compared with simulating fractures in rigid bodies [1–3],
simulating cuts in deformable objects is much more diffi-
cult, especially for simulations with real-time requirements,
such as surgical simulations. Brief descriptions of previous
deformable cutting methods are given in this section. Most
details can be found in the survey by Wu et al. [4].

The traditional element splitting method [5, 6] splits each
element swept by the cutting tool into smaller elements.

Electronic supplementary material The online version of this
article (https ://doi.org/10.1007/s0037 1-019-01716 -4) contains
supplementary material, which is available to authorized users.

 * Weizhong Zhang
 zhangwz_01@aliyun.com

1 College of Computer Science and Technology,
Qingdao University, Qingdao 266071, Shandong,
People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-019-01716-4&domain=pdf
https://doi.org/10.1007/s00371-019-01716-4

1018 S. Jia et al.

1 3

This may result in degenerated or very small elements that
decrease the numerical stability of deformation. To over-
come this problem, several advanced cutting methods have
been proposed.

The virtual node method [7–10] embeds cut fragments in
virtual copies of the original uncut elements. The extended
finite element method (XFEM) [11–13] uses enriched shape
functions to model displacement discontinuities across the
cut surfaces. The cutting method based on the meshfree
deformation method (MDM) [14, 15] inserts new nodes
around the cut surfaces and updates visibility between nodes
occluded by the cut surfaces. The position based dynamics
has been used to simulate deformable cutting in combina-
tion with voxel representations [16], or geometric metaballs
and MDM [17].

The cutting method based on adaptive octree mesh uses
an octree mesh of hexahedral elements for deformation.
Hexahedral elements intersected by the cutting tool are
recursively subdivided. Surface meshes for rendering and
collision are embedded in the octree mesh. Jeřábková et al.
[18] simply removed the finest level elements intersected by
the cutting tool and reconstructed the cut surfaces using the
level set method. Seiler et al. [19] embedded a tetrahedral
mesh inside the octree mesh. Tetrahedrons intersected by
the cutting tool were removed, and octree nodes were split
according to tetrahedral mesh connectivity. The cut surfaces
were formed using clipping and Delaunay triangulation.
Dick et al. [20] embedded a uniform grid of voxels inside
the octree mesh. Adjacent voxels are connected by links, and
links swept by the cutting tool were disconnected. The cut
surfaces were reconstructed from disconnected links using
the splitting cube method [15]. Wu et al. [21] proposed an
efficient collision detection method for the cutting method
in [20] and changed the cut surface reconstruction method
to the dual contour method [22]. Jia et al. [23] designed a
parallel framework utilizing both CPU and GPU to accel-
erate deformable cutting simulation based on the methods
proposed in [20] and [21].

3 Methods

Our deformable cutting method is based on the linked voxel
model and the adaptive octree mesh proposed in [20] and
[21]. The major performance bottlenecks for this type of
methods are: deformation; inter-object collision and object
self collision (referred to simply as “object collision” from
now on); and the collision between the cutting tool and the
deformable objects (referred to simply as “cutting tool col-
lision” from now on). In this paper, a voxel octree is used to
accelerate the cutting tool collision. The easiest way to uti-
lize this voxel octree one may think of is to treat the edges of
the voxel octree cubes as coarser resolution links and check

collisions between the cutting tool and these edges. How-
ever, this will not work because these edges may not remain
straight when the objects deform. Instead, our method uses
the voxel octree to mark active voxels and links that will par-
ticipate in the cutting tool collision. Voxel octree cubes with
newly cut links on their boundaries will be recursively sub-
divided, and new voxels and links are activated accordingly.
Therefore, we call this voxel octree “pseudo”. To further
increase the simulation performance, the parallel framework
from [23] is modified to accommodate our new method.

The modified deformable cutting method will be
described in Sect. 3.1, and the modified parallel framework
will be described in Sect. 3.2.

3.1 Deformable cutting method using a pseudo
voxel octree

Deformable objects are internally represented by voxels, with
adjacent voxels connected by links (Fig. 1). These voxels are
embedded in an octree of deformable hexahedral elements
(Fig. 2). The most popular method for deformation is the
finite element method (FEM). The original method proposed
in [20] and [21] uses a uniform grid of voxels, as shown in
Fig. 1a. Links intersected by the original object surface or
the cutting tool trajectory are marked as disconnected. The
object surface mesh and cut surface mesh are constructed
using the intersection information of the disconnected links.
Our method constructs an octree on top of this uniform voxel
grid, as shown in Fig. 1b. The vertices of each octree cube are
voxels and the edges of each octree cube consist of links. To
avoid confusion, this octree will be referred to as the “voxel
octree”, while the octree of deformable hexahedral elements
will be referred to as the “deformation octree”.

The size of an octree cube is 2L times the size of
a voxel. L is called the level of the octree cube. Two
parameters for each material need to be specified to
control the voxel octree structure: a maximum internal
level and a maximum inter-material boundary level. The
voxel octree is constructed iteratively from level 0 in
level ascending order. For each potential octree cube
with level L, if all (2L +1)3 voxels it contains exist and
are inside, and all 3 × 2L × (2L + 1)2 links it contains
exist and are connected, then it is further tested for level
restriction. Otherwise it is rejected. There are two cases
for the level restriction test. If all voxels the cube con-
tains belong to the same material, then the cube passes
the test if L is no more than the maximum internal level
of the material. If all voxels the cube contains belong to
more than one material, then the cube passes the test if
L is no more than the maximum inter-material bound-
ary levels of all relevant materials. The octree cube is
constructed if it passes the level restriction test. In the
example shown in Fig. 1b, there are two materials. The

1019Using pseudo voxel octree to accelerate collision between cutting tool and deformable objects…

1 3

maximum internal level is 2 for the green material and
1 for the blue material. The maximum inter-material
boundary level is 0 for both materials.

This voxel octree is used to mark active voxels and
links. Deactivated voxels and links are ignored by the
cutting tool collision process, but they are still used nor-
mally in deformation and object collision. Note that Fig. 1
shows 2D representations. For an actual 3D voxel octree,
the process to mark active voxels and links consists of the
following steps:

(1) Deactivate all voxels and links.

(2) For each connected link, if it is not completely sur-
rounded by voxel octree cubes with levels higher than
0, then it is activated.

(3) Activate all links on edges of voxel octree cubes with
levels higher than 0.

(4) Activate all voxels connected to at least one active link.

Note that, step (2) creates a “protective outer shell”
around each material region, and step (3) creates a “pro-
tective frame” around each voxel octree cube with a level
higher than 0. These are created to reduce the possibility of
the cutting tool intersecting an inside inactive link without

Inside voxel (different color
represents different material)

Connected link
Disconnected link

(a) A uniform grid of voxels (b) Voxel octree (c) Voxel octree subdivision
after cutting

Outside voxel

Deactivated voxel

Re-activated voxel

Connected cross-material link
Disconnected cross-material link
Deactivated link
Re-activated connected link
Re-activated disconnected link

Surface mesh
Inter-material
boundary mesh

Cutting tool trajectory

Fig. 1 Voxel representation of deformable objects

(a) Deformation octree (b) Deformation octree
subdivision after cutting

(c) Hexahedral element duplication after
subdivision and object deformation

Hexahedral element

Hexahedral element that
needs to be duplicated

Cutting tool trajectory

Duplicated hexahedral element

Cut surface mesh

Fig. 2 Octree of hexahedral elements for deformation. (Symbols with the same meaning as in Fig. 1 are not annotated)

1020 S. Jia et al.

1 3

intersecting any active links on the boundary, for either a
material region or a voxel octree cube.

For the cutting tool collision, positions of active voxels
are first calculated, and then, active links intersected by the
cutting tool are detected and disconnected. To speed up the
intersection detection, a spatial hash table is constructed for
the deformation octree as proposed in [21]. Each hexahedral
element in the deformation octree is added to hash table
entries corresponding to the spatial cells its AABB covers.
This spatial hash table is also used in the object collision, but
that is beyond the scope of this paper. An approximate OBB
for the cutting tool trajectory is constructed. All hexahe-
dral elements in hash table entries corresponding to spatial
cells covered by this OBB are marked. Then, all connected
and active links with at least one connected voxel belonging
to a marked hexahedral element are marked. Finally, these
marked links are checked for intersection with the cutting
tool.

Compared to previous methods with a uniform grid of
voxels, our method needs an additional step after the inter-
section detection of links: recursive subdivision of voxel
octree cubes affected by cutting. This recursive subdivision
step is crucial in making both geometry accuracy and defor-
mation accuracy of the cut surfaces the same as those from
previous methods. As shown in Fig. 1c, each voxel octree
cube with at least one newly disconnected link on its bound-
ary (including edges and faces) and with a level higher than
0 is recursively subdivided until no cube has newly discon-
nected links on its boundary or level 0 is reached. During
the subdivision process, the positions of voxels located on
boundaries between sub-cubes are calculated, and links
located on boundaries between sub-cubes are checked for
intersection with the cutting tool. After the subdivision pro-
cess finishes, voxels and links located on the edges of newly
created voxel octree cubes are activated if they are currently
inactive.

After the cutting tool collision, hexahedral elements in
the deformation octree containing newly disconnected links
are recursively subdivided (Fig. 2b). Then, hexahedral ele-
ments containing more than one connected voxel parts are
duplicated, with each connected voxel part distributed to one
duplicate (Fig. 2c).

The deformation octree is restricted, meaning that the
level differences between adjacent octree cubes are no
more than one. This makes it easier to deal with constraints
imposed on octree vertices shared between octree cubes with
different levels. The voxel octree has no such problem and is
therefore not restricted.

This paper has no new contribution to the deformation
algorithm. Figure 2 shows that the edges of voxel octree
cubes with levels higher than 0 generally do not remain
straight when the objects deform and therefore cannot be
treated as line segments for intersection test with the cutting

tool. This is the reason why our method uses the voxel octree
indirectly to mark active voxels and links. For hexahedral
elements using a linear interpolation function, the edges of
a voxel octree cube can indeed remain straight if the cube
is entirely contained in a hexahedral element. However, it
is impossible for every voxel octree cube to be contained
in a hexahedral element, because the voxel octree and the
deformation octree are defined on two grids that are off by
half a voxel.

3.2 Parallel implementations

Our deformable cutting method is implemented in a paral-
lel framework shown in Fig. 3. This framework is derived
from the framework designed in [23] with several modifi-
cations. As in [23], both CPU and GPU are utilized in the
framework, and a single CPU thread is used specifically for
dispatching GPU commands.

The explicit time integration method in [23] is now
replaced with an implicit backward Euler time integration
method. The resulting differential equations are solved using
the preconditioned conjugate gradient method. Simulation
tests show that the equation solution times are approximately
doubled, but the time steps are nearly quadrupled compared
to [23].

In [23], the voxel position update step is placed in the
deformation stage, after velocities and positions of the defor-
mation octree vertices are updated. In our framework, this
step is moved to the collision stage, before intersection test
between active links and the cutting tool, and in parallel
to GPU’s object collision step. The reason for this is that
the voxel positions are only used in checking intersections
between links and the cutting tool. Making the voxel posi-
tion update step to run in parallel to GPU can potentially
reduce the total simulation time.

The voxel octree data structure is only accessed by the
CPU. It is only used for the cutting tool collision and remains
solely in the CPU memory. As mentioned in Sect. 3.1, after
intersection test between active links and the cutting tool,
an additional step performing voxel octree subdivision is
added. This step can potentially consume a large amount of
time and its parallel implementation needs to be carefully
designed.

Since the voxel octree is not restricted, subdivision of
each voxel octree cube can almost be performed indepen-
dently, except for shared boundaries (edges and faces).
Therefore, our implementation first processes voxels and
links on shared boundaries and then subdivides voxel octree
cubes in parallel. The processing sub-steps are:

(1) Mark affected voxel octree cubes. (“Affected” means
affected by cutting.) Quit if there are no affected voxel
octree cubes.

1021Using pseudo voxel octree to accelerate collision between cutting tool and deformable objects…

1 3

(2) Mark voxels and links on the boundaries of affected
voxel octree cubes.

(3) Calculate positions of inactive voxels that are also
marked in sub-step (2).

(4) For each connected link that is also marked in sub-step
(2), check if it intersects the cutting tool.

(5) Recursively subdivide each affected voxel octree cube.
(6) Go to sub-step (1).

Sub-steps (1) to (4) are implemented using lock-free
multi-threading techniques.

Sub-step (1) processes each active and newly cut link and
marks all voxel octree cubes surrounding the link with levels
higher than 0. Each voxel octree cube has a special affected
flag indicating if it is marked. Note that different threads
processing different links may mark the same voxel octree
cube multiple times, but there is no racing condition here
because raising an already raised affected flag does not cre-
ate any state conflicts.

Sub-step (2) processes each voxel octree cube marked
in sub-step (1) and marks voxels and links on the voxel
octree cube’s boundary. Each voxel and link also has a
special affected flag indicating if it is marked. Again, there
is no racing condition here for the same reason as for sub-
step (1).

For sub-step (5), each thread uses a mutex to get the next
affected voxel octree cube it needs to subdivide. The subdi-
vision itself has the following sub-steps:

 (5-1) Calculate positions of voxels located on boundaries
between sub-cubes.

 (5-2) Check collisions between the cutting tool and links
located on boundaries between sub-cubes.

 (5-3) If current voxel octree cube has level 1, then activate
all 27 voxels and 54 links it contains, mark current
voxel octree cube as deleted, and return.

 (5-4) Allocate storage space for seven new voxel octree
cubes. Subdivide current voxel octree cube into eight

Fig. 3 Parallel framework of a
single simulation frame. Dashed
lines represent thread synchro-
nization points. Text boxes rep-
resent processing steps. Steps
in grey boxes are implemented
using multi-threading tech-
niques. Boxes with thick edges
represent steps different from
the previous method

CPU GPU

Calculate solution matrix
and right-hand side vector

Convert forces: voxels to octree vertices

Cutting

Convert forces: surface vertices to voxels

Process collision between non-
cutting tools and objects

Construct spatial hash table Copy deformation states to GPU

Object collision

Read back collision forces from GPU

Add collision forces to octree vertices

Update deformation octree
vertex velocities and positions

Update surface vertex
velocities and positions

Apply topological changes to
data arrays in GPU memory

Copy spatial hash table to GPU

Use the preconditioned conjugate
gradient method to solve for velocity

increments of deformation octree

Update active voxel positions

Check intersections between
the cutting tool and active links

Subdivide voxel octree

Update voxel octree data
affected by subdivision

Collision

Cutting

Deformation

Apply external forces

Cutting tool
collision

1022 S. Jia et al.

1 3

sub-cubes and store them in the original storage space
and the newly allocated storage space.

 (5-5) Check if any of the eight sub-cubes need to be further
subdivided. A sub-cube needs to be subdivided if any
links on its boundaries are disconnected.

 (5-6) Recursively subdivide sub-cubes that need to be sub-
divided.

After the voxel octree subdivision step, some related data
structures need to be updated. Some of these data structures
are not needed in the following cutting and deformation
stages of the same simulation frame, and therefore, their
updates can be delayed. These updates include the following:

(a) Compaction of the voxel octree cube array Our simula-
tion system does not store level 0 voxel octree cubes,
since they have no contribution to inactive voxels and
links. Voxel octree cubes with levels higher than 0 are
stored in a linear array. When a level 1 voxel octree
cube is subdivided, it is temporarily marked with a
deleted flag. After subdivision, the voxel octree cube
array needs to be compacted to actually remove the
voxel octree cubes marked with deleted flags.

(b) Activation of voxels and links on edges of newly cre-
ated voxel octree cubes As mentioned in Sect. 3.1, this
creates a “protective frame” around each newly created
voxel octree cube.

(c) Construction of the active voxel index array The indices
of active voxels are stored in a linear array to facilitate
parallel implementations. This array needs to be recon-
structed after voxel octree subdivision.

Notice that while deformation calculation is being per-
formed, the GPU command dispatch thread is updating top-
ological changes to GPU data structures. Simulation tests
show that the former usually takes much longer time than the
latter. Therefore, to increase the simulation performance, the
task to update the data structures that are affected by voxel
octree subdivision but not needed by cutting and deforma-
tion is assigned to the GPU command dispatch thread, after

the step that updates topological changes to GPU data struc-
ture, and in parallel to the deformation steps.

4 Simulation results and analyses

Our simulation software is written in C++ for CPU and
OpenCL for GPU. It runs on a PC with an Intel Core i5-3450
CPU (four cores, 3.1 GHz, Max Turbo 3.5 GHz), 8 GB
RAM, an AMD Radeon R9 380 GPU with 4 GB Video
RAM, one Phantom Premium 6DOF haptic device and one
Phantom Desktop haptic device. The operating system is
Windows 7 Ultimate 64bit. A file containing incomplete
source codes just enough to illustrate the algorithms in this
paper is provided in the supplemental materials.

Table 1 shows the three models used for our simulation
tests. Time steps for the implicit backward Euler time inte-
gration are also included in the table.

The maximum inter-material boundary level for the voxel
octree is set to 0 for all models, while the maximum internal
level for the voxel octree varies from 1 to the maximum
allowable value for each model. The numbers of voxel octree
cubes with different maximum internal levels are shown in
Table 2. For the rest of this paper, unless specifically stated,
the maximum internal level of each model is set to the maxi-
mum allowable value (4 for the bunny and the liver with
tumor, 3 for the starfish).

4.1 Single‑frame cutting tests

In this suit of tests, the simulation is only run for a single
frame. The cutting tool is positioned at one side of the model
at the beginning of the frame and moves instantaneously to
the other side of the model at the end of the frame. The cut
surfaces resulted from these single-frame cutting tests are
shown in Fig. 4.

This test is run for ten times for each model, and the
execution times of simulation steps related to the cutting
tool collision are averaged. These steps are: voxel posi-
tion update, cutting tool intersection test and voxel octree

Table 1 Test models

Model Voxel resolution # Voxels # Links # Surface vertices # Surface triangles # Deformation
octree vertices

Deformation
octree cubes

Time
step
(ms)

Bunny 101 × 78 × 100 242,930 635,744 70,810 141,616 999 557 (level 3) 4
11 (level 4)

Liver with tumor 100 × 62 × 88 185,259 483,596 55,736 111,448 820 498 (level 3) 5
2 (level 4)

Starfish 180 × 166 × 30 207,594 506,610 88,526 177,048 1056 574 (level 3) 3

1023Using pseudo voxel octree to accelerate collision between cutting tool and deformable objects…

1 3

subdivision. Table 3 shows the averaged execution times of
these steps under different numbers of threads. The num-
bers in the parentheses are speedup factors relative to single-
threaded implementations. The thread scaling is good for all
three steps.

Table 4 shows comparisons between the three-threaded
implementation of our method using the voxel octree and
that of the previous method [23] not using the voxel octree.

The cutting tool collision total includes all three steps for
our method, and only the voxel position update step and the
cutting tool intersection test step for the previous method.
Although the speedup from using the voxel octree is impres-
sive for the voxel position update time and the cutting tool
intersection test time, it is somewhat limited for the total
time, ranging from 1.1 for the starfish to 1.96 for the bunny.
The reason is that the previous method does not have the
voxel octree subdivision step. Therefore, the speedup gained

from the voxel position update and the cutting tool intersec-
tion test is offset by the addition of the voxel octree sub-
division. Compared to the other two models, the starfish
has a lower maximum internal level, and therefore, its ratio
between the number of voxel octree cubes affected by cutting
and the number of links cut along the cutting tool trajectory
is higher. This results in a higher ratio between the voxel

Table 2 Number of voxel octree cubes under different maximum internal levels for the test models

Model Max internal level 1 Max internal level 2 Max internal level 3 Max internal level 4

Bunny 21,580 (level 1) 3580 (level 1), 2250 (level 2) 3580 (level 1),
722 (level 2),
191 (level 3)

3580 (level 1),
722 (level 2),
103 (level 3),
11 (level 4)

Liver with tumor 15,002 (level 1) 3754 (level 1), 1406 (level 2) 3754 (level 1),
662 (level 2),
93 (level 3)

3754 (level 1),
662 (level 2),
77 (level 3),
2 (level 4)

Starfish 15,248 (level 1) 4952 (level 1), 1287 (level 2) 4952 (level 1),
1015 (level 2),
34 (level 3)

Fig. 4 Model cut surfaces for the single-frame cutting tests

Table 3 Averaged execution times (in milliseconds) under different numbers of threads for the single-frame cutting tests

“T” represents “thread.” The numbers in the parentheses are unitless speedup factors relative to single-threaded implementations

Model Voxel position update Cutting tool intersection test Voxel octree subdivision

1 T 2 Ts 3 Ts 1 T 2 Ts 3 Ts 1 T 2 Ts 3 Ts

Bunny 3.95 2.13 (1.85 ×) 1.66 (2.38 ×) 78.0 41.1 (1.90 ×) 28.2 (2.77 ×) 87.5 50.5 (1.73 ×) 37.4 (2.34 ×)
Liver with tumor 4.03 2.24 (1.80 ×) 1.68 (2.40 ×) 107 56.1 (1.91 ×) 37.9 (2.82 ×) 63.7 36.8 (1.73 ×) 28.0 (2.28 ×)
Starfish 4.66 2.63 (1.77 ×) 1.94 (2.40 ×) 38.9 20.7 (1.88 ×) 14.7 (2.65 ×) 37.3 21.4 (1.74 ×) 16.9 (2.21 ×)

Table 4 Averaged execution times (in milliseconds) with and without the voxel octree for the single-frame cutting tests

Three threads are used for all simulations. Speed ratio is between simulation with the voxel octree and simulation without the voxel octree

Model Voxel position update Cutting tool intersection test Cutting tool collision total

Without
voxel octree

With voxel
octree

Speed ratio Without
voxel octree

With voxel
octree

Speed ratio Without
voxel octree

With voxel
octree

Speed ratio

Bunny 4.96 1.66 2.99 127 28.2 4.50 132 67.2 1.96
Liver with tumor 3.62 1.68 2.15 104 37.9 2.74 108 67.6 1.60
Starfish 3.65 1.94 1.88 33.5 14.7 2.28 37.2 33.6 1.11

1024 S. Jia et al.

1 3

octree subdivision time and the total time of the previous
method, and in turn a smaller speedup for the total time.

4.2 Complex cutting and deformation tests

In this suit of tests, each model undergoes a complex simu-
lation test scenario while user interacts with it using both
a poking tool and a cutting tool. Screen captures of these
simulation tests are shown in Fig. 5. Video files showing the
entire simulation sequences are provided in the supplemen-
tal materials. For each model, movements of the interaction
tools are recorded once and later played back for each test.

Figure 6 shows the simulation FPS (frames per second) as
functions of the simulation time under different numbers of
threads assigned to the cutting tool collision. The numbers
of threads assigned to other simulation steps (object colli-
sion, cutting and deformation) remain three for all cases. The
results using the previous method without the voxel octree
are also shown for comparison.

As shown in Fig. 6, the simulation FPS with three threads
are significantly higher than those with one thread, showing
the effectiveness of our multi-threaded implementations.
However, when compared to the results using the previous
method without the voxel octree, the simulation FPS with
three threads have only moderate increases at the beginning
of the simulation tests, about 43% for the bunny model,
24% for the liver with tumor model and 15% for the starfish
model. At the end of the simulation tests, the increases are
changed to about 17% for the bunny model, 29% for the liver

with tumor model and 7% for the starfish model. As more
cuts are performed on the deformable objects, more voxel
octree cubes are subdivided and more voxels and links are
activated. This in turn lowers the advantages of our method
over the previous method. In the extreme case, all voxels and
links are activated and our method is essentially the same as
the previous method. This explains the lowered increases for
the bunny and the starfish models at the end. For the liver
with tumor model, the FPS increase at the end is actually a
little higher. This anomaly can be attributed to the cutting
tool trajectory. In this case, the cutting tool mostly cuts into
the boundary regions between the liver and the tumor. Since
the maximum inter-material boundary level is set to 0, the
number of voxel octree cubes with levels higher than 1 is
small in the boundary regions; thus, the number of newly
activated voxels and links due to cutting is small. Therefore,
the performance reduction in the cutting tool collision does
not outweigh the performance reduction in an entire simula-
tion frame.

Figure 7 shows the simulation FPS as functions of the
simulation time under different maximum internal levels for
the voxel octree. The numbers of threads are three for all
cases. Again, the results using the previous method without
the voxel octree are shown for comparison.

As shown in Fig. 7, the simulation FPS have significant
increases when going from not using the voxel octree to
using a voxel octree with maximum internal level 1. This is
also true when going from maximum internal level 1 to max-
imum internal level 2. After that, increasing the maximum

Fig. 5 Complex simulation tests for the bunny, the liver with tumor and the starfish models

1025Using pseudo voxel octree to accelerate collision between cutting tool and deformable objects…

1 3

internal level only increases the simulation FPS slightly, and
in some cases even decreases the simulation FPS slightly.
This is because the number of voxel octree cubes in a cer-
tain level drops as the level increases (see Table 2); thus,
diminishing returns kick in when a certain level is reached.

Looking at Figs. 6 and 7 again, we can see that the simu-
lation FPS increase in our method relative to the previous
method only exist in the non-cutting periods, i.e., the time
periods during which the cutting tool does not cut into the
deformable objects. During cutting periods, represented by
valleys in Figs. 6 and 7, the simulation FPS of our method

are about the same as those of the previous method. This
problem needs further analyses.

Figure 8 shows the execution times of the cutting tool
collision total, the cutting tool collision total minus the voxel
octree subdivision (the same as the voxel position update
plus the cutting tool intersection test), and the voxel octree
subdivision under different numbers of threads for the bunny
model. The results using the previous method without the
voxel octree are yet again shown for comparison.

As shown in Fig. 8, the combined execution time of the
voxel position update and the cutting tool intersection test

10
20
30
40
50
60
70
80
90

0 10 20 30 40 50 60
Simulation Time (s)

Fr
am

es
 p

er
 S

ec
on

d
(H

z)
Voxel Octree (1 Thread)
Voxel Octree (2 Threads)
Voxel Octree (3 Threads)
Without Voxel Octree

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25
Simulation Time (s)

Fr
am

es
 p

er
 S

ec
on

d
(H

z)

(a) Bunny

(b) Liver with tumor

(c)Starfish

10

20

30

40

50

60

70

0 10 20 30 40 50
Simulation Time (s)

Fr
am

es
 p

er
 S

ec
on

d
(H

z)

Fig. 6 Simulation FPS as functions of the simulation time under dif-
ferent numbers of threads

10
20
30
40
50
60
70
80
90

0 10 20 30 40 50 60
Simulation Time (s)

Fr
am

es
 p

er
 S

ec
on

d
(H

z)

Voxel Octree (L1)
Voxel Octree (L2)
Voxel Octree (L3)
Voxel Octree (L4)
Without Voxel Octree

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25
Simulation Time (s)

Fr
am

es
 p

er
 S

ec
on

d
(H

z)

10

20

30

40

50

60

70

0 10 20 30 40 50
Simulation Time (s)

Fr
am

es
 p

er
 S

ec
on

d
(H

z)

(a) Bunny

(b) Liver with tumor

(c)Starfish

Fig. 7 Simulation FPS as functions of the simulation time under dif-
ferent maximum internal levels for the voxel octree. “L#” represents
“Maximum internal level #”

1026 S. Jia et al.

1 3

has good thread scaling, in both non-cutting periods and
cutting periods. With three threads, it is also significantly
lower than that of the previous method. However, the voxel
octree subdivision time has poor thread scaling in cut-
ting periods, although it is zero in non-cutting periods.
Adding the voxel octree subdivision time nearly cancels
out the time reduction from the voxel position update and
the cutting tool intersection test relative to the previous
method. This is why the simulation FPS of our method

are almost the same as those of the previous method in
cutting periods.

However, the single-frame cutting tests show that the
voxel octree subdivision has good thread scaling. Why is its
thread scaling poor in the complex cutting tests?

In the single-frame cutting tests, the cutting tool moves
from one side of the model to the other side in a single
frame. In the complex cutting tests, the cutting tool is con-
trolled by the user and moves much slower. Therefore, the
number of voxel octree cubes to be subdivided in a single
frame in the complex cutting tests is much smaller than
that of the single-frame cutting tests. Our multi-threaded
implementation of the voxel octree subdivision has signifi-
cant overheads. It needs to first process voxels and links on
shared boundaries before it can subdivide the voxel octree
cubes in parallel. When the number of voxel octree cubes to
be subdivided is low, the time saved due to parallel subdivi-
sion cannot offset the overheads. This is the reason why the
thread scaling for the voxel octree subdivision is good in the
single-frame cutting tests, but poor in the complex cutting
tests. We also constructed figures similar to Fig. 8 for the
liver with tumor model and the starfish model and came to
the same conclusion. To save space, these figures are not
shown in this paper.

5 Conclusions and future work

In this paper, a pseudo voxel octree is used to accelerate
collision between a cutting tool and deformable objects
modeled as voxels connected by links. Voxels and links in
the interiors of voxel octree cubes are deactivated, and only
active voxels and links are considered. Voxel octree cubes
with newly cut links on their boundaries are recursively sub-
divided, and new voxels and links are activated accordingly.
Due to this recursive subdivision, the cut surface details are
the same as those using previous methods without the voxel
octree. Multi-threading techniques are used to implement
our method.

In the single-frame cutting tests, our method shows good
thread scaling for all three steps of the cutting tool collision:
voxel position update, cutting tool intersection test and voxel
octree subdivision. Compared to previous methods without
the voxel octree, which do not have a voxel octree subdivi-
sion step, our method is still 11–96% faster.

In the complex cutting tests, our method has good thread
scaling for the voxel position update step and the cutting
tool intersection test step, and the overall simulation speed
is 7–43% faster than those using previous methods without
the voxel octree in non-cutting periods. However, in cut-
ting periods, the thread scaling is almost non-existent for
the voxel octree subdivision step due to overheads and low

(a) Cutting tool collision total

(b) Voxel position update + Cutting tool intersection test

(c) Voxel octree subdivision

3
5
7
9

11
13
15
17
19
21

12 22 32 42
Simulation Time (s)

C
ut

tin
g

To
ol

 C
ol

lis
io

n
To

ta
l (

m
s)

Voxel Octree (1 Thread) Voxel Octree (2 Threads)
Voxel Octree (3 Threads) Without Voxel Octree

3

5

7

9

11

13

15

12 22 32 42
Simulation Time (s)V

ox
el

 P
os

iti
on

 U
pd

at
e

+
C

ut
tin

g
To

ol
 In

te
rs

ec
tio

n
Te

st
(m

s)

0
1
2
3
4
5
6
7
8
9

12 22 32 42
Simulation Time (s)

V
ox

el
 O

ct
re

e
S

ub
di

vi
si

on
 (m

s)

Fig. 8 Execution times of cutting tool collision steps as functions of
the simulation time under different numbers of threads for the bunny
model

1027Using pseudo voxel octree to accelerate collision between cutting tool and deformable objects…

1 3

parallel workload. Thus, the overall simulation speed in cut-
ting periods has no improvements over those using previous
methods without the voxel octree.

In the future, we plan to turn the pseudo voxel octree
into a real octree, i.e., making edges of voxel octree cubes
straight during deformation so that they can be treated as
coarser resolution links. Theoretically, this can make the
cutting tool collision even faster. However, this requires
aligning the voxel octree and the deformation octree in the
same grid and necessitates a complete redesign of current
deformable object models as well as deformation, cutting
and collision algorithms. We also plan to use XFEM for
deformation octree cubes containing cut surfaces to achieve
better deformation accuracy near cut surfaces.

Funding This study was funded by the National Key Technology Sup-
port Program of China during the Twelfth Five-year Plan Period (Grant
Number 2013BAI01B03).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Zhu, Y., Bridson, R., Greif, C.: Simulating rigid body fracture
with surface meshes. ACM Trans. Gr. 34(4), 150 (2015)

 2. Hahn, D., Wojtan, C.: High-resolution brittle fracture simulation
with boundary elements. ACM Trans. Gr. 34(4), 151 (2015)

 3. Hahn, D., Wojtan, C.: Fast approximations for boundary element
based brittle fracture simulation. ACM Trans. Gr. 35(4), 104
(2016)

 4. Wu, J., Westermann, R., Dick, C.: A survey of physically based
simulation of cuts in deformable bodies. Comput. Gr. Forum
34(6), 161–187 (2015)

 5. Courtecuisse, H., Allard, J., Kerfriden, P., Bordas, S.P.A., Cotin,
S., Duriez, C.: Real-time simulation of contact and cutting of
heterogeneous soft-tissues. Med. Image Anal. 18(2), 394–410
(2014)

 6. Paulus, C.J., Untereiner, L., Courtecuisse, H., Cotin, S., Cazier,
D.: Virtual cutting of deformable objects based on efficient top-
ological operations. Vis. Comput. 31(6), 831–841 (2015)

 7. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for
changing mesh topology during simulation. ACM Trans. Gr.
23(3), 385–392 (2004)

 8. Sifakis E, Der K G, Fedkiw R. Arbitrary cutting of deformable
tetrahedralized objects. In: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
August 2007, pp. 73–80

 9. Wang Y, Jiang C, Schroeder C, Teran J. An adaptive virtual
node algorithm with robust mesh cutting. In: Proceedings of the
2014 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, July 2014, pp. 77–85

 10. Jia, S., Zhang, W., Yu, X., Pan, Z.: CPU-GPU mixed implemen-
tation of virtual node method for real-time interactive cutting

of deformable objects using OpenCL. Int. J. Comput. Assist.
Radiol. Surg. 10(9), 1477–1491 (2015)

 11. Jeřábková, L., Kuhlen, T.: Stable cutting of deformable objects
in virtual environments using xfem. IEEE Comput. Gr. Appl.
29(2), 61–71 (2009)

 12. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., Gross, M.:
Enrichment textures for detailed cutting of shells. ACM Trans.
Gr. 28(3), 50 (2009)

 13. Turkiyyah, G.M., Karam, W.B., Ajami, Z., Nasri, A.: Mesh cut-
ting during real-time physical simulation. Comput. Aided Des.
43(7), 809–819 (2011)

 14. Steinemann, D., Otaduy, M.A., Gross, M.: Splitting meshless
deforming objects with explicit surface tracking. Gr. Models
71(6), 209–220 (2009)

 15. Pietroni, N., Ganovelli, F., Cignoni, P., Scopigno, R.: Splitting
cubes—A fast and robust technique for virtual cutting. Vis.
Comput. 25(3), 227–239 (2009)

 16. Berndt, I., Torchelsen, R., Maciel, A.: Efficient surgical cutting
with position-based dynamics. IEEE Comput. Gr. Appl. 38(3),
24–31 (2017)

 17. Pan, J., Yan, S., Qin, H., Hao, A.: Real-time dissection of organs
via hybrid coupling of geometric metaballs and physics-centric
mesh-free method. Vis. Comput. 34(1), 105–116 (2018)

 18. Jeřábková, L., Bousquet, G., Barbier, S., Faure, F., Allard, J.:
Volumetric modeling and interactive cutting of deformable bod-
ies. Prog. Biophys. Mol. Biol. 103(2/3), 217–224 (2010)

 19. Seiler, M., Steinemann, D., Spillmann, J., Harders, M.: Robust
interactive cutting based on an adaptive octree simulation mesh.
Vis. Comput. 27(6/8), 519–529 (2011)

 20. Dick, C., Georgii, J., Westermann, R.: A hexahedral multigrid
approach for simulating cuts in deformable objects. IEEE Trans.
Vis. Comput. Gr. 17(11), 1663–1675 (2011)

 21. Wu, J., Dick, C., Westermann, R.: Efficient collision detection
for composite finite element simulation of cuts in deformable
bodies. Vis. Comput. 29(6/8), 739–749 (2013)

 22. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of
hermite data. ACM Trans. Gr. 21(3), 339–346 (2002)

 23. Jia, S., Zhang, W., Yu, X., Pan, Z.: CPU-GPU parallel frame-
work for real-time interactive cutting of adaptive octree-based
deformable objects. Comput. Gr. Forum 37(1), 45–59 (2018)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Shiyu Jia received his Ph.D. in
Mechanical Engineering from
Yale University in 2001. His
Ph.D. research was related to
finite element analysis and com-
puter simulation of composite
material properties. He began
working in College of Computer
Science and Technology (former
College of Information Engi-
neering) of Qingdao University
in 2003 and was appointed to
associate professor in 2004. He
has been working on deforma-
tion, collision, cutting simulation
and haptic interaction of deform-

able objects since 2005. His research interests are computer graphics,
haptic interaction and surgical simulation.

1028 S. Jia et al.

1 3

Weizhong Zhang received his
Ph.D. in Computer Science from
College of Mechanical and Elec-
trical Engineering, Nanjing Uni-
versity of Aeronautics and Astro-
nautics in 2007. He began
working in College of Computer
Science and Technology (former
College of Information Engi-
neering) of Qingdao University
as professor in 2005. His
research interests are computer
vision, computer graphics, image
processing and 3D image
reconstruction.

Zhenkuan Pan received his Ph.D.
in Dynamics and Control from
Shanghai Jiao Tong University
in 1992. Thereafter, he began
working in Qingdao University
until today. He served as associ-
ate head of College of Automa-
tion from 1992 to 1996, head of
computing center from 1996 to
2001, assistant dean of College
of Information Engineering from
1998 to 2002 and dean of Col-
lege of Information Engineering
(now College of Computer Sci-
ence and Technology) from 2002
until today. He was appointed to

professor in 1996. His research interests are multi-body system dynam-
ics and control, surgical simulation, image processing and numerical
analysis.

Guodong Wang received his
B.Sc. and M.Sc. degrees in con-
trol technology and control engi-
neering from Qingdao Science
and Technology University, PR
China, in 2001 and 2004, respec-
tively, and his Ph.D. degree in
pattern recognition and intelli-
gent systems from Huazhong
University of Science and Tech-
nology, in 2008. He is an Associ-
ate Professor in College of Com-
puter Science and Technology at
Qingdao University, China. His
research interests include biom-
etrics, image processing, intelli-

gent video monitoring and analysis.

Xiaokang Yu received his Ph.D.
from School of Computer Sci-
ence and Technology, Shang-
dong University in 2012. He
began working in College of
Computer Science and Technol-
ogy (former College of Informa-
tion Engineering) of Qingdao
University as lecturer in 2012.
His research interests are compu-
tational geometry and computer
graphics.

	Using pseudo voxel octree to accelerate collision between cutting tool and deformable objects modeled as linked voxels
	Abstract
	1 Introduction
	2 Previous work
	3 Methods
	3.1 Deformable cutting method using a pseudo voxel octree
	3.2 Parallel implementations

	4 Simulation results and analyses
	4.1 Single-frame cutting tests
	4.2 Complex cutting and deformation tests

	5 Conclusions and future work
	References

