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Abstract
Signed distance fields represent objects as distances to the closest surface points with a sign differentiating inside and outside.
We present an algorithm to compute a signed distance field from triangle meshes. All data are kept on the GPU, making it
ideal for any pure graphics-based context. We split the algorithm into a fast parallel distance transform and a new method
of computing the sign. To determine the sign, we compute the winding number for any point using a ray map, a ray-based
data structure that preserves geometric meaning while reducing the amount of work to be done for ray tests. Based on that
structure, we devise a simple parallel algorithm to sample an exponentially growing number of rays to copewithmeshes having
deficiencies such as holes or self-intersections. We demonstrate how our method is both fast and able to handle imperfect
meshes.

Keywords Signed distance fields · Geometric algorithms · Object representation · GPGPU

1 Introduction

Distance fields are a common way to represent objects in
two or three dimensions. For any object, the distance field
at a point is the distance to the point closest on that object.
For three-dimensional bodies, a natural representation is their
boundary. If that boundary is closed and orientable, the dis-
tance field may be augmented so that the value is negative
when the point is inside the object and positive when out-
side. Due to this addition, the signed distance field (SDF) for
differentiable surfaces is differentiable at the surface bound-
ary, whereas for unsigned distance fields, this is only true
for non-boundary points. Various properties can be derived
fromanSDF, such as the normal or curvature of the isosurface
passing through a point or the object’s skeletonization. There
are many applications of signed distance fields. Volumetric
ambient occlusion or soft shadows [24] for rendering pur-
poses can be approximated using the distance information of
the surroundings. In complicated environmental scenarios,
SDFs can be used for potential-based path planning algo-
rithms [15]. The definition of a distance field is exactly a
nearest neighbor problem, which commonly comes up in
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many applications, for example in collision detection [10,13].
The additional sign can be used to determine if one object is
inside of another and therefore collided with it. The amount
by which both objects interpenetrate is then found by tak-
ing the absolute distance from the SDF. Special rendering
techniques such as sphere tracing [11] exist to efficiently
display a distance field. Figure 1 shows two signed distance
fields created by our method and then rendered interac-
tively.

In this paper,we present a system for efficiently generating
sampled signed distance fields directly on the GPU. We split
the construction into creating a distance field and signing it
afterward. The distance field is computed using a distance
transform algorithm that takes into account initial distances
for each cell. We have augmented the original algorithm to
utilize fast local memory available to compute shaders. Signs
are found by computing the winding number at each sam-
pling location. We present a ray-based data structure called
ray map. A ray map contains for each location information
about the intersections of a ray originating at that point. This
structure allows us to efficiently create many virtual paths
through the grid, without losing geometric information. We
use that property to approximate the sign of deficient meshes.
To compensate for problems such as holes, intersections or
duplicate faces, we sample the space of all paths through the
grid. The average of all rays measures how much a point can
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Fig. 1 The Buddha (left) and a bunny model (right) are converted to
an SDF for each frame during runtime and then rendered interactively
with a sphere tracing algorithm. The bunny is traced with distance field
modifiers to show only half of the model and an outer wall with a
thickness

be considered inside or outside. That operation is equal to
the winding number for any non-deficient mesh.

2 Related work

This section presents an overview of the existing literature
for distance field generation, both with and without sign.
While distance fields are continuous in general, we will in
the following be referring to discrete fields only. One of the
most general algorithms is based on solving a special form
of the partial differential eikonal equation given by

‖∇ s(p)‖ = 1,

s|∂S = 0

∂S denotes the boundary of the object. Intuitively, this can
be thought of as a wave propagating from the surface at unit
speed. Any point t units away from the closest point will be
hit by the wave after exactly t time units. Techniques such
as the fast marching method [21] can be used to solve this
equation, which has a complexity of O(n log n), where n is
the number of cells. A newer version by Yatziv et al. [26]
even makes it possible in O(n) by using a special kind of
priority queue.

Another class of solutions is distance transforms. These
can be grouped into approximate and exact variants. Exam-
ples of approximate solutions are propagation methods, such
as the one described in Schneider et al. [20]. They use a vector
propagation scheme together with GPU acceleration to com-
pute a distance transform for a binary input with a precise
error bound. An overview of different exact distance trans-
forms can be found in a survey by Fabbri et al. [7], where
they find theMeijster distance transform [18] algorithm to be

most consistently well performing for various input configu-
rations. The basic principle is the minimization of a number
of quadratic functions with their loci at the feature points.
The Meijster algorithm and similar ones are easily paral-
lelizable, as an n-dimensional transform can be decomposed
into n successive one-dimensional problems, each running in
parallel for the corresponding n−1 dimensions. These algo-
rithms process binary data. A more general algorithm, which
we implemented efficiently, is described by Felzenszwalb
et al. [8]. It uses a very similar approach to the Meijster
algorithm, but also incorporates sampled distance values at
grid locations. All of these methods do not take signs into
account. Specialized algorithms have been developed to uti-
lize the GPU, such as DiFi by Sud et al. [23]. They compute
the distance field per slice in the z direction by determin-
ing only those primitives that would contribute to that slice,
thus reducing the overall workload. Their follow-up tech-
nique [22] is also based on a slice approach, but computes
distances based on a linear factorization of the distance func-
tion on primitives. Cuntz et al. [6] use a propagation method
to update an initial binary grid with a push and pull scheme.
Each step uses neighboring information from the previous
step, an operation well supported by textures on GPUs, to
approximate the correct distance and sign. For signing a
distance field, thus determining inside and outside, multiple
algorithms have been proposed.Manymethods rely on either
a correct initial guess or more generally a clean, oriented
and closed mesh, since otherwise the sign is not uniquely
defined. Intuitively, the sign for a point should be determined
by checking whether the vector pointing from that point to
the closest surface point lies in the same half-space as the
normal at the closest point. If they point in the same space,
the point lies inside, otherwise outside. This simple method
fails in some cases. To overcome that, Baerentzen et al. [2]
introduced angle weighted pseudo-normals. For any vertex,
it is computed as the sum of all adjacent triangle normals
weighted by their incident angle at that vertex. Baerentzen
et al. proved that using this normal with the idea described
above results in the correct sign. For deficient meshes, this
test may still fail. Xu et al. [25] try to overcome such prob-
lems by first considering an unsigned distance transform.
An isosurface with a given width is used as an initial region
around the surface that defines an inside unambiguously. The
sign for other sample points is found by a special traversal
of the volume. Recently, another method was presented by
Jacobson et al. [16]. They generalize winding numbers to
solid angles and show how to efficiently compute that num-
ber for triangular meshes. This winding number field has
the important property of smoothly degrading in the pres-
ence of mesh deficiencies. In a follow-up paper Barill et al.
[3] speed up that process significantly by utilizing the fact
that the winding number field is harmonic and thus varies
smoothly in the distance. Thereby, groups of objects farther
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Fig. 2 Overview of our method. We start with arbitrary triangle data,
usually specified by one array for vertices and one for indices, repre-
senting the triangle faces. These are then inserted into the uniform grid
using a voxelization-based GPU algorithm (Sect. 3.1). Using the grid

information, a distance transform (Sect. 3.3) is performed to create an
unsigned distance field. A special data structure called ray map is cre-
ated with the same grid. This structure is then used to sign the distance
field (Sect. 3.5)

away can be replaced by a single combined representative
for fast processing.

3 Method

Our method operates on raw triangle data, either static or
dynamic. Dynamic changes such as animations or vary-
ing transformations are handled by pre-transforming all
vertices and storing them in a dedicated buffer. This can
easily be implemented using GPU compute operations. All
other data structures will be created on the fly from that.
This is a useful property, as all data stay on the GPU
and no transfer from or to the CPU is needed, making it
a good fit for any other GPU algorithm operating on the
SDF.

An overview of our system can be seen in Fig. 2. The
following sections will discuss the components in more
detail.

3.1 Uniform grid generation

We use a uniform grid as a base for other steps. It is cre-
ated with a conservative rasterization, utilizing the normal
rendering pipeline. First, triangles are projected along the
axis for which the largest amount of fragments will be
generated. A geometry shader determines that axis by the
largest normal component and switches the vertex com-
ponents accordingly. Triangles are extended so that they

cover the midpoints of all pixels they touch in order to
generate necessary fragments. For more details, we refer
to the GPU gems article [12]. One additional step we
take for each fragment is to intersect the triangle with
cells in the z direction using the Akenine-Möller method
[1]. Otherwise, each x, y fragment would only fill one
cell in the z direction, even though the triangle could
possibly intersect multiple cells that project on the same
pixel.

This process is repeated twice. The first time, a count
of the objects per cell is generated. An integer buffer is
initialized with zero for each cell. The fragment shader atom-
ically increments each touched cell. Afterward, we perform
a parallel prefix sum pass on all counts. Our implemen-
tation is based on the description by Blelloch [5]. This
provides us with the starting position of each cell, if we
were to sequentially store each cell’s triangles, including
duplications for any triangle being in many cells. As each
triangle can become arbitrarily large, it is not known at
the beginning how many entries this will result in, but the
total number is automatically computed during the pre-
fix sum algorithm. That total is used to resize an index
buffer, if necessary, that will contain all triangle IDs per
cell.

The second pass again performs the voxelization, but this
time increments the counter and then inserts the current trian-
gle’s index at the previously stored count value in the index
buffer. We use the same buffer for this as with the counts.
Both the starting position and length of the cell entries can
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Fig. 3 A binary distance transform reproducing the voxel structure on
the left. The right shows our distance transform, which does not suffer
from the same problem, as it samples directly from the geometry

be recovered using two consecutive values from the accumu-
lated buffer.

3.2 Generating distance fields

While there are specialized sampled distance fields such as
adaptively sampled distance fields [4,9], complete distance
fields [14] or more recently hierarchical hp-adaptive SDFs
[17], we use a uniformly sampled field. We use a variant
of the distance transform for sampled functions described
by Felzenszwalb et al. [8]. We have also tried a binary
distance transform, but have found it to be slightly less accu-
rate, even with the extension of storing the nearest neighbor
cell. This is due to the triangles being oriented themselves
in the cells, so the binarization loses too much informa-
tion. This still happens with the transform we chose, but
to a lesser degree, so we generally can ignore it. A solu-
tion is to loop over neighboring cells in the final distance
aggregation pass described in Sect. 3.3. Figure 3 shows the
result of only using a pure distance transform with binary
data, which reproduces the binary voxels, not the actual sur-
face.

3.3 Distance transform

We have implemented a parallel version of the distance
transform for sampled functions with the extension of also
finding the index of the closest cell for each cell. Algo-
rithm 1 describes the general procedure of dispatching
the distance transform in parallel, which is performed by
the GPU driver during a compute dispatch operation. It
reserves shared memory for three temporary arrays used
in the actual transform. These arrays can then be used by
every work item. These address their part of the mem-
ory by their local index in their work group. As the
maximum amount of shared memory is fixed by the hard-
ware, we compute the work group size to be as large as
possible while still being able to reserve enough mem-
ory.

Algorithm 2 shows the distance transform by Felzen-
szwalb et al. [8] augmented to use the shared memory and
provide nearest neighbor information. All input data are
copied into the shared memory once at the beginning. The
procedure consists of two steps. The first step computes
the lower envelope of parabolas at the grid points with the
sampled distance values. In a second step, the envelope is
used to find the smallest parabola and thereby the small-
est distance. This also yields the index of the closest cell,
which we save in order to use it in the final refinement
step. This algorithm actually outputs the squared distance
but can be used as input for the transform in the other
two directions. As an initialization step, we find the small-
est distance per cell to the triangles contained in it using
the index buffer created by the uniform grid voxelization.
If the cell is empty, a number higher than the largest pos-
sible distance in the grid is inserted, which serves as a
representation of infinity but avoids numerical problems.
The distance transform is trivially parallelizable as it can
be represented by three consecutive one-dimensional trans-
forms, one for each coordinate axis. Our implementation
uses OpenGL compute shaders for this operation. We utilize
the shared memory by querying the maximum size provided
by the hardware and then generating shader code with the
maximum work group size to still be within that memory
budget. We have found that this greatly improves the run-
ning time over a global buffer approach. For a resolution of
503, this increase was nearly twofold on the dataset used
for testing in Sect. 4. The average global buffer transform
took 0.32ms, while the average shared implementation took
0.17ms .

Each one-dimensional execution finds the closest cell in
that dimension for each other cell. In the first step, this is just
the index in the same line. Each following step will inherit
the index currently stored at the closest cell in the corre-
sponding dimension. This results in a structure similar to
the complete distance field introduced by Huang et al. [14].
After the transform is completed, we use the nearest grid
cell information to find the closest distance to the triangles
therein.

It should be noted that computing only this distance
transform without the added accuracy can be done more
efficiently with only one rasterization pass, where a tri-
angle directly computes its distance to the touched vox-
els. The final distance is the minimum of all triangle
distances. This requires an atomic minimum operation,
which is generally only implemented for integers, not
floats. This can be easily overcome by either a simple
linear mapping or by a bijection from signed integers to
floats.
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Algorithm 1 Pseudocode for the x pass dispatch for
the distance transform. This is equivalent to the work
the GPU driver does when dispatching work groups.
Inputs are the resolution r, the initial grid g and the
nearest neighbor field nnf in. nnfout is the output nearest
neighbor field.
1: function DT(r, g, nnfin, nnfout)
2: n ← rx � Length of the line
3: � Corresponds to a compute dispatch call
4: ParallelFor each work group with 2D size w
5: � Reserve memory to be shared in workgroup
6: v, vals ← reserve shared(n,w)
7: z ← reserve shared(n + 1,w)
8: ParallelFor each workitem in workgroup
9: i ← global index()

10: l ← local index()
11: � See algorithm 2
12: kernel(n, i, l, r, g, nnfin, nnfout, v, z, vals)
13: EndParallelFor
14: EndParallelFor
15: end function

3.4 Generating signed distance fields

We aim to preserve geometric precision, allow for small defi-
ciencies in meshes but still be very fast, so that SDFs, even
for animated data, can be created immediately. Under these
conditions, angle weighted pseudo-normals do not provide
the robustness against mesh errors or the means to over-
come those. Techniques such as [25] lose geometric precision
and require an additional parameter that guides the amount
of that precision. Winding numbers, while being fast, still
require precomputation, which is slower than our chosen
method.

We have opted for another common approach to com-
pute the winding number: Ray casting. Instead of com-
puting the revolutions of a curve or surface around a
point directly, we count the signed intersections of a curve
starting at the point going to infinity. Signed intersec-
tion means that if we hit the triangle from the back, we
count −1, and otherwise 1. A point lies outside if the
resulting number is 0, and inside otherwise. As with 2D,
this also applies to the solid angle winding numbers. If
we consider a closed solid, shooting rays in all possible
directions from the inside will result in a signed intersec-
tion of −1 for each ray. For a closed orientable mesh,
one ray would be enough to determine inside and out-
side.

Algorithm 2 Pseudocode for the x pass of the parallel
distance transform based on [8].
16: function kernel(n, i, l, r, g, nnfin, nnfout, v, z, vals)
17: off 0 ← nl � Offset with n elements
18: off 1 ← (n + 1)l � Offset with n + 1 elements
19: v[off 0] ← 0
20: z[off 1] ← −∞
21: z[off 1 + 1] ← ∞
22: k ← 0
23: � Copy global data into faster shared memory
24: for i ← 0, n − 1 do
25: vals[off 0 + i] ← g[i, ix, iy]
26: end for
27: � The original transform
28: q ← 1
29: while q ≤ n − 1 do
30: fq ← vals[off 0 + q]
31: vk ← v[off 0 + k]
32: fvk ← vals[off 0 + vk]

33: s ← fq+q2−(fvk+v2
k
)

2q−2vk

34: if s ≤ z[off 1 + k] then
35: k ← k − 1
36: goto 30
37: else
38: k ← k + 1
39: v[off 0 + k] ← q
40: z[off 1 + k] ← s
41: z[off 1 + k + 1] ← ∞
42: q ← q + 1
43: end if
44: end while
45: k ← 0
46: for q ← 0, n − 1 do
47: while z[off 1 + k + 1] < q do
48: k ← k + 1
49: end while
50: vk ← v[off 0 + k]
51: d ← (q − vk)2 + vals[off 0 + vk]
52: pout ← q ix iy

)T

53: g[pout] ← d

54: pnn ← vk ix iy
)T

� Nearest neighbor in line
55: nnfout[pout] ← nnfin[pnn] � Carry over neighbor
56: end for
57: end function

Thewindingnumber handles closed surface self-intersection
correctly, but does not on its own work with open or broken
meshes. One approach for this is selecting a number of sam-
ple rays, average the signed intersections and then threshold
that number to determine inside or outside. This process is
generally very slow, as it requires many rays. This is a prob-
lem we try to solve with our algorithm, which uses the same
information as the previous steps and is highly parallelizable,
thus being ideal for GPU work. It could also be applied to
similar problems, such as rendering Boolean combinations
of surfaces, as in [19].

3.5 The raymap data structure

We construct a grid that stores for each point the intersection
count of a ray with a direction starting at that point and going
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to infinity. First,we observe that the final intersection count of
a ray is just the sum of all signed intersections encountered
along the way. Therefore, it is independent of the order in
which the triangles are processed. This is important, as the
order of processing is not specified due to the GPU’s parallel
execution model. We start by considering a 1D grid. Let i
be the index of a cell. The local intersection count wl(i)
is the number of intersections of a ray connecting the cell’s
corresponding world space center to the one of cell i+1. The
intersection number of a line segment from cell i to j ≥ i is
the number of intersections of that segment and all triangles
on that way. This is just the sum of all wl along the way.

For the opposite direction, we have to negate the wl , since
only the direction changes but not the geometry. Summation
is done up to, but not including the actual final cell, as that
would extend the ray one cell further.

w(i, j) =
{∑ j−1

n=i wl(n) j ≥ i,∑i−1
n= j −wl(n) j ≤ i

=
max(i, j)−1∑
n=min(i, j)

sign( j − i)wl(n)

= sign( j − i)
max(i, j)−1∑
n=min(i, j)

wl(n)

(1)

From this last formulation, it can be seen directly that w is
antisymmetric, as only the factor in front of the sum changes.

w(i, j) = −w( j, i) (2)

Let m be the maximum index and define the ray rin from a
cell i in the grid to ∞ as

rin(i) = w(i,m + 1) (3)

As there are no intersections outside of the grid, the value of
w will not change after the last cell. All rays in the positive
direction of all cells can be computed in one scan pass from
m to 0 with

rin(m) = wl(m), (4)

rin(i) = r(i + 1) + wl(i) (5)

This process is similar to summed area tables or cumulative
distribution functions. Importantly, this allows us to easily
compute the intersection counts of the arbitrary line segments
from before.

w(i, j) = rin(i) − rin( j) (6)

It can be seen by simple substitution that this represents Eq. 1
regardless of the order of i and j . With a slight modification,

we can also define rays partially or fully inside or outside of
the grid. A ray starting at a nonexistent cell i after the volume
(i > m) will intersect nothing, so r(i) = 0. For cells to the
left (i < 0), there are no intersections until the volume starts,
so we can just use the first cell as a starting point instead.

r(i) =
{
0 if i > m,

rin(max(0, i)) otherwise
(7)

This allows us to compute one ray in the positive (r(i))
and one in the negative direction (w(i, 0) = r(i)− r(0)) with
only two precomputed values. Most importantly, this does
not lose any geometric precision. It will also come in handy
later, since paths between points can be composed of line
segments along the coordinate axes. By the definition of wl ,
the connection requires evaluating intersections in the two
cells crossed. To avoid this, we compute the intersections in
one cell and order them depending on whether they occur to
the left or right of the cell’s world space center, which is just
a check of the computed intersection parameter. The sum of
left intersectionswill be added to the current number stored in
the left cell. The right sum will be added to the current cell’s
number. Cells are not processed all at once, since otherwise
synchronization or atomic operations between neighboring
cells would be necessary. Instead, every second cell is pro-
cessed at once in a first step. That way, it is safe to write
to the left cell asynchronously. A second step will process
every second cell with an offset of one. With this scheme,
all intersections in a cell are computed only once. Figure 4
illustrates this process in 2D.

After the local intersection counts have been evaluated,we
find the values of r with a simple scan from right to left over
all entries using Eq. 5. We tried speeding this up by using the
distance values computed previously to quickly move over
free regions where there will be no change in the intersection
count. This can be seen as a discrete form of sphere tracing
[11]. While we found that often times the number of cells
needed to find the correct sign went down significantly, it did
not accelerate the procedure.

We define the n-dimensional ray map as a function

rD : Nn → Zk,

D = {d0,d1, . . . dk} ⊂ Zn\0n (8)

which assigns each grid point the intersection counts for a set
D consisting of k rays starting at that cell specified by their
discrete directions di , i = 1...k. The i-th entry of rD is the
intersection count of the i-th ray starting from that point in
direction di . In 1D, there is only one direction, disregarding
multiples, while higher dimensions allow for infinite ones.
The construction procedure from before only works for adja-
cent cells, since the ray would otherwise cross other cells on
its way. This leaves 4 directions in 2D and 13 in 3D, which
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Fig. 4 Distribution scheme of the ray map construction. Every second
cell in each direction is accessed in one step. This allows the cell to
compute the intersections along the ray directions and distribute the
values that belong to neighboring cells without synchronization

Fig. 5 Slice from the distance field of the dragon model. Using only
one direction (left) may lead to wrong inside–outside classifications due
to imperfect models or edge cases in the intersection routines. Using
six rays can fix these small errors (right)

comes from the 8- and 26-neighborhood around a point and
discarding the inverse directions, as these can be computed
from the ray map without further processing.

For our 3D ray map, we use D = {( 1
0
0

)
,
( 0
1
0

)
,
( 0
0
1

)}, allow-
ing us to compute six rays from any point using Eq. 6.
Computing the local intersection count is done just as in
the 1D case, but with every second cell in each direction in
each pass to avoid synchronization hazards in any of the three
directions. This results in eight passes, each processing 1

8 th
of cells. The accumulation of counts to compute the actual
values of rD also stays the same, but follows the procedure
from the n-dimensional distance transforms. Each direction
requires a scan along that direction. For example, the x direc-
tion requires one scan for each (y, z) coordinate pair in the
grid resolution.

With six rays, errors such as a small hole can be fixed since
most rays will still hit the correct geometry. As we only see a
winding number of 0 as outside, we take the absolute average
of all ray intersection counts and check whether it is close
enough to 0, using some threshold t . We use t = 1

2 . An
example of a wrong inside–outside classification using only
one direction can be seen in Fig. 5.

This procedure so far is susceptible to slight changes in
geometry. In the most extreme case, very small holes in an
otherwise closed model, all aligned with the rays, will result
in a misclassification. To counter this problem, we use the
fact that the winding number does not depend on a ray, but
can be an arbitrary curve going through the point to infinity.
This can be thought of as follows: If we smoothly deform the

Fig. 6 Illustration of the intuition behind using curves instead of rays.
The object on the left can be smoothly deformed into the middle circle.
Deforming the ray to the one on the right side results in the same local
intersections as for the left object

surfacewithout crossing the query point, thewinding number
must stay the same. For the number to change, the query point
would need to cross a surface boundary. For a ray that counts
intersections, this procedure would only possibly change the
number of intersections encountered, not the sum of signed
intersections itself as that would mean the winding number
changed. We can construct the same intersection configura-
tion by not deforming the surface but the ray instead. Figure
6 illustrates this.

We can construct a path from one point p to any other
point q. Using a more relaxed notation, we denote w(p,q)

as the signed intersection count of a chosen path between
the two points. Let bi (q), i = 1, . . . , 6 be the intersection
counts of the six rays computed before. Their sum is c(q) =∑6

i=1 bi (q). The connecting path can be combined with any
of those six rays to produce a curve to infinity with count
w(p,q)+bi (q). The sum of those curve intersections is then

c(p) =
6∑

i=1

w(p,q) + bi (q)

= 6w(p,q) +
6∑

i=1

bi (q)

= 6w(p,q) + c(q)

(9)

which reduces the computation to calculating w(p,q) and
then combining it with the already found value c(q).

This can be extended further by consideringmultiple paths
to the next point. One example is to decompose the path
into segments along the coordinate axes. This results in six
possible paths for each permutation, i.e., xyz, xzy, yxz, yzx,
zxy and zyx. These can be efficiently constructed with the ray
map. Each of these contributes to six paths. For l connecting
paths, this allows us to virtually construct 6l curves. Thatway
a number of connection paths could be computed using the
minimum amount of data accesses and then combined with
a single data access to produce a multitude of virtual curves.
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Fig. 7 Examples of the absolute averaged winding number fields for a
simplified bunny model and two versions broken in different ways. The
fields still find a correct inside–outside classification. For the middle
version, where the error is concentrated in one region, we see a smooth

change in field values around that region and clear edges away from it.
The more chaotic bunny on the right is not closed and contains various
intersecting triangles. The inside is still clearly segmented

This makes it possible to efficiently sample a huge number
of all paths through the grid with relatively few samples.
Additionally, the same reasoning can be applied not just to
the six initial rays, but to any number n of curves starting at
q resulting in ln virtual curves.

Taken even further, we consider applying this procedure
iteratively. Let ct (p) be the signed intersection count with
nt (p) curves at position p for step t . Initially, c0 is the result
of the six initial rays and n0 = 6. Now, consider a number
of sample points {qi }vi=1. pmay be connected to one qi by a
number li of paths. Putting these thoughts together results in
the evolution equation for c and n.

ct+1(p) = ct (p) +
v∑
i

nt (qi )(
li∑
j

w j (p,qi )) + li ct (qi ),

(10)

nt+1(p) = nt (p) +
v∑
i

li nt (qi ) (11)

Equation 10 adds the counts of the virtual paths to the current
count, while Eq. 11 updates the number of rays computed
at each point. If the neighbors and paths are fixed the total
number of paths can be computed once for all points. As this
is an exponential growth, a lot of paths can be spawned with
very few steps. For example, using eight neighbors with six
paths eachwill result in 14,406 virtual curves after the second

step. This can be a problem; as after a few steps, numbers
may become too large for some data types. This could be
optimized by using fewer well-spaced samples per pass and
then doing more passes.

A simpler technique that still workedwell for meshes with
small deficiencies thatwe testedonly counts intersections and
uses the ray map. The only difference from before is that we
do not aggregate from previous steps, but instead only use the
six initial rays and different offset points for each iteration
step. Thus we can add six times the number of offset points
connected with different paths per step.

Regardless of the chosen method, when a specified num-
ber of passes are finished, the final result is averaged using the
sum and total number of paths stored for each cell and then
thresholded as before. Figure 7 shows the resulting averaged
winding number field for different models.

4 Results

Our test setup has 32 GB of RAM, an Intel Core i7-6800K
CPU and a GeForce GTX 1080 GPU. Our implementation is
made inC++ usingOpenGL.We have tested the performance
of our system with a wide variety of models. The Thingi10k
[27] database contains about 10.000 meshes of various sizes
and qualities. It was created to reflect models encountered
during real applications for 3D printing. Many of those con-
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Fig. 8 Average runtimes for the models in the Thingi10k [27] database
with a resolution of 503. Shown are our times for the full SDF com-
putation in blue and the times for the fast winding number algorithm
by Barill et al. [3] on the same system. We used their publicly avail-
able implementation, which runs multi-threaded on the CPU. It should
be noted that they report smaller times using their system. Our system
still performs the complete transform at faster times than their reported
precomputation; however, their reported times are closer to ours

tain some amount of error with duplicated or missing faces,
non-manifold geometry, self-intersections and others. Aside
from the geometric properties, meshes range from 4 trian-
gles to over 5 million. Results of that evaluation can be seen
in Fig. 8. Our algorithm performs competitively with other
work. The full SDF computation including signs is faster
than the state of the art fast winding number algorithm by
Barill et al. [3]. The sign computation takes up most of the
time if more than 3 passes are used. Sign computations with
5 additional sign gathering passes averaged 55% for the 503

resolution and 51% for 1003 of the complete runtime. This
step warrants some implementation improvement.

The runtime is influenced both by the triangles to process
and the resolution, but not in a simple linear fashion. Figure
9 shows average timings for three example models and some
resolutions.

These results seem counterintuitive at first with lower
resolutions taking more time than higher ones, but can be
explained.

One obvious slowdown occurs when too many triangles
fall in one cell, effectively negating the spatial partition of
the grid. This can be seen with the Buddha model that has
a spike in computation time at a resolution of 16. Another
effect can be seen at higher resolutions. As we have opti-
mized our distance transform to use fast local memory, we
compute the maximum work group size that can be used
to still fit in that memory. Increasing the resolution to 256
allows for less parallel items for more work, thus slowing
down the computation considerably. A better way to utilize
the shared memory in this scenario could speed up the exe-
cution a lot. A different approach would be to compute the

Fig. 9 Times for computing the SDF for three models of varying com-
plexity for increasing resolutions

Fig. 10 SDF of the Emily scan from theWikihuman Project. It contains
inner geometry to model a hole in the mouth region. Eyes are separate
objects that intersect the outer shell. The mesh is not closed at the
bottom. Our method correctly classifies the mouth and eye regions as
outside and inside respectively. The overall inner region of the model
is found despite it not being closed

distance transform at a lower resolution, for example 64 or
128. This would require the final distance gathering to search
the neighborhood of the closest cell. We have found that
in most models we have tested triangles do not on average
appear in more than two cells for higher resolutions, thus
leaving most cells relatively empty and the neighborhood
query not too complex. The intermediate resolutions are not
as affected by triangle number per voxel or the huge number
of cells to process in the distance transform and thus allow
for lower computation times.

In Fig. 7, we have shown that the averaged winding
number approximation can accurately determine inside from
outside even in deficient models. Figure 10 shows some addi-
tional results with a scanned and edited model that contains
problematic elements such as inner geometry, intersecting
geometry and holes.

We compared the signs computed by the method of Barill
et al. with ours. For models without geometric deficiencies,
our method produces the same result. A more interesting
point of comparison is with deficient models.

Figure 11 shows a comparison of the results for two defi-
cient meshes. The Emily scan contains intersecting triangles,
internal geometry and a large hole. The distorted bunny is
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Fig. 11 Visualization of the differences between the method of Barill
et al. and ours for Emily scan and the strongly distorted bunny of Fig.
7. The chosen slices contain the largest amount of differences out of all
the slices for those models. Displayed in gray are all voxels for which
the methods agree, red are the voxels classified as inside by our method
only and green by theirs only. It is noteworthy that differences only
occur at the undefined edges of the model

the same model as in Fig. 7. Its triangles do not share edges,
intersect and are not consistently oriented in general. While
there are differences for both meshes, they are less than half
of one percent, for the Emily scan 0.15% and 0.24% for
the distorted bunny. For the bunny and similar extremely
deficient meshes, their method is less noisy at the boundary
due to the smoothness of their approximation. Noteworthy is
that the differences generally only occur at the undefined
object boundaries. For the scan, this is the lower part of
the shoulders, and for the bunny, it is the whole bound-
ary. Both methods agree on voxels on the inside. Since a
correct boundary is not uniquely and clearly definable in
these cases, we believe these differences are justifiable for
the increased speed, especially since the techniques agree
for correct meshes and are nearly similar for only slightly
broken models. One problem is that after determining the
sign, the distance values do not correctly reflect the zero-iso
surface at the hole. One solution could be to generate the sign
first and then check for cells without any triangles in them.
If there is a change in sign around one, the initial distance
can be set to zero or to some approximated distance fitting
the signs of the neighborhood. That way, surfaces could be
automatically closed and still be valid distance fields.

5 Conclusion and future work

Utilizing localized properties such as cell distances and inter-
section counts can be used to efficiently generate signed
distance fields on the GPU. We have shown that this method
performs well for a wide variety of meshes. All data can be
fully processed on theGPU so no slow data transfers between
host and GPU are needed. Approximating the winding num-
ber using our ray map data structure is simple to implement
and provides efficient sampling of the full discrete curve

space. More directions could be used to further improve that
sampling. Choosing resolutions based on the distribution and
size of triangles could further speed up themethod for desired
distance field resolutions that do not match a mesh well.
A hierarchical method could be used instead of a uniform
grid, for example fast linear bounding volume hierarchies or
octrees, which could also be created on the GPU.
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