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Abstract
Wepresent an efficient and stablemethod for simulating the two-way coupling of incompressible fluids and deformable bodies.
In our method, the fluid is represented by particles, and simulated using divergence-free incompressible smoothed-particle
hydrodynamics (ISPH). The deformable bodies are represented by polygonal meshes, where the elastic deformations are
simulated using a position-based dynamics scheme. Our technique enforces incompressibility on the fluid using divergence-
free constraints on the velocity field, while it effectively simulates the physical features of deformable bodies. Most current
ISPH methods are struggling with the issue of free-surface boundary conditions. We handle this problem by introducing
a novel free-surface formulation, where our free-surface model obviates the need to identify the surface particles. For the
interaction between the fluid and the deformable solids, we model the forces that both phases, fluid and solid, exert upon each
other. We demonstrate that our approach effectively handles complex coupling scenarios between fluids and thin deformable
shells or highly deformable solids, and produces plausible results.

Keywords ISPH · PBD · Thin shells · Deformable bodies · Fluids

1 Introduction

Two-way coupling between fluids and deformable bodies can
produce visually and mechanically realistic behaviour, such
as the effect of the object’s elasticity pushing fluid away,
while simultaneously getting deformed under the load of
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the fluid. Simulating such complex fluid behaviour involving
deformable objects is at the core of numerous applications in
computational physics as well as in computer animation. In
addition, coupled simulation between fluids and deformable
solids is an increasingly demanding topic in computer graph-
ics, where it has many applications, including animated
feature films, virtual surgery, and movie production. How-
ever, the interaction between fluids and deformable solids is
complex and difficult, making it computationally demand-
ing and expensive. Moreover, the repulsive forces between
deformable solidmasses and fluid particles frequently lead to
situationswhere very small time steps are required to guaran-
tee numerical stability. Although various fluid flow dynamics
in the physical world have been studied extensively [27],
methods to capture the complicated interaction behaviour
between elastic objects and fluids have received less attention
in the computer graphics literature [36]. Previous approaches
tried to address the computation and instability issues in
these simulations [35,66]. Nevertheless, providing efficient
and plausible two-way coupling between particle-based flu-
ids and deformable bodies represented by meshes requires
particular attention and is still a challenging open problem.

In a two-way coupling scenario, the choice of the
approaches to simulate both the fluid and deformable body
plays an important role. In the case of fluids, particle-based
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Fig. 1 Coupled simulation of a deformable thin shell and a fluid using
our method (11K cloth constraints and 27K fluid particles, at 21 fps),
where the cloth deforms under the impact of the fluid, while the fluid

splashes around. Top row: particle representation of the coupled simula-
tion. Bottom row: rendering of the reconstructed surface of the coupled
simulation

methods like smoothed-particle hydrodynamics (SPH) have
some advantages over mesh-based approaches, particularly
in their ability to handle interfaces with other materials.
Standard SPH is suitable for the simulation of compressible
fluids. However, most fluids we encounter in nature fea-
ture incompressible behaviour, which means that enforcing
incompressibility is essential to produce realistic animations.
We employ incompressible SPH (ISPH) for simulating these
fluids, which is a variant of SPH that is suitable for this pur-
pose [21]. Numerical approximation issues with the standard
SPH method are rectified by incompressible SPH. Further-
more, the recent work by Chow et al. [18] promises much
faster Poisson solvers on GPUs than previously achieved in
incompressible SPH simulations. Since the pressure equation
in incompressible SPH is essentially the Poisson equa-
tion discretized as a sparse system of linear equations, the
increased interest in solving linear systems makes incom-
pressible SPH very promising and much more attractive than
conventional weakly compressible SPH.

Although SPH is able to simulate complicated free bound-
aries such as splashes and droplets [63] when ghost particles
are seeded, incompressible SPH suffers from a long-standing
problem in handling free surfaces [12]: The pressure equation
that is solved to obtain the pressure field requires a con-
stant pressure boundary condition (BC) at the free surface,
which is often applied by ad-hoc identification of particles,
and this leads to inaccurate computation of the pressure
forces at the interface. To simulate deformable objects, sev-
eral approaches can be used, from efficient methods such as
mass-spring systems to more accurate methods like Finite
Element Methods (FEMs). We decide to employ Position-
Based Dynamics (PBD) [53] to handle deformable bodies at
high frame rates. Thus, the choice of solvers for the liquid
and solid domains is deliberate, considering both the comput-

ing cost and the accuracy that translates to visually plausible
physics.
Contributions We propose a practical and efficient method
for simulating two-way coupling between a divergence-free
incompressible SPH fluid and a deformable solid simulated
by PBD. To tackle the free-surface issues in incompress-
ible SPH, we propose a novel free-surface formulation that
handles the air–liquid interface. This is done by imposing a
Dirichlet boundary condition for pressure at the free surface
through modifying the leading diagonal terms of the coeffi-
cient matrix of the linear system obtained from discretizing
the pressure Poisson equation (PPE). This enables an accu-
rate computation of pressures for the particles at the interface,
and these pressures are used to determine the forces exerted
in the coupling. We couple the fluids and deformable solids
bymodelling the interaction of the forces that both exert upon
each other. Employing PBD for simulating the elasticity of
deformable bodies provides controllable dynamic behaviour,
and guarantees stability over the deformable solids.However,
our two-way coupling works with any deformation tech-
nique, as long as the deformable body is represented by a
polygonal mesh. Our interaction model can achieve interac-
tive rates, and can take care of a highly dynamic coupled
system like a water balloon, where small changes in the state
of the deformable body cause almost instantaneous changes
in the fluid, and vice versa (Figs. 2 and 7). A highlight of
our coupling method is the ability to handle thin deformable
shells and to avoid leakage, which is a rather complex prob-
lem in the case of two-way coupling (Figs. 1, 14).

2 Related work

In this section, we review literature with a focus on the
interaction between fluids and deformable solids. For a
more thorough treatment on deformable bodies and fluid
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Fig. 2 An elastic flower pot filled with liquid falls on the ground (21K PBD constraints and 27K fluid particles, at 28 fps), deforms as it hits the
ground, bounces, and squirts the liquid out

simulation, we refer the reader to the excellent references
[13,14,35,37,56].

Eulerian methodsHave been used in computer graphics for
simulating water [17], soft objects, melting effects [6,60],
and fluids in general [26]. The simulation of different mate-
rials by treating solids as highly viscous or visco-elastic
Eulerian fluids was first presented by Goktekin et al. [31].
Carlson et al. [15] proposed a two-way coupling between a
fluid and a rigid body, where they used a splitting operator
that constrains the fluid velocities within the solids to behave
rigidly at the end of each time step. However, this method
uses a two-step projection approach that leads to visual arte-
facts and fluid loss. Chentanez et al. [16] avoided some of
these artefacts by enforcing coupling and incompressibility
constraints, while combining both the pressure projection
and implicit integration steps into one set of simultaneous
equations. Guendelman et al. [32] proposed to handle thin
deformable and rigid shells coupled with fluids by using a
ray casting technique,which increases the number of interpo-
lations and prevents fluid from leaking through a triangulated
surface. Later, Batty et al. introduced a variational approach,
which provides a robust solution on relatively coarse Carte-
sian grids [5], allowing faster coupling between fluid and
an arbitrary solid. The possibility of simulating hyper-elastic
solids within an Eulerian framework allows to explore the
two-way coupling between deformable bodies and fluid in
a fully Eulerian fashion [25,42]. These methods enable the
simulation of deformable solids within an Eulerian frame-
work, as was done by Robinson-Mosher et al. [61,62], where
they used sophisticated geometric operations inside the cou-
pling scenario. Recently, Teng et al. [67] presented a solver
that couples an incompressible fluid to multiple deformable
objects undergoing frictional contact. By using an implicit
time integration scheme, their method is able to resolve
complex contact scenarios and can handle large time steps.
Another two-way coupled simulation has been achieved by
coupling incompressible fluids to reduced deformable bod-
ies, using the method proposed by Lu et al. [45].

Zarifi and Batty [70] presented an Eulerian approach that
simulates the couplingbetweenfluids anddeformable bodies.

It uses a tetrahedral Lagrangian representation for the solid,
where the solid should have a certain lower bound on the
thickness, thus it cannot handle thin shells. Moreover, Akbay
et al. [1] introduced an extended partitioned method (XPM)
for two-way solid–fluid coupling of incompressible fluids to
rigid and deformable solids and shells,where reducedmodels
are employed to stabilize the convergence of the coupling,
while using a partitioned approach.

Although Eulerian methods have advantages as less
computation time and an easy management of topological
changes, fluid properties such as pressure and velocity fields
are limited by the grid resolution. Therefore, for very rapid
and detailed flows, tracking changes as they occur at a fixed
point in space which appears unrealistic. In addition, grid-
based techniques often suffer from mass loss at interfaces,
and have dissipation no matter how formally accurate they
are.

On the other hand, recent Eulerian-based methods such
as fluid implicit particle methods (FLIPs) are widely used to
simulate special effects fromsplashes toflooding. Suchmeth-
ods are suitable for fluids with low viscosity and are therefore
very well suited for water effects. However, it results in
unwanted visible noise on the surface in case of high viscos-
ity. Furthermore, FLIP methods require a dense sampling of
the fluid domain with particles, thus yielding expensive sim-
ulation. They are potential to mass gain due to a reseeding
of FLIP particles [30]. Level set methods can indeed handle
domain fragmentation; however, the smallest fragments pos-
sible are of the order of a fewgrid cells [44].Hence, situations
like breaking waves and sprays are not visually accurately
captured by the method efficiently. Also, level set methods
with high-density ratio are still a problem, which is being
researched widely. These two issues are tackled by SPH—
sprays are resolved up to the particle dimensions and the
density ratio for free-surface flows is infinite, closely resem-
bling an air–water system.

LagrangianmethodsHave the ability to solve thefluid equa-
tions of motion directly on the fluid particles. Also, they
trivially guarantee mass conservation and provide a concep-
tually simple simulation framework. In Lagrangian methods
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such as smoothed-particle hydrodynamics (SPH), fluid prop-
erties like mass, density, and velocity are carried by moving
virtual particles, which are tracked during the simulation
[19]. Desbrun and Cani [23] were among the first to intro-
duce smoothed-particle systems to the computer graphics
community, where they used smoothed particles for simu-
lating highly deformable objects. Later, Müller et al. [52]
have popularized particle-based methods for simulating flu-
ids and the interaction between fluids and deformable bodies
at interactive rates [54]. Premože et al. [59] also obtained
a realistic looking fluid simulation by solving the Navier–
Stokes equations based on the moving particle semi-implicit
(MPS) method proposed by Koshizuka and Oka [40]. An
interesting unified particle-based coupling of a fluid and thin
deformable shells has been presented by Lenaerts and Dutré
[41], in which SPH is used to simulate fluids, deformable
volumes, and rigid volumes. However, they do not simulate
incompressible SPH. The simulation of incompressible flu-
ids by means of the traditional SPH method is limited by
small time steps determined by the speed of sound in the
near-incompressible liquid. Many works have successfully
addressed this practical limitation of standard SPH imple-
mentations. One approach is to use prediction–correction
schemes for the correct approximation of the pressure forces
[11,65]. Other works suggested implicit formulations when
solving the pressure Poisson equation (PPE) [3,20,34] or
iterative schemes to compute the density of the fluid [47].
Recent works proposed stable methods which inherently
maintain both a divergence-free velocity field as well as
constant density [9,24,38]. The interaction between a fluid
and a deformable object within the SPH framework occurs
at the interface, where the fluid exerts pressure forces at
the deformable object, while the deformable object imposes
boundary fluxes on the fluid. Génevaux et al. [29] studied
coupling of fluids and elastic bodies represented by particles
and springs, respectively. Harada et al. [33] also proposed
a simulation method for the coupling of cloth and fluids
computed by using SPH. However, their algorithm is intri-
cate and computationally complex. More recently, Koschier
and Bender [39] couples solids and fluids, where they
use pre-processed density maps to handle non-penetration
constraints. Although, this method robustly handles rigid
dynamic boundaries, it cannot handle deformable bodies.

Akinci et al. [2] presented a simulation of coupled phe-
nomena emphasizing an SPH unified approach and implicit
treatment of coupling forces. Their approach combines SPH
forces with the explicit collision-handling scheme of Bell et
al. [8] and applies position correction to prevent leakage in
case of large deformations. Their method requires sampling
the boundary of a triangle mesh with particles to prevent
undesired fluid leakage. Macklin et al. [47,49] proposed to
handle fluid couplingwith rigid and deformable bodies in real
time. In their unified framework, enforcing incompressibility

depends on solving an iterative scheme to compute the den-
sity of the fluid. This scheme formulates an artificial pressure
term, and is sensitive to the number of iterations, which needs
to be carefully set up to avoid clustering of the particles.Most
recently, Peer et al. [58] presented a two-way fluid–solid cou-
pling that uses the implicit SPH approach [34] to simulate
both the deformable solid and fluid. Their method can allow
large time steps, although the current formulation of their
method has difficulties with achieving an interactive rate.

In contrast to the methods mentioned above, we employ
incompressible SPH for simulating fluids, while using
position-based dynamics (PBD) to simulate the deformation
of soft objects. Ourmethod uses divergence-free incompress-
ible SPH with a novel free-surface formulation. We use PBD
for simulating deformable bodies, which provides more con-
trollability over the final deformation. We efficiently model
the interaction between the fluid and the deformable body by
the forces that both phases exert upon each other. The works
of Akinci et al. [2] and Macklin et al. [49] are both closely
related to our method, and we provide a detailed comparison
with their techniques in Sect. 9.

3 Overview

Wepresent ISPH–PBD: a two-way interactionmodel between
particle-based fluids andmesh-based deformable bodies. The
inputs of our method are surface meshes representing the
deformable solids, and a state list of the incompressible
smoothed-particle hydrodynamics (ISPH) particles repre-
senting the fluids. At the interface, the mesh nodes of the
deformable solids function as boundaryparticles for the ISPH
solver.

In the initialization phase, for the deformable solid, we
generate a volumetric tetrahedral mesh according to the input
surfacemeshusing themethodpresentedbySi [64]. Then, the
vertices of the original deformable mesh are mapped to tetra-
hedral elements, and the tetrahedral elements (or triangles,
in the case of thin shells) are used for defining the geomet-
ric constraints within the position-based dynamics (PBD)
framework. These geometric constraints are used for emulat-
ing elastic behaviour, and provide the permissible volumetric
strain in order to mimic the bulk elastic response of the 3D
deformable models. This initial step of generating the tetra-
hedral mesh is not required if we are only simulating thin
shells.

For the fluid, we initialize the particle distribution, particle
mass, and other parameters, and we simulate the fluid using
divergence-free ISPH. One of the problems in ISPH meth-
ods is the handling of free-surface boundary conditions. To
tackle this issue, we propose a novel free-surface model in
Sect. 5, which efficiently handles free surfaces representing
the air–liquid interface. Our semi-analytic pressure boundary
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simulation step
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Fig. 3 System overview. Top row: the deformable body dynamics
mechanism, where the deformable solid is represented by a mesh. Bot-
tom row: thefluid simulation, inwhich thefluid positions, velocities, and
internal forces are carried by the particles (fluid forces include external,
viscous, and pressure forces). During the simulation, the deformable
solid and fluid exert forces on each other. Both pressure force (ISPH)

and constraint projection (PBD) operations are iteratedwithin each time
step (where an iteration is depicted by the blue and yellow interconnect-
ing arrows), until a convergence criterion is achieved, which is checked
byverifyingwhether the velocity attribute of the fluidmatches the veloc-
ity of the deformable solid

condition at the free surface enables accurate computation of
the pressures at the interface, which is later used in the com-
putation of the pressure forces for the coupling model. To the
best of our knowledge, we couple ISPH and PBD success-
fully for the first time. Figure 3 provides a visual overview
of our algorithm for a single time step, and the pseudocode
is detailed in Algorithm 1. During the simulation, at the
beginning of each time step, the deformable bodies and flu-
ids are propagated separately. We then exchange momentum
between the deformable solid and fluid by transferring the
forces and velocities at the interfaces, thereby enforcing kine-
matic boundary conditions (Sect. 6). PBD is a position-based
deformable solver, where the vertices represent mass points
and edges represent constraints [10,53]. Thus, the boundary
condition forces are formulated from the PBD constraints.
Both the pressure and constraint projection processes are iter-
ated within each time step (where an iteration is depicted by
the blue and yellow interconnecting arrows in Fig. 3) until a
convergence criterion is achieved. The latter is checked by
verifying whether the velocity of the fluid matches the veloc-
ity of the deformable solid. This convergence criterion has
to satisfy a certain threshold, which we discuss in Sect. 8.

4 Technical background

Our method has as main components two basic and sep-
arate approaches: the deformable bodies are simulated by
position-based dynamics (PBD), and the fluids are simulated
using the incompressible smoothed-particle hydrodynamics
(ISPH) approach.Wefirst briefly summarize the core ideas of
the two methods, and the way they are used in our approach.

4.1 Deformable bodies simulation

In PBD, the physical system is modelled through equations
governing external and internal forces that are applied to
deformable solids, but these equations are formulated as a
set of constraints [53]. PBD avoids the use of internal forces,
and the positions are updated such that the angular and the lin-
ear momentum are implicitly conserved [48]. In this way, the
process is not affected by the typical instabilities of interac-
tive physics-based methods. The deformable bodies in PBD
are modelled as a set of n PBD particles1 whose motion is
governed by a set ofm nonlinear geometric constraints. Each
PBD particle pi corresponds to a vertex in the input mesh,
and a functional relationship C j between PBD particles is
applied as a geometric constraint. The set of constraints is
composed of nonlinear equalities and inequalities such that:

Ci (p) � 0, i = 1, . . .m, (1)

where the symbol � stands for either = or ≥, p =[
pT1 , . . . ,pTn

]T
is the vector of PBDparticle positions, n is the

number of PBD particles andm is the number of constraints.
The set of constraints must always be satisfied, or at least,

the error shouldbe as small as possible. The constraints canbe
solved sequentially through Gauss–Seidel iterations. For an
extensive treatment on how the constraints are solved within
PBD, please refer to the excellent survey by Bender et al.
[10].

Solving each constraint usingGauss–Seidel in a serialway
is efficient when the number of constraints is relatively small.

1 We use the term PBD particle to distinguish explicitly from the par-
ticles used by SPH.
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In our implementation, the constraints are solved in parallel
using a graph colouring algorithm. Parallelizing the compu-
tation of the PBD constraints yields a fast performance even
in case of a fairly high number of constraints [28].

4.2 Fluid simulation

In SPH methods, the fluid domain is discretized into par-
ticles of constant mass, which are treated as interpolation
points. The discrete attributes at the interpolation points are
smoothed to obtain a continuous field. The interpolation
function A(x) is defined as

A(xa) =
∫

A(xb)W (xa − xb, h) dxb, (2)

where W is the normalized radially symmetric smoothing
kernel, h is the smoothing length of the kernel, and xa is the
position of the particle a where the property A is to be eval-
uated. Furthermore, W acts as the weighting factor for the
contributions from the neighbourhood interpolation points
denoted by xb, where dxb is the differential volume repre-
sented at xb. The above interpolant in SPH is approximated
by a summation over the surrounding particles, in which the
integral operator is replaced by a summation operator, and the
differential volume element dxb is replaced by the volume
Vb = mb/ρb. Thus,

A(xa) ≈
∑

b

A(xb)W (xa − xb, h)
mb

ρb
, (3)

where the properties at discrete points given by the subscript
b (such as the mass mb, density ρb, and position xb within
a finite neighbourhood of the point xa) are used for the dis-
cretization. Spatial derivatives of the attribute to any order
can be defined using the discrete smoothing operator given
by Eq. (3) [50].

Governing equations The momentum conservation equa-
tions for a Newtonian fluid are solved using the SPH method
in the Lagrangian framework. Therefore, the Navier–Stokes
equations governing the momentum conservation of incom-
pressible isothermal flow is given by the following equation:

du
dt

= 1

ρ

(
−∇ p + ∇ · (2μD) + f B

)
, (4)

where u is the velocity, p is the pressure, ρ is the density,μ is
the coefficient of viscosity of the fluid, D = (∇u + ∇uT)/2
is the deformation rate tensor, f B is the body force per unit
mass on the fluid element, and t is the time. In the Lagrangian
formulation, d/dt is the material derivative following a fluid
element. The mass conservation equation is defined by:

1

ρ

dρ

dt
+ ∇ · u = 0. (5)

In the case of incompressible flows, thematerial derivative of
the density is zero; therefore, the condition for incompress-
ibility is given by ∇ · u = 0.

SPH formulation The SPH discretization of the governing
equationEq. (4) canbe solvedusing aprojectionmethod [21],
in which the pressure needed to enforce incompressibility is
found by projecting an estimate of the velocity field onto a
divergence-free space. Such discretization is approximated
as follows:

du
dt

∣∣
∣∣
a

=
∑

b

[(
pa
ρ2
a

+ pb
ρ2
b

)

∇aWab

+ μ

ρa
Fab

uab
ρb

]
mb + f Ba , (6)

where∇Wab is the gradient of the kernel function for the dis-
placement xab = xa −xb between two particles a and b, and
Fab = (xab ·∇aWab)/(x2ab+ε2) is the radial derivative of the
kernel, where ε is a parameter to avoid division by zero when
two particles come very close to each other. The first term on
the right-hand side approximates the pressure gradient and
is a symmetric formulation that conserves momentum [50].
The second term on the right-hand side approximates the vis-
cous force [51] and the third term on the right is the body
force term.

To ensure incompressible flows, pressure cannot be related
to density by an equation of state; hence, the pressure serves
merely tomaintain zero divergenceof velocity throughout the
simulation domain. This hydrodynamic pressure is obtained
by solving the following pressure Poisson equation (PPE)
[21] implicitly (in time) on the SPH domain:

∇ · ∇ p

ρ
= ∇ · u

Δt
, (7)

where Δt is the time step as a result of temporal discretiza-
tion. The discretization of the right-hand side is given as:

∇ · u
Δt

∣
∣∣∣
a

≈ − 1

ρaΔt

∑

b

mb(ua − ub)∇aWab. (8)

5 Free-surface boundary conditions

In this section, we present our novel analytical solution that
effectively handles free surfaces. In incompressible SPH
methods,when applying the pressure Poisson equation (PPE)
to free-surface flows, we need to impose a Dirichlet bound-
ary condition for pressure at the free surface. One way to
do this is by explicitly identifying the particles at the free
surface, based on the change in the density or an ambient
pressure value (usually zero). Such a treatment is known to
affect the accuracyof the pressure computation,whichweuse
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Fig. 4 Illustration of our free-surface approach. The symbol Ri repre-
sents the region within the fluid, while Ro represents the region outside
the fluid. Both Ri and Ro are overlapping within the kernel region
of the particle a near the interface (the highlighted circle), in which
free-surface flow is simulated as discussed above. The grey particles
represent the air,which are implicitlymodelled in the simulation process

for modelling the interaction of forces between the fluid and
deformable solids. Our solution is rather to impose a constant
pressure boundary condition on free surfaces by analytically
computing the kernel contribution of the region that is falling
outside of the free surface. Thus, the zero pressure Dirich-
let condition can be applied accurately. In this case, the zero
pressure is applied right outside the free surface by iden-
tifying kernel deficiency of particles near the free surface,
rather than at the particles on the surface. This is achieved
by a modification of the leading diagonal terms of the coeffi-
cient matrix of the linear system obtained by discretizing the
PPE as explained below.

The second-order derivative approximation based on the
finite difference is used for approximating the Laplacian
terms in the PPE Eq. (7). Therefore, the second derivative
approximation for the PPE in incompressible SPH is given
by [21]:

∇ ·
(∇ p

ρ

)

a
=

∑

b

mb

ρb

4

ρa + ρb
(pa − pb) Fab, (9)

where Fab is the radial derivative of the kernel smoothing
function W , and p is the pressure.

Let R represent all particles in the full kernel of a surface
particle a. Let Ri and Ro be the regions inside the fluid and
outside the fluid, respectively, that fall within the kernel of
a particle, as illustrated in Fig. 4, so that R = Ri ∪ Ro. Let
pa represent the pressure corresponding to the particles in
region Ri and let po represent the pressure corresponding to
the (implicit) particles in region Ro.

For a full kernel of a particle near the interface, with the
kernel deficiency complemented with implicit particles of
zero pressure, we have:

∇ ·
(∇ p

ρ

)

a
=

∑

b

mb

ρb

4

ρa + ρb
pa Fab

−
∑

bi

mb

ρb

4

ρa + ρb
pbFab

−
∑

bo

mb

ρb

4

ρa + ρb
poFab, (10)

∇ ·
(∇ p

ρ

)

a
= (pa − po) K −

∑

bi

mb

ρb

4

ρa + ρb
pbFab

+
∑

bi

mb

ρb

4

ρa + ρb
poFab, (11)

where

K =
∑

b

mb

ρb

4

ρa + ρb
Fab. (12)

The value of K is found for any interior particle in the
initial regular configuration of particles when errors are
expected to beminimal. In the coefficient matrix for the PPE,
K appears in the leading diagonal position corresponding
to every particle. This imposes the zero Dirichlet condition
implicitly by choosing po = 0. We easily implement this
by making a simple modification to the coefficient matrix of
the PPE. This analytical solution allows the Dirichlet con-
dition to be applied accurately, which is important to avoid
incorrect pressure values in incompressible SPH. This effects
the computation of the pressure force, which is used for the
coupling with the deformable solids.

K is an approximation for the term:

∫

�

2

ρ

dW

dx
dV , (13)

where� is the domain volume V within the cut-off radius of
a given particle position x, when the kernel is fully supported.
It remains approximately constant throughout a simulation
where incompressibility is ensured. Please note that this
stems from the fact that the number of neighbours of a parti-
cle in an incompressible simulation (with given discretization
parameters) remains approximately constant throughout the
simulation.

In this free-surface formulation, if only bi particles are
included and if no diagonal correction is made, then this
would amount to a truncated kernel for all particles near
the free surface and hence is approximately equivalent to
a homogeneous Neumann boundary condition for pressure.
This means that such a formulation might result in artefacts.
In reality, the free surface is a Dirichlet boundary condition,
which is imposed by the diagonal correction.
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6 Two-way coupling of fluid and deformable
bodies

In this section, we introduce our interaction simulation
between fluids and deformable bodies. For incompressible
SPH, pressure is used to enforce incompressibility, which we
also employ in the coupling between fluid and deformable
solids. In ISPH, a reasonable boundary condition implemen-
tation is to use static boundary particles for the deformable
bodies. When a difference approximation is used for diver-
gence computations, these particles at the interface of the
deformable body implicitly impose a Neumann boundary
condition [32]. In this configuration, the deformable bodies
within the PBD framework consist of particles and a set of
constraints, where each PBD particle has mass, position, and
velocity. We enforce fluid pressure to exert forces on PBD
particles in contact with the fluid, by formulating the pres-
sure projection in order to map the pressure to a net force on
the deformable body. The net force in this case is defined as:

Fpressure = − 1

ρ
∇ p, (14)

where ρ is the density and ∇ p is the pressure gradient.
On the basis of Newton’s third law of motion, the sym-

metric interaction force applied by a fluid particle pi on
its adjacent triangle vertices is Fsolid←fluid = Fpressure and
Fsolid←fluid = −Fsolid→ f luid . However, fluid penetration
through the boundary occurs when u · n < 0, where u the
velocity corresponding to a fluid particle at the boundary and
n is the outward normal of the solid into the fluid as shown
(Fig. 5), assuming a boundary that is not moving. In the case
of deformable solid where the boundary is moving, this gen-
eralizes to the constraint u ·n > v ·n, where v is the velocity
vector of the boundary. We might also want to enforce the
no-slip condition, which means that the fluid particles at the
boundary do not freely slip or slide over the surface. Below,
we describe how to address the non-penetration and no-slip
conditions at the boundary.

Fig. 5 Illustration of the coupling situation between fluids and
deformable solids. Left: 2D cut through a 3D mesh with both free-
surface interface and liquid-deformable solid interactions.Right:Depic-
tion of the relevant interaction components: p is the fluid pressure, n is
the outward normal on the solid, and u is fluid velocity

In each time step, the new positions and velocities are
updated based on the results of the previous time step. To
prohibit penetration of the fluid particles into the deformable
body boundary, we detect collisions based on the updated
positions of PBD particles and fluid particles. Then, we for-
mulate non-penetration constraints between the fluid and
deformable body. In order to detect collisions, we employ a
two-grid cell-based spatial hashing procedure with temporal
marks based on [68]. The two-grid cell-based spatial hash-
ing data structure (which is two-layer grids) requires more
construction time than the original spatial hash. However, it
performs 20% better during the simulation.

To ensure satisfied boundary conditions, we formulate
non-penetration constraints once a collision is detected. To
enforce such non-penetration constraints between the fluid
and deformable solid, a fluid particle pi should stay a cer-
tain distance away from all the triangles, which is at least
equal to its radius r . Let di j be the distance between particle
pi and triangle j . When penetration occurs, the fluid parti-
cle moves a distance of at least di j − r towards the triangle
(where di j − r is the distance from the particle along the
normal n in the direction dir of the triangle). Therefore, the
correction is done by projecting the fluid particles position
to ‖r − di j‖n, in which we take the position of the pene-
trating particle and move the particle back along the normal
to a point at a distance of di j − r from the triangle. When
a particle collides with multiple triangles with different nor-
mals, we compute the direction dir by taking into account
the average of normals of the collided triangles. Furthermore,
to prevent penetration artefacts during the deformation of
the deformable solid, we define non-penetration constraints
within the PBD framework. For a fluid particle pi and its
adjacent triangle (p1, p2, p3) of the object surface mesh, we
define a position constraint as:

Cpenetration(pi ,p1,p2,p3)

= ∓(xi − x1)

· (x2 − x1) × (x3 − x1)
|(x2 − x1)| × |(x3 − x1)| − Z0, (15)

where Z0 = d0 + r , and where d0 is the rest distance of
the fluid particles (i.e. the distance by which a fluid parti-
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cle should be removed from the solid boundary, in addition
to its radius), r is the fluid particle radius, and xi , x1, x2, x3
are the fluid particle position and the triangle vertex posi-
tions, respectively. If the fluid particle pi penetrates the
triangle (p1, p2, p3) from below with respect to the trian-
gle’s normal, the first term of the right-hand side of Eq.
(15) picks the minus. Conversely, the first term picks the
plus. According to the PBD method, the position change
for a fluid particle and the triangle vertices is calculated as:

Δpc = λi∇pcCpenetration, (16)

where c ∈ [i, 1, 2, 3], and λi is a scalar value computed by
the PBD method.

In case the no-slip condition is required, it is imposed by
the constraintu·ø = v·ø, whereu the velocity corresponding
to a fluid particle at the boundary, v the velocity of the solid
boundary and ø is the tangent at the boundary. To address
this condition, we add a tangential friction term for each
particle which collides against a triangle (u · kø, where k
is a coefficient of friction and it is a positive constant). This
friction force is opposed to the current velocity of the particle,
simulating the loss of energy when the two (fluid particle and
triangle) interact. This no-slip law is phenomenologically
reasonable and moreover has some justification in kinetic
theory [46].

7 ISPH–PBD simulation

At a given time step t , the vector of all fluid particle posi-
tions is xt , the vector of all fluid particle velocities is ut ,
and similarly the PBD particle positions and velocities are
pt and vt , respectively. The ISPH–PBD simulation works as
described in Algorithm 1. In line 1, FTotal

f corresponds to

f B in Eq. 4, and in line 5, FTotal
s is the external force, mainly

gravity. In lines 10–15, the pressure is computed by solving
the linear system that is described by the PPE. Lines 25–28
refer to the PBD iterative solver that manipulates position
estimates such that they satisfy the constraints as described
in Sect. 4.1, where I terations refers to a parameter spec-
ified by the user, indicating the number of PBD constraint
solver iterations to be run. Another point within the outer
loop where an iterative algorithm may be used is at lines
10–15: in the case of our simulations below, we approxi-
mate Fpressure using BiCGSTAB, which runs for a number
of iterations such that a certain bound on the volume loss
is guaranteed (see the next section for more details). Hence,
two iterative solvers are invoked at each iteration of the outer
loop at line 9.

8 Results

In this section, we demonstrate the capability of our method
using different scenarios, where our choice of the ISPH
parameters is described as follows: The smoothing radius
r is set to 0.05, Δx is the initial particle spacing, and is set to
0.005, h is the smoothing length, and is set to 0.015, and the
density ρ is set to 1000. We employ the Wendland Quintic
kernel, also called the Wendland C2 kernel [22], where the
results show that a good compromise between accuracy and
time computation cost is reached by the use of the Wend-
land kernel. This kernel also has interesting properties; in
particular, it maintains a highly ordered particle distribution
in dynamical simulations and it does not fall prey to the pair-
ing instability. A graph plotting the accuracy of the pressure
gradient estimation (as expressed in the first term of the sum-
mation in Eq. 6) can be seen in Fig. 6, where the figure shows
a comparison of three different kernels, Wendland C2, cubic
spline, and quartic spline kernels, over different choices of
the smoothing parameter. Indeed, the Wendland C2 comes
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Fig. 6 Accuracy of pressure gradient estimates for three different ker-
nels: cubic spline, quartic spline, and Wendland C2 kernels obtained
from particles that are placed in a simple cubic lattice. The particles hav-
ing identical masses, are uniformly spaced, and the pressure increases
linearlywith the three axes, so that the true pressure gradient is constant.
The error is measured as (|ĝ−g|)/|g|where g denotes the true pressure
gradient and ĝ denotes the gradient as estimated by the SPH method
under the respective kernel (in a single coordinate). We observe that the
Wendland kernel performs particularly well in its gradient estimation
ability, and improves the gradient estimate as the value of the smooth-
ing parameter S increases. The smoothing parameter S determines the
smoothing length h as h = SVb, where Vb is the particle volume. The
dips in the graph are caused by the use of the log-scale and the fact that
we compare absolute values in our error measure (the difference ĝ − g
crosses 0 at these points

with good results, and continuously improves the gradient
estimate as the value of the smoothing parameter increases.

8.1 Timings

In order to enforce incompressibility, we solve the PPE
equations by a Krylov subspace method, in particular the
Biconjugate Gradient Stabilized (BiCGSTAB) solver using
the LIS linear solver library [57]. In Ihmsen et al. [34],
the Krylov subspace method used is the conjugate gradient
method which is originally restricted to symmetric matrices.
In our work, we use BiCGSTAB, a variant of CG specif-
ically suited for asymmetric matrices. In our experience,
BiCGSTAB solver tends to provide a solution even when
multiple solutions are present (for example, when the matrix
A is singular andwhenb, theRHSvector, is in the rangeofA),
without the need to pin a point in the domain to a fixed value.
Such situations arise when a fluid/fluid–solid domain is com-
pletely bounded by a solid boundary. Also BiCGSTAB is
stable even for high condition numbers. Hence, BiCGSTAB
has been robust for our applications.

Table 1 summarizes our testing scenarios and run times,
where the tolerated error is set to 0.025% overall volume
change of the fluid. All experiments described in this section
have been performed on a MacBook Pro equipped with a

2,8 GHz quad-core i7 Intel and 16 GB of RAM. During the
simulations, we iterate to verify whether the velocity of the
fluidmatches the velocity of the deformable solid inwhich an
error with a threshold of 0.5× 10−3 has to be satisfied as the
convergence criterion. The reported times do not include ren-
dering. In terms of computation time, the ISPH component
of the algorithm is the most expensive by an order of magni-
tude, when compared to the PBD component. Note that we
currently rely on verymodest computer hardware, andwe are
using a CPU implementation that is multi-threaded. Clearly,
a GPU implementation would allow much larger scenarios
and better performance.

8.2 Visual results

Enforcing incompressibility Figure 7 shows the stability of
our interaction model, where a two-way coupling simulation
of an elastic balloon (modelled as a thin shell) is provided.
The simulation consists of 9K geometric PBD constraints,
and the balloon is filled with 22K ISPH particles. The PBD
solver iteration count is set to 25 iterations. We employ a
fixed time step of 0.001. The balloon bounces upon impact
with the ground, expanding and deforming due to the fluid
load. In contrast, the elastic behaviour of the balloon causes
the water to flow inside and form waves, while enforcing a
boundary condition on the fluid flow.

Figure 8 shows the adaptability of our method: it allows
for tuning the elasticity of the deformable body. This is done
by changing the stiffness of the constraints inside the PBD
method, so that we can reduce or increase the elasticity of
the final deformation until the desired effect is reached.

Figure 9 shows the ability of our method to preserve fluid
volume, in comparison with the standard weakly compress-
ible SPHmethod presented by Becker and Teschner based on
the Tait equation [7], where the stiffness values in both are set
to be 0.80. The volume loss resulting from using the weakly
compressible SPH can be less if a larger stiffness value is
used. In this case, the time step size for weakly compressible
SPH must be decreased, which makes the simulation slow.
In Table 2, we report the computation time comparison of
WCSPH and ISPH for three different scenarios.

Figure 10 shows the error in the pressure for the water bal-
loon scenario performed by weakly compressible SPH and
ISPHover different numbers of particles. In order to compute
this error, we employed high-order kernel support (e.g. fifth-
orderB-spline kernel [43],which iswell known in the physics
community for its ability to obtain minimum distortion error
and well maintain particle spacing) to get what we call the
optimum pressure p̂. Thus, the error is evaluated through
the subtraction between p̂ and the pressure obtained from
the WCSPH and ISPH. Furthermore, in order to evaluate the
volume preservation quality of our method, we simulate a
fluid pillar of 5 metres that consists of 30k particles, where
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Table 1 Various timing and constraint statistics of our simulations. The
column names mean the following. #S: number of stretch constraints,
#T: number of cloth balloon constraints, #B: number of bend constraints,
#V: number of volume constraints, #PBD: total number of PBD con-
straints, #ISPH: number of particles used during the simulation, #ISPH

iterations: Avg. number of ISPH iterations per time step when 0.025%
error is tolerated, #Avg. iterations: average number of iterations in order
to meet the convergence criterion, #CT: average computation time dur-
ing a 1 second simulation

Scene name #S #T #B #V #PBD #ISPH #PBD iterations #ISPH iterations # Avg. iterations Time step CTtotal(ms)

Water balloon 9K 1 – – 9K 22K 25 21.3 2.1 0.001 32.5

Double elastic clothes 12K – 9K – 21K 95K 12 30.4 2.5 0.005 81.6

Thin shell in glass basin 7K – 4K – 11K 27K 8 32.2 1.4 0.005 45.7

Shower on cloth 13K – 9K – 22K 75K 12 43.1 2.4 0.005 77.1

Deformable bodies 15K 1 – 20K 35K 45K 36 40.2 2.7 0.001 87.3

Flower pot 9K – – 12K 21K 27K 20 20.3 1.6 0.001 35.2

Fig. 7 Top row: our method simulating a water balloon upon impact
with the ground. Bottom row: the same simulation but with fluid particle
pressures that are colour-coded and proportional to their red saturation,
where red indicates high-pressure values (9K PBD constraints and 22K
fluid particles, at 30 fps)

Fig. 8 Comparison of the water balloon simulation with varying elas-
ticity settings. These deformations are obtained by setting the stiffness
to 0.9 (left) and to 0.75 (right)

we show the error in the pressure distribution at different
times (Fig. 11). In this simulation, we measured the volume
loss at the end of the simulation t = 350 to be 1.19 × 10−3.

Interaction with thin shells and avoiding leakage Figure 12
shows the interaction between elastic cloth and fluid, where
the simulation consists of 21K cloth constraints and 95K
fluid particles. The PBD solver iteration count is set to 12
iterations, where we employ a fixed time step of 0.005. The
elastic cloth stretches under the water load, while it prevents
water from leaking through the cloth. This simulation proves
the capability of our approach to interact with elastic thin
shells, while avoiding the leakage of fluid through the bound-
aries.

Figure 13 shows a simulation of a stream of fluid being
propelled at high speed onto a piece of elastic thin shell, into
a transparent basin. This simulation shows that our method

Fig. 9 Left: simulation of a water balloon upon its impact with the
ground using weakly compressible SPH, which suffers from fluid loss.
Right: the same scene simulated using our method, which preserves
the fluid volume during the simulation. The PBD stiffness value of the
elastic balloon in both simulations is set to 0.80 and stiffness value of
WCSPH is 6.0 × 103

Table 2 Acomputation time comparison ofWCSPHand ISPH for three
different scenarios, where the time step size is 0.001 and CTtotal[ms] is
the total computation time for the whole motion

Scene name WCSPH CTtotal[ms] ISPH CTtotal[ms]
Water balloon 77.9 42.1

Deformable bodies 123.7 95.5

Flower pot 94.4 39.18

enables tuning the elasticity of the thin shell. This simulation
has 11K cloth constraints, and has 27K fluid particles. The
PBD solver iteration count is set to 8 iterations, where we
employ a fixed time step of 0.005. Figure 14 shows a simu-
lation of a stream of fluid being poured at high speed onto
an elastic thin shell. This simulation shows the ability of our
method to avoid leaking under large deformation and fast
motion. In this simulation there are 22K cloth constraints,
and 75K fluid particles, where we employ a fixed time step
of 0.005. The PBD solver iteration count is set to 12 itera-
tions.

Handling two-way elastic-fluid coupling Figure 15 shows
the flexibility of our explained elastic-fluid coupling tech-
nique, where an elastic flower pot consisting of 21K PBD
constraints is filled with a 27K ISPH particles. The elas-
tic flower pot deforms as it hits the ground, bounces, and
squirts the liquid out. In this simulation, the PBD solver iter-
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Fig. 10 Shows the error in the pressure over different numbers of parti-
cles between WCSPH and ISPH for the water balloon scenario, where
the PBD stiffness value of the elastic balloon in both simulations is set
to 0.80

Fig. 11 A fluid pillar simulation of 5 metres height with 30k particles
at different times, where the errors are colour-coded with red. The error
is evaluated through the analytical solution p = ρ · gravi t y · height
and the pressure as estimated during the simulation. Note that at time
t = 250, the oscillations have become visible due to errors. However,
the particle arrangement at earlier times is stable

Fig. 13 A scenario where a large amount of water is sprayed on a thin
shell in a glass basin, with varying elastic deformations. These defor-
mations are obtained by setting the stiffness of the stretch constraints
of the thin shell to 0.9 (left) and 0.6 (right)

ation is set to 20 iterations. We employ a fixed time step of
0.001. Also, Fig. 16 shows the flexibility of our explained
elastic-fluid coupling technique, where a lifebuoy and a ball
consisting of 35K PBD constraints are floating on 45K ISPH
particles. The PBD solver iteration is set to 32 iterations. We
employ a fixed time step of 0.001.

In Fig. 17, we illustrate that our method is able to couple
fluid and deformable bodies with different densities, where
we show an experiment that simulates floating and sinking.
In addition, we demonstrate in Fig. 18 the capabilities of our
method to emulate the free-slip and no-slip boundary condi-
tions described in Sect. 6. Please note that the coefficient of
friction k in the no-slip simulation is set to 0.4.

9 Discussion

In this section, we discuss methods that address the two-way
coupling between fluids and deformable bodies/ thin shells
at interactive rate. We compare our method to the closest
methods available, and we discuss the advantages and lim-
itations of our method. Akinci et al. [2] and Macklin et al.
[49] presented a two-way coupling simulation between flu-

Fig. 12 Simulation of a large quantity of fluid being propelled at high
speed onto two pieces of thin shell, where the elastic thin shells deform
under the impact of the fluid, stretching, and expanding, while the water

splashes around and runs down off the cloth’s sides (21K cloth con-
straints and 95K fluid particles, at 12.2 fps)
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Fig. 14 A stream of liquid pours into an elastic sheet of thin shell. The
elastic thin shell deforms under the impact of the water, stretching, and
expanding. This simulation shows that our method prevents leakage

even in the case of rapid motion and large deformations (22K cloth
constraints and 75K fluid particles, at 12.8 fps)

ids and deformable solids, including thin shells, which bears
some similarities to our approach. The technique proposed
by Akinci et al. [2] is a pressure-based coupling method,
which employs boundary particles to represent deformable
solids and effectively avoids the problem of leakage due to
the high-pressure ratios that these boundary particles cause.
However, the method heavily relies on pre-sampling the
solids and is very hard to generalize in order to handle solids
with large deformations. In order to avoid leaking through
boundaries when a large deformation occurs, their method
tends to oversample the deformable meshes in a uniform
fashion. In contrast, our method does not sample the bound-
aries with particles, and therefore simplifies the interaction
model, avoids oversampling, and prevents leakage, although
a fine triangulation is required in the case of thin shells.

The method presented by Macklin et al. [49] employs
position-based fluid (PBF) [47] to simulate fluid, where
enforcing incompressibility is not derived from the conti-
nuity equation, but from constraint dynamics. Therefore, the
density constraints are enforced through the use of Lagrange
multipliers and not by employing SPH formulations for pres-
sure and pressure force. Although their method generates
appealing simulation results at real time, we observe the fol-
lowing: (1) The soft volumetric bodies are obtained by using
a voxelized version of the original mesh, with a shape match-
ing constraint, which de facto limits the deformation modes
of the deformable body. The liquid particles unnaturally clus-
ter in a shell when particles are in contact with a solid. This
clustering issue cannot be eliminated even by reducing the
viscosity coefficient and cohesion coefficient. In contrast,
our method is based on an ISPH formulation that generates
a more plausible fluid simulation, in which we avoid particle
clumping. (2) Significant contact offset is used in [49], which
sometimes causes a visible space between a liquid and a shell
that are in contact with each other. In their method, this is
necessary in order to prevent leakage through the thin shell.

Fig. 15 An elastic flower pot filled with fluid, where the pot bounces
on the floor and squirts the liquid out. Note that the pot is a deformable
body (i.e. it is not a thin shell), as can be seen by the transparency of
the pot in the picture

We are able to use a lower contact offset when handling con-
tact, while still preventing leakage through thin shells (Fig.
19).

While we find our method practical, it comes with three
main limitations. First, we are currently using PBD to sim-
ulate deformable bodies due to its stability and efficiency.
However, PBD is rather sensitive to parameter tuning, and
the parameters need to be tuned carefully to achieve plau-
sible deformations of the deformable solids. To avoid this
problem, while still using PBD, an extended version of PBD
(XPBD) has been proposed byMacklin et al. [48]. Secondly,
our method relies on various parameters of the particle-based
domain of SPH and the mesh-based domain of PBD, we
argue that special attention is required while setting up the
simulation and parameters, such as the smoothing radius
and smoothing length for SPH, and the elasticity and stiff-
ness for PBD. For instance, using a coarse triangulation for
the deformable thin shell in a relatively small-scale simula-
tion leads to undesired results such as leaking. To address
such issues, in future work, we plan to investigate the pos-
sible use of adaptive SPH proposed by Winchenbach et al.
[69]: The use of continuously adjusted particle masses and
sizes with restricted spatial variation generates a very high
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Fig. 16 A shower of fluids, which consists of 45K ISPH particles
togetherwith a lifebuoy and a ball of 35K PBDconstraints. The lifebuoy
and ball have different masses, and the lifebuoy is a bit heavier than the

ball. While the fluid is filling a block volume, the ball floats, and the
lifebuoy slowly rises to buoyancy

Fig. 17 To demonstrate buoyancy using our method, we drop three spheres with decreasing densities from left to right into a tank of liquid, where
spheres are negatively, neutrally, and positively buoyant, respectively

Fig. 18 Afluid pouring on a solid bunny, where we demonstrate a com-
parison between no-slip and free-slip boundaries. Top row: we imposed
a no-slip condition on the boundary, where the simulated fluid tends to

stall over a relatively rough surface. Bottom row: a free-slip boundary
condition, in which the fluid smoothly flows over the bunny

degree of adaptivity. This can enable us to properly handle
the continuous exchange of forces at the interface between
the deformable bodies and fluids,while capturing small-scale
phenomena, such as splashing and droplet formation. More-
over, it will be interesting as a future direction to investigate
the possibility of employing the methods presented in [4,9]
to simulate the incompressible fluids in our framework. We
would like to study the use of these approaches to maintain
larger time steps, while achieving interactive rate perfor-
mance.

The third limitation is as follows. The incompressible SPH
formulation presented in Sect. 4.2 solves for ∇ · u = 0,
but in the presence of discrete time stepping, this does not
also guarantee ρ to be constant. While density invariance or
density invariance together with null divergence have both
been used in incompressible SPH, the resulting system is
known to have high-pressure fluctuations. The volume error
due to discretization can be rectified by using a deformation
gradient approach as in [55] or by using predictor–corrector
time stepping, as presented in [55].
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Fig. 19 Visual comparison between our method and the method pre-
sented by Macklin et al. [49] for a cloth-fluid coupling scenario with
32K fluid particles. Left: our method employs less contact offset (top)
and avoids particle clumping (bottom). Right: the method presented by
Macklin et al. [49], where they use a visibly larger contact offset when
handling contact (top), and the liquid particles tend to unnaturally clus-
ter (bottom)

10 Conclusion

We have presented a novel method for simulating two-way
interactions between particle-based fluids and deformable
bodies represented by polygonal meshes. The deformation
model of deformable solids is based on the position-based
dynamics (PBD) scheme, which allows us to generate
simulations that feature large deformations and handle
contact, while remaining stable. Fluid is simulated using
divergence-free incompressible smoothed-particle hydrody-
namics (ISPH). Incompressible SPH methods with free
surfaces suffer from noisy pressures. An incompressible
noise-free method for arbitrary free-surface flows is essen-
tial for many problems which involve both fluid and solid
interaction and multi-phase fluid simulations. In this paper,
we presented a novel semi-analytic model to simulate free-
surface flow that does not require explicit identification of
surface particles, and allows accurate pressure computation.
At the deformable solid and fluid interaction interface, we
generate forces and solve for the interaction. Our approach
can handle complex coupling scenarios between fluids and
thin deformable shells or membranes, where small changes
in the state of the fluid cause tremendous changes in themem-
branes and vice versa. The described method also prevents
the leaking of fluid through the thin shell boundaries in the
case of large deformations, which is done by enforcing an
appropriate set of constraints at the interface between the
two materials.

We currently employ a parallel implementation on the
CPU. To further improve the performance of our method,
developing an efficient GPU implementation is one of our
future directions. The recent work by Chow et al. [18]
promises much faster Poisson solvers on GPUs than pre-
viously achieved in incompressible SPH simulations. Since

the pressure equation in incompressible SPH is essentially
the Poisson equation discretized as a sparse system of linear
equations, the increased interest in solving linear systems
makes incompressible SPH very promising and much more
attractive than conventional weakly compressible SPH. We
believe that in the near future, using the incompressible SPH
formulation on a GPU will become increasingly more viable
than using conventional SPH. This path certainly offers a rich
set of opportunities for future research with applications not
only in movies and surgery simulation, but also in computer
games.
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