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Abstract
Monocular visual odometry provides more robust functions on navigation and obstacle avoidance for mobile robots than other
visual odometries, such as binocular visual odometry, RGB-D visual odometry and basic odometry. This paper describes
the problem of visual odometry and also determines the relationships between visual odometry and visual simultaneous
localization andmapping (SLAM). The basic principle of visual odometry is expressed in the formofmathematics, specifically
by incrementally solving the pose changes of two series of frames and further improving the odometry through global
optimization. After analyzing the three main ways of implementing visual odometry, the state-of-the-art monocular visual
odometries, including ORB-SLAM2, DSO and SVO, are also analyzed and compared in detail. The issues of robustness
and real-time operations, which are generally of interest in the current visual odometry research, are discussed from the
future development of the directions and trends. Furthermore, we present a novel framework for the implementation of next-
generation visual odometry based on additional high-dimensional features, which have not been implemented in the relevant
applications.

Keywords Visual odometry · Multi-sensor data fusion · Machine learning · Visual SLAM

1 Introduction

Due to the complexity of the unknown environment, it is
of great significance to build a real-time map and local-
ization based only on the robot’s own sensor [1,2]. Visual
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sensor, which is a common type of robot sensor, has the
advantages of high accuracy, low cost and abundant data
information. Therefore, using a visual sensor to determine its
location has become a main topic of research. The concept
of visual odometry [3], proposed by Nister, i.e., correla-
tion image sequences, is analyzed to estimate the mobile
robot pose (e.g., position and attitude) in real time through
machine vision technology. This process can also overcome
the shortcomings of traditional odometries and provide more
accurate positioning. Furthermore, it can runwhere the global
positioning system (GPS) is not available, such as indoor
environments or interplanetary exploration [3,4].

Visual odometry (VO) was known by the public, when it
had been successfully applied to the Mars exploration [4]. It
also highlights its important application value in the fields
of public security, virtual reality (VR) [5], augmented real-
ity (AR) [6] and so on, as shown in Fig. 1. We have added
many latest contents since 2017 based on document [4]. In
particular, some novel views on the method of visual state
estimation are presented.
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Fig. 1 Research and application of VO samples, where (1), (2) and (3) represent the state-of-the-art research on VO in the form of DSO, ORB-
SLAM2 and SVO, respectively. (4) is a real application in 2004 that illustrates: the use of visual odometry on Mars

2 Research problem

The main research problem of VO is how to estimate the
trajectory of the camera according to images. For visual
simultaneous localization and mapping (vSLAM), there is
a major research issue, that is, to generate a loop and effec-
tively integrate new constraints to the current map based on
VO.

There are two kinds of mainstream methods based on
vSLAM [7]. One is a general approach to apply classical
filter [8] to vision information fusion. The other is to exploit
selected key frames to develop global optimization [9,10].
The detailed evaluation of these two approaches is described
in [11,12].

The connection between vSLAM and VO is that the lat-
ter can be regarded as a module within the former and can
reconstruct the trajectory of the camera incrementally. Thus,
some scholars regard vSLAM as a further research on VO. In
terms of application scenarios, VO is sufficient in such situa-
tions where real-time localization is needed, such as missile

guidance flights, unmanned aerial vehicle and AR. However,
this aspect is redundant for vSLAM to build an accurate map,
which could waste additional computing power.

The difference between vSLAM and VO is that the latter
focuses only on the consistency of local trajectories, while
the former focuses on the consistency of the global trajectory.
The target of VO is an incremental reconstruction trajectory,
which may only optimize the pose of the previous paths.
Therefore, VO is called sliding-window-based bundle adjust-
ment. The sliding-window-based optimization relies on a
local map in vSLAM.

In recent years, significant progresses [13–16] have been
made in both monocular and binocular cameras. Most of
these devices can operate in a wide range of outdoor envi-
ronments. As shown in Table 1 [17], since parallel tracking
and mapping (PTAM) was implemented in 2007, due to the
special structure of the sparse matrix, the back-end research
has progressed from extended Kalman filtering to optimiza-
tion [18,19].
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Fig. 2 Illustration of the VO problem

3 Formal description

For a monocular VO, at time k, the image sets designated
I0:k = I0, . . . , Ik , are collected by the camera of a rigid
robot. Suppose that the camera coordinates are those of the
robot. Nevertheless, in stereo vision systems, the left camera
is typically the original.

However, the use of binocular VO leads to a sharp decline
in the accuracy of triangulation, as the distance between the
center of the two cameras is affected by the conditions of
the measurement accuracy and climate changes (e.g., ther-
mal expansion and cool contraction). Therefore, this paper
focuses on the research of the monocular VO problem, as
shown in Fig. 2.

A rigid transformation Tk,k−1 ∈ R
4×4 is formed by two

neighbor camera poses from time k−1 and k, which is shown
as follows:

Tk,k−1 =
[
Rk,k−1 tk,k−1

0 1

]
, (1)

where Rk,k−1 is a rotation matrix, and tk,k−1 is a transla-
tion matrix. Set T1:k = {

T1,0, T2,1, . . . , Tk,k−1
}
contains

all the motion sequences. Finally, the camera pose set is
C0:k = {

C0,C1, . . . ,Ck
}
, where Ck is the initial coordi-

nates at time k. The current pose Cn can be calculated by the
connection between the transformation Tk(k = 1, 2, . . . , n).
In general, Cn = Cn−1Tn . And C0 is the camera pose at
time k = 0.

The main goal of VO is to calculate Tk from image Ik
to image Ik−1 and then integrate all the transformations to
restore the entire path C0:k of the camera. In this paper, VO
is an incremental reconstruction trajectory. An iterative opti-
mization based on the previous m poses can be executed.
And then a more accurate local trajectory estimation can be
obtained.

Iterative optimization minimizes the reprojection error of
3D points in the local map based on the previous m frames
(e.g., sliding-window-based bundle adjustment, since it exe-
cutes on a m-frame window). The depth of 3D points in the
local map space is estimated by triangulation. Therefore, an
optimization problem can be constructed, adjusting R and t ,

so that for all feature points z j , the cumulative error of the
two norms is minimal, and the results are as follows:

minX ,R,t

N∑
j=1

∥∥∥∥ 1

λ1
CX j −

[
z j1 , 1

]T∥∥∥∥
2

+
∥∥∥∥ 1

λ2
C(RX j + t) −

[
z j2 , 1

]T∥∥∥∥
2
.

(2)

This is the problem of minimization of the reprojection
error. In the actual operation, each X j is adjusted to increase
consistency with each observation z j and to minimize every
error termasmuch as possible. For this reason, it is also called
bundle adjustment. The principle of bundle adjustment and
optimization is shown in Fig. 3.

4 Research status

Significant progress has been made in the VO research
[24,31] of large-scale scenes. Themethods of VO implemen-
tation include the feature points method, the direct tracking
method and the hybrid semi-direct tracking method.

4.1 Method based on feature points

For feature point-based method [3,6,16,18,29,32,33], Nister
was the first to carry out real-timemonocular large sceneVO-
related work [3]. VO of sparse feature points is the current
mainstream method [32,34]. The basic idea is that for each
new image Ik , while it is a pair of images in a stereoscopic
camera, the first two steps are to detect and match 2D feature
points and match them with the previous frames, respec-
tively. The reprojection of two-dimensional feature points
is the extraction of common 3D feature points from different
image frames, which provides the corresponding relation-
ship of images. Actually, there is an assumption that the
camera has been calibrated for the majority of VO imple-
mentations. The third step is to calculate the relative motion
Tk between k−1 and k. The choice of method should base on
the prior information. For instance, a typical 2D–2D problem
incurs when the monocular camera is used while additional
information is missing, then it could be solved by the epipo-
lar geometry. Meanwhile, perspective-three-point (P3P) and
iterative closet point (ICP) [35–38] are suitable for the other
cases. The pose of the camera Ck is based on the transforma-
tion of the previous pose Tk . To achieve more precise local
trajectory estimation by iterative optimization (e.g., bundle
adjustment), we build a local map based on the depth esti-
mation of the previous m frames.

In addition, we focus on the noise, erroneous measure-
ments and erroneous assumptions on the data, which tend to
lead to matching outliers in the process of feature matching.
Even in the case of outliers, robust estimation is required to
ensure accurate motion estimation. Because of the decentral-
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Fig. 3 Principle of bundle
adjustment and optimization,
where C represents the camera
pose of the current frame, T
represents the transformation of
the pose between the two
cameras and m represents the
total number of cameras

T3,1

T1 T2 T3

...

m

T4,1 Tn-1,3

Tn

Cn-m Cn-m+1 Cn-m+2 Cn-m+3 Cn-1 Cn

world point
 in 3-space

 imaged point 2 3 4 n...1 n+1

X X X X
2 3 n1

ized nature of the outliers, the random sampling consistency
(RANSAC) is used to select the optimal matching, but not
the least-square matching algorithm.

Typically, due to the influence of illumination and defor-
mation on the gray value, the change between different
images may be considerable. Therefore, mere gray value
is insufficient; we need to extract feature points from the
images. In the context of computer vision and image process-
ing, a feature is a group of related information and computing
tasks depending on the application. The feature may also
be the result of feature detection or a general neighborhood
operation applied to the image. Features may have special
structures in the image, such as corner points, edges, or block
objects [39]. However, it is generally easier to find the same
corner in the two images, whereas finding the same edge is
slightly harder, and finding the same block is the most chal-
lenging. Therefore, an intuitive method of feature extraction
is to identify the corner points of different images and deter-
mine their corresponding relationship. In this case, the corner
point is defined as feature.

With full consideration to all kinds of problems on the
process of image transformation, speeded-up robust features
(SURF) [40] and scale-invariant feature transform (SIFT)
[41] still cost a lot of computation. Generally, it could
be challenging to execute calculation in real time on a
CPU. However, the popularity of some computable feature
extraction/description algorithms, such as oriented FASTand
rotatedBRIEF (ORB) [42] andBinaryRobust Invariant Scal-
able Keypoints (BRISK) [43], has gradually exceeded that of
the Harris corner points or SIFT/SURF, which were not well
tracked before, and the former group of algorithms are now
preferred in VO.

The ORB combines the advantages of Features from
Accelerated Segment Test (FAST) [44] and Binary Robust
Independent Elementary Features (BRIEF), providing strong
features in scale, rotation, and brightness, for example.More-
over, the combination is very efficient, making the ORB the
best current real-time scheme [16]. Typically, features con-
sist of key points and descriptors. Among them, for corner
extraction, it increases themain direction of the feature points
on the basis of FAST to add rotation invariance in the descrip-

Table 2 Performance comparison between different features

Feature type

ORB SURF SIFT

Complexity
√√√√√ √√√ √

Robustness
Rotation, blur

√ √√√ √
Scale-variance × √√√ √

tor of ORB. Additionally, for the new BRIEF descriptor: it is
a method to describe the pixel area which surrounds the key
points extracted earlier. As the main direction is added when
the corner points are extracted, the descriptors of ORB have
better rotation invariance than that of the original BRIEF [45]
descriptors.

This papermainly compares threemainmethods of feature
point extraction, namely SIFT, SURF and ORB, all of which
have been implemented in OpenCV, as shown in Table 2.

Early real-time VO was based on the feature point. For
example, the monocular VO framework (e.g., PTAM [19])
proposed by Klein et al. Although its performance is not
efficient, this approach provides a complete and universal
framework for the implementation of visual odometry. With
respect to the realization of visual odometry, this process can
be divided into front-end and back-end, parallel processing
tracking and mapping tasks. Most of the VO frameworks
are based on this implementation, including the most stable
second-generation simultaneous localization and mapping
based on ORB (ORB-SLAM2) [16]. It is also the first system
to use nonlinear optimization. Traditionally, the implemen-
tation of VO is based on the filter [18]. However, there are
some disadvantages involving the small scene and lack of
global relocation, resulting in poor applicability.

The optical flow method has the characteristics of feature
point tracking. This method is superior to other feature point
matchingmethods in that it can reduce calculation somewhat,
so there is a visual odometry system called flowdometry, it is
proposed on the basis of the optical flow and deep learning
[46]. Optical flow images are used as input to a convolutional
neural network, which calculates a rotation and displacement
for each image pixel. The displacements and rotations are
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applied incrementally to construct amap ofwhere the camera
has traveled.

The most useful feature-based VO method in the exist-
ing research is ORB-SLAM2 [16], which presents a more
complete VO framework. This method includes tracking,
mapping and loop detection of three threads. Among these
methods, the tracking thread is mainly responsible for
extracting theORB [42] feature points for a new frame image
and roughly estimating the pose of the camera. The mapping
thread is mainly based on bundle adjustment to optimize the
feature points and camera pose in the local space so that
the space position of the feature points with smaller errors
is solved. The loop detection thread is responsible for the
realization of loop detection based on the key frame, which
can effectively eliminate the accumulative error and can also
carry out global reposition. Besides, this scheme is also com-
patible with monocular, binocular and RGB-D cameras.

For initialization, [16] proposes an strategy for automatic
initializationmap and calculates the homographymatrix (i.e.,
assuming a planar scene) [31] and essential matrix (i.e.,
assuming non-planar scene) [32]. According to the heuristic
rule, the corresponding situation is determined to initialize
the pose. This is also a remarkable contribution in document
[16]. The computing advantages of ORB-SLAM and PTAM
are not only the more efficient ORB features selected but
also the matching points that can be observed on the previ-
ous frame rather than directly using all map points to match
the new frames.

4.2 Method based on direct tracking

The direct method of estimating camera motion based on the
pixel gray invariance hypothesis has developed rapidly in
recent years [20,28]. The direct method, which is developed
from the optical flow [47], can estimate the camera motion
and the pixel’s spatial location by minimizing the photomet-
ric error (i.e., minimizing the reprojection error of feature
points in the feature point method) without extracting the
feature or calculating the feature description. This approach
can effectively solve the problems faced by the feature point
method. In general, the direct method is divided into three
categories according to the space point P , the sparse direct
method, the semi-dense direct method and the dense direct
method.

The early direct VOmethod was rarely based on the track-
ing and mapping framework, most of which involved the key
points of artificial selection [48–50]. Recently, it appears
that the direct methods could use directly the image pixel
gray information and geometric information to construct the
error function through the graph optimization to minimize
the cost function, thus obtaining the optimal camera pose.
These methods are applied to large-scale map problems with
pose graph [28,51]. To construct a semi-dense 3D environ-

ment map, Engel et al. [24] proposed the large-scale direct
monocular simultaneous localization and mapping (LSD-
SLAM) algorithm to replace the previous direct methods of
VO. This method enables high-precision estimation of the
camera pose to create a large-scale 3D environment map.
Because monocular VO suffers from scale uncertainty and
the scale drift problem, themap is directly composed of a key
frame direct Sim(3) transformation, which can detect scale
drift accurately, and the whole system can run on a CPU
in real time. Similar to ORB-SLAM2, LSD-SLAM is also
optimized with pose graph, so it can form a closed loop and
accommodate large-scale scenarios. The system selects the
nearest key frame for each newly added key frame in the
existing key frame set (i.e., map).

Direct sparse odometry (DSO) [28] was also proposed
by Engel, the inventor of LSD-SLAM. DSO improves the
robustness, accuracy, and speed of computation, surpassing
previous ORB-SLAMand LSD-SLAMmethods. As the new
depth estimation mechanism is used to optimize the sliding
window instead of the original Kalman filtering method, it
provides an improvement in accuracy. In addition, in con-
trast to LSD-SLAM, DTAM [20] provides a direct method
to calculate a real-time densemapbased on amonocular cam-
era. The pose estimation of the camera uses a depth map to
directly match the whole image. However, computing dense
depths from amonocular vision requires substantial comput-
ing power, typically using GPU parallel operations, such as
open-source REMODE [52,53].

4.3 Method based on the hybrid semi-direct
tracking

Based on the advantages of the feature-based method and
the direct tracking method, a hybrid semi-direct method is
proposed, namely semi-direct visual odometry (SVO) [23].
AlthoughSVO is still dependent on the characteristics of con-
sistency, this method applies the direct method to obtain the
pose. This approach can help eliminate the feature matching
and peripheral point processing to greatly shorten the calcu-
lation time. The algorithm is very fast: 55 fps can be achieved
on the Embedded UAV platform (i.e., ARM Cortex A9 1.6
GHz CPU), and the frame rate can be as high as 300 fps on
a general laptop (i.e., Intel i7 2.8 GHz CPU).

Depth estimation is the core of building a local point cloud
map. In terms of depth estimation, SVO is built with a proba-
bilitymodel. However, unlike LSD-SLAMor othermethods,
the deep filtering of SVO is based on amixedmodel of Gauss
distribution and homogeneous distribution [54], while LSD-
SLAM is based on the Gauss distribution model. First, the
direct method is used to solve the pose matching. Second,
classical Lucas–Kanade optical flow [47] matching is used
to obtain subpixel accuracy. Then, the minimized reprojec-
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Fig. 4 Module flow chart of SVO

tion error is optimized by combining the point cloud map, as
shown in Fig. 4.

In contrast to using the traditional feature points, the
whole process needs to rely on feature points when selecting
key frames only. The calculation of matching descriptors is
erased, and the steps of usingRANSAC to remove the outliers
are effaced, so the process is relatively efficient; relative to the
direct method, this method does not directly match the whole
image to obtain the pose of the camera. Instead, it extracts
the image block from the whole image, allowing us to obtain
the pose from the image block. This technique enhances the
robustness of the algorithm. The largest contribution of SVO
is the design of the three optimization methods (i.e., opti-
mize the gray error, the feature point prediction position and
the reprojection error) to meet the accuracy problem while
maintaining excellent computing speed. In addition, its code
structure is relatively simple and very suitable for further
study. Forster proved that this method could be extended to
the multi-camera systems [55], tracking the edge, including
the prior knowledge of motion. The method also supports
various cameras, such as fish-eye and perspective cameras.

4.4 Analysis

The feature pointmethodhas beenwidely used, but its robust-
ness is mainly based on the description of feature points. On

the one hand, as robustness enhances, the complexity of the
feature point description is increased, which leads to a large
increase in the complexity of the algorithm. On the other
hand, the feature point method cannot be applied to scenes
with weaker feature points, such as wall and sky.

VO [16,29] based on feature points is more mainstream.
However, from the experimental results by TUMgroup of the
University ofMunich, the directmethodofVO[23,24,28] has
made great breakthroughs in recent years. Among them, the
sparse direct method [28] has a faster and better performance
when compared with the sparse feature point method [16].
The direct method uses all the information on the image,
or even a small area of the pixel gradient, so even in the
case of poor scene texture, the performance of the focus and
motion blur is better than that of the feature-based method.
According to a comparison of noise experiments based on the
direct tracking method and the feature-based method [28],
the direct tracking method is more sensitive to geometric
noise, for instance, that produced by a rolling shutter camera.
Feature-based methods are more sensitive to optical noise,
such as fuzzy noise. Therefore, for common mobile devices
(e.g., the shutter camera), the feature-based method might
have a better performance. For a robot equipped with the
global shutter camera, the method based on direct tracking
is becoming increasingly widely used.

The direct method is a relatively new method that can be
adapted to scenes with insufficient features, such as corridors
or smooth walls [56], and has strong robustness. By skip-
ping the feature description and matching steps, the direct
method, particularly the sparse direct method, tends to run
at extremely high speeds. The method is also compatible
with requirement scenarios that need to build a semi-dense
map or dense map, which is not possible using the feature
pointmethod.However, there are also some problems such as
non-convexity, single-pixel non-segmentation and the poorly
supported assumptionof gray invariance in the directmethod;
thus, its research and implementation are not as stable as that
of the feature pointmethod.At present, the directmethods are
suitable only for the situations of smallmotion and brightness
changes.

Although methods based on direct tracking are popular,
a low speed and lack of assurance of optimality or consis-
tency are problems of the direct method. Therefore, a method
based on hybrid semi-direct tracking [23], first proposed by
Forster, has the advantages of fast speed and suitability for the
map uncertainty model and is not affected by the assumption
of model motion. However, due to fewer tracking features,
some cases may be lost. Besides, the author released an
experimental video and opened the source code of imple-
mentation framework. Although its open-source code is not
very robust, this method is still well suited for beginners
to study because of its straightforward code implementa-
tion.
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Fig. 5 Comparison of the
results of the three types of VO
methods [4]. Top line: SVO
algorithm; middle line: DSO
algorithm; bottom line:
ORB-SLAM2 algorithm

This paper evaluates the most representative method of
the feature-based method, the method based on direct track-
ing, and the method based on hybrid semi-direct tracking
through experiments. The results are shown in Fig. 5. We
can easily find that the feature method and the hybrid semi-
direct method can only build a sparse map; nevertheless, the
direct method can build a semi-dense map.

5 Development trends and active research
areas

Table 3 shows the academic research institutions worldwide
that have contributed greatly to VO.

How to further improve accuracy, efficiency and robust-
ness remains a persistent aim of researchers. Around the
above three problems, there have been several active areas of
research, such as new sensors exploration, multi-sensor data

fusion, machine learning-based research, high-dimensional
information mining and a novel framework of VO.

5.1 New sensors exploration

Microsoft’s RGB-D camera Kinect, which was released in
2010, can obtain a depth map in real time and simplify
calculations substantially, enabling the realization of dense
3D reconstruction systems [7,21,22,26,27]. However, due
to its short effective distance, susceptibility to interference
by external light sources and incompatibility with outdoor
scenes, Kinect is not the ultimate solution to the VO prob-
lem. In recent years, event-based cameras have attracted
research attention. The advantages of event-based cameras
with respect to standard cameras are their low latency, high
dynamic range, low bandwidth and low power, for exam-
ple. Such novel cameras require new algorithms to address
the problems of no-intensity information and very low image
resolution, however. In 2017, Zihao et al. of the University of
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Table 3 Research direction of
frontier institutions

Research affiliation Research directions

University of Zurich Direct method, VO based on a novel visual sensor

University of Munich Direct method

National Aeronautics and Space Administration Binocular stereo visual odometry

The Hong Kong University of Science and
Technology

Visual-inertial fusion

Apple Visual-inertial fusion

Google RGB-D camera and inertial fusion

Swiss Federal Institute of Technology Zurich Visual-inertial fusion

Tsinghua University Semantic map reconstruction in machine learning

Zhejiang University Binocular stereo visual odometry

SZ DJI Technology Binocular stereo visual-inertial system

MI Laser vision-multiple sensors fusion

Zurich proposed a VO algorithm based on the event camera.
Moreover, based on the EKF and the unstructured measure-
ment model, IMU was integrated as a complement to data
fusion to accurately obtain the pose of University of Zurich
proposedVOalgorithm based on event camera. Additionally,
based on the EKF and the unstructured measurement model,
IMU is integrated as a complement to data fusion to get the
pose [57] of a 6-DOF camera.

5.2 Multi-sensor data fusion

For many mobile robots, IMU and vision are necessary sen-
sors, as they can complement each other by data fusion to
meet the need for mobile robot system robustness and loca-
tion accuracy. The combination of monocular camera and
inertial navigation [8–10,31,58] has also been a notable trend
in recent years. Apple Inc’s ARKit, released at the WWDC
2017 conference, is mainly based on the idea of EKF for a
monocular camera and inertial navigation data fusion, pro-
viding a solid foundation platform support for developers
to implement indoor positioning. Later, it was proposed to
integrate multiocular and inertial navigation data with the
optimized key frame [59]. Data fusion is divided into tight
coupling and loose coupling. On the one hand, to limit the
computational complexity, muchwork has followed the prin-
ciple of loose coupling. One study [31] integrated IMU as
an independent attitude and related yaw measurement to
address the nonlinear optimization problem of vision. In
contrast, another study [60] used visual pose estimation to
maintain an EKF of an indirect IMU. Similar loose cou-
pling algorithms include [61,62]; here, the pose estimation
of the camera uses a nonlinear optimization set to the factor
graph, including inertial navigation and GPS data. On the
other hand, the loose coupling method essentially neglects
the correlation between different sensors. The tightly coupled
method combines camera and IMUdata and jointly estimates

all states as a common problem, so we need to consider the
correlation between them. A previous report [9] compared
these two methods. Experiments show that the correlation
between these sensors is very critical for the high-precision
visual-inertial navigation system (i.e., VINS), so the high-
precision visual-inertial navigation system is tightly coupled.
Many researchers have exploredmulti-sensor fusion, e.g., the
integration of multi-camera sensors [63] proposed by Yang
Shaowu with binocular stereo vision and inertial navigation,
speed and data fusion [64]. Second, Akshay proposed aGPS-
Lidar fusion algorithm based on a point cloud feature, which
can effectively reduce the position measurement error in 3D
urban modeling [65].

5.3 Machine learning-based researches

In recent years, machine learning methods such as neural
networks have caused a widespread academic sensation in
many fields, and the VO field is of no exception. In the
matching tracking part, a data-driven model (i.e., 3DMatch)
was proposed [66]. The local spatial block descriptor is
obtained from the existing RGB-D reconstruction results
by self-supervised feature learning; then, the correspond-
ing relationship between local 3D data is established. For
optimization of matching errors, traditional RANSAC can
be replaced by a new highway network architecture. This
approach is based on multilevel weighted residual shortcuts
and every possible parallax value calculation of matching
error and by using composite loss function training as a
support for multiple comparisons of an image block. This
framework can be used to better detect the exception points
in the refinement step. Previous experiments [67] on this new
architecture using the stereo matching benchmark dataset
showed that the matching reliability is far superior to the
existing algorithms.
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Fig. 6 Direct high-dimensional optical flow diagram

The lack of scale information in monocular VO has been
the issue of greatest concern for researchers. Recently, Ger-
man researchers, such as Keisuke et al., addressed the failure
of recovering scale for monocular VO such as low-texture
areas, who proposed a fusion method include depth infor-
mation predicted by CNN and depth information directly
calculated by amonocular process. The techniquewas exper-
imentally shown to solve the scale information loss problem
of monocular VO [68].

In 2018,GomezOjeda et al. [69] proposed amethod called
learning-based image enhancement for VO in Challenging
High Dynamic Range (HDR) Environments. They also pro-
posed a convolutional neural network of reduced size capable
of performing faster and overcome one of the main open
challenges in VO which is the robustness to difficult illumi-
nation conditions or HDR environments. Besides, in terms
of pose accuracy, by applying deep recurrent convolutional
neural networks (RCNNs), a novel monocular VO system
call UnDeepVO [70] and a novel end-to-end framework for
monocular VO are confirmed to have a better performance
than other monocular VO methods. Therefore, the applica-
tion of machine leaning shall become the next hot spot in the
VO field.

5.4 High-dimensional informationmining

The dependency of VO on scene features is essentially due
to the use of the overly underlying local features (i.e., point
features). Therefore, multiple methods have been proposed
to reduce the feature dependence by using image informa-
tion, such as edge and plane information [71]. In theory, the
edge can carry information such as the direction, length, and
gray value, so it is more robust. The edge-based features
in the indoor scene (i.e., more regular items) are expected
to provide better robustness. For instance, in aspect of edge
feature, Yang et al. [72] proposed a monocular VO algorithm
that combined point and edge advantages. This algorithm
not only performed well in the monocular open dataset [28]
which was provided by TUM, but also greatly reduced the

motion estimation error in low-texture environments. Li et al.
[73] proposed an extension to a point-based direct monocu-
lar visual odometry method. It used lines to guide keypoint
selection rather than acting as features. Thereby, it can aug-
ment efficiency and accuracy. At the same time, in aspect of
planar feature, Wang et al. [74] mainly applied graph model
and graph matching mechanism to track planar objects and
designed a new strategy to solve optimal problems, which
can predict the posture and key point matching of objects.

5.5 A novel framework of VO

TheORB feature contains 4-DoF information including scale
invariance (z), rotation invariance (θ ) and translation invari-
ance (x, y). In contrast to previous classical LK optical flow,
in which only 2-DoF of a camera can be obtained [47],
it is possible to provide a new 1-DoF to a camera by the
improved corner feature (e.g., ORB). Similarly, it will soon
be possible to directly describe the corner with the features
of a simple, higher dimension. This method will be com-
bined with the theory of intensity invariance and nonlinear
least squares to try to solve the 6-DoF problem for a cam-
era, including rotation and translation and then incrementally
solve the VO problem, as shown in Fig. 6. By eliminating the
need for costly feature matching and decomposing the essen-
tial matrix (i.e., as required by conventional methods), it is
expected to sharply reduce the algorithmic complexity. On
the other hand, the direct method requires lessmotion for two
frames. When the complexity of the algorithm is reduced,
the frame rate is increased significantly (e.g., in some special
cases such as a mouse, the optical flow based on the theory
of intensity invariance is used to solve for its position, and
the frame rate can exceed 1800 fps). This scheme can further
improve the accuracy of VO.

6 Conclusion

This paper analyzes the differences betweenVO and vSLAM
and formalizes the VO problem. Then, we focus on the sta-
tus of various methods to implement VO. After that, their
features are compared by a series of tests. At present, most
researchers focus mainly on ideal scenes with a satisfactory
visual field, such as daytime. However, a variety of both
indoor and outdoor scenes (i.e., from day to night and with
seasons changing) are very common. How to ensure system
robustness under such circumstances is an important research
direction. Besides, we present the concept of similar opti-
cal flow method in the last part of this paper, which may
decrease the complexity of VO. In the future, we will focus
on the application of a novel framework of VO. in particular,
in certain harsh environment such as large-scale indoor fire,
helping firefighters to be positioned and draw motion trajec-
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tory in real time is a vital method to improve the efficiency
of search-and-rescue work.
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