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Abstract
Kinetic data structures represent an extension to ordinary data structures, where the underlying data become time dependent
(e.g. moving points). In this paper, we define the kinetic locally minimal triangulation (KLMT) as a kinetic data structure
extension to the locally minimal triangulation in the Euclidean plane. We explore the general properties of this data structure
in order to show what types of events need to be considered during its life cycle; we also describe the predicates associated
with these events. To describe the general kinetic features, we prove that KLMT is responsive, compact, efficient and non-
local. In the combinatorial analysis of KLMT, we briefly describe the mathematical apparatus commonly used to investigate
computational complexity properties of kinetic data structures and use it to establish the bounds on the number of events
processed during the life cycle of this data structure. Finally, the obtained results are compared to the kinetic Delaunay
triangulation showing that KLMT may provide some benefits over kinetic Delaunay triangulation, namely simplifying the
mathematical equations that need to be computed in order to obtain the times of events.

Keywords Kinetic data structures · Delaunay triangulation · Locally minimal triangulation · Computational geometry ·
Planar graphs

1 Introduction

Kinetic locally minimal triangulation (KLMT) is a type of a
kinetic data structure, a special type of data structures that
are designed to be able to handle sets of time-dependent
data. The field of application of such a tool is very wide—it
may include tasks such as motion detection in different areas
(air traffic monitoring, marine vessel navigation, robotics)—
see [9,10,12,14], simulation of animal groups of various
kinds or human crowds as shown in [11,15,17,21,25,26],
and might even be exploited for wide range of mathemat-
ical problems that may be described with systems of partial
differential equations and solved by finite element method
such as in [6].
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It is very common to use kinetic Delaunay triangula-
tion (KDT) or some of its relatives such as kinetic Voronoi
diagram or kinetic regular triangulation for the aforemen-
tioned tasks, because they are closely related to various
nearest neighbour graph structures that are commonly used
[7,16,27]. However, we noticed that the KLMT has never
been considered as an alternative and we think its properties
should be explored. In this paper we focus on the theoret-
ical properties of KLMT, expanding our work from [19]
where we have discussed various types of proximity graphs
for both static and kinetic applications, and we propose an
idea that the kinetic applications could benefit from replac-
ing KDT with KLMT. These data structures are very similar,
and the replacementmay provide some advantages overKDT
because KLMT allows us to compute the events using equa-
tions of lower degree when compared to KDT, even despite
the fact that KLMT management requires us to handle cer-
tain types of events that do not need to be considered when
using KDT.

1.1 Locally minimal triangulation

We will start by the following definitions:
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Definition 1 A triangulation T (P) of a discrete set of points
P ⊂ R

2 is a maximal planar graph. That is, no edge between
two points in P can be added to T (P) without it becoming
non-planar.

There are many different types of triangulations with dif-
ferent properties over any given set of points; let us now
define the locally minimal triangulation:

Definition 2 A triangulation of a set of points
P = {p1, p2, . . . , pn} , n > 2, P ⊂ R

2, is locally mini-
mal if and only if every edge pi p j shared by two triangles
pi p j pk , pi p j pl forming a convex quadrilateral is not longer
than the diagonal pk pl . It will be referred to as LMT (P) [8].

It is worth mentioning that LMT(P) is not unique for P and
it is dependent on the concrete method of its construction.

1.2 Delaunay triangulation

Another possible triangulation over a given set of points that
wewill explore in this article is theDelaunay triangulation—
let us note that it is the most widely used triangulation in the
field of kinetic data structures (see further) and we will use
it as a base for an evaluation of the features of other kinetic
data structures.

Definition 3 Delaunay triangulation DT (P)of a set of points
P = {p1, p2, . . . , pn} , n > 2, P ⊂ R

2, is a triangulation in
which no point pi ∈ P lies inside a circumcircle of any of
the triangles in T (P) [20].

Let pi = (xi , yi ),∀pi ∈ P , be the coordinates of the
points in P . For practical reasons, it is necessary to be able
to determine the position of a point pq ∈ P against a cir-
cumcircle of triangle pi p j pk ∈ P .

The most commonly used way to do this is by using the
incircle test [22], described by the following formula:

inCircle(pq , pi , p j , pk) = det

⎡
⎢⎢⎢⎢⎣

xi yi x2i + y2i 1

x j y j x2j + y2j 1

xk yk x2k + y2k 1

xq yq x2q + y2q 1

⎤
⎥⎥⎥⎥⎦

(1)

If the triangle pi p j pk is oriented counterclockwise, a
positive value means that pq lies inside the circumcircle of
pi p j pk , a negative value means that it lies outside, and zero
means that the point lies directly on the circumcircle.

Only one DT (P) exists for any given set of points P as
long as there are no four cocircular points in P , regardless
of the construction algorithm used for computing the trian-
gulation.

1.3 Triangulation construction algorithms

Many different types of construction algorithms exist with
diverse properties that may be used to create various types
of triangulations. These algorithms offer different time and
space complexities, extensibility to higher dimensions, the
possibility to be parallelized, etc. It is beyond the scope of
this text to describe them all; let us just mention that we
recommend to use the incremental insertion, because it is
easy to implement and even though it does not usually provide
the optimal time or space complexity, it generally allows us
to introduce new points to our pre-existing data structures in
run-time and may be easily modified to be able to remove
the points in run-time as well. The data structures that allow
the user to add and remove data at run-time are often called
dynamic.More details on the topic of construction algorithms
and properties of dynamic triangulationsmay be found in our
previous work—[28].

1.4 Kinetic data structures

As shown in [4], any static data structure constructed over
a finite set of primitives (points) may be proven valid by
checking a finite number of conditions over these primitives.
Let us define a set of basic terms that will help us understand
the kinetic data structures in general and will be necessary
later to describe their properties:

Primitive A primitive is an elementary object (such as a
point) used as a basic input when creating a (kinetic) data
structure. The primitive is defined by a set of coordinates
and properties.
Predicate A function of a (sub)set of primitives which
returns a discrete set of values. The result of this function
is often reduced to determine the sign of an expression.
Certificate A check of a predicate made to determine the
correctness of the given data structure.

Kinetic data structures (KDS) generalize static data struc-
tures by introducing movement to the primitives. In our
case, we will focus on triangulations over a set of points.
In this particular case, we define the kinetic primitives as
“moving points”, i.e. their coordinates are functions of time:
∀pi ∈ P : pi (t) = (xi (t), yi (t)). This may result in a wide
variety of forms and applications. Note that the movement
may be an arbitrary (continuous) function of time. However,
it is common to limit the movement to polynomial func-
tions of time since they are easy to solve (albeit not always
analytically), simple enough to investigate and can be used
to approximate any real-life scenario in the eventual appli-
cations. Since the primitives are time dependent, we need
to define one more basic term that will allow us to investi-
gate changes in topology. Because both the predicates and
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certificates for KDS are functions of time, the previously
valid certificates may fail eventually with increasing values
of time.

Event Time instants determined by a certificate failure
are called events. The events are commonly divided into
two types: internal and external. The difference is that
external events directly affect the topology of the kinetic
data structure, whereas internal events need to be pro-
cessed for the KDS to work properly but do not change
its topology.

As it has been shown in [4,23], maintaining a kinetic data
structure requires us to compute and process the events in
the correct order determined by the time in which they occur.
The commonly used way to perform this task is by utilizing
a priority queue for the events. The certificate failures are
stored in the queue with the priority being the time when
they occur. The life cycle of a kinetic data structure then usu-
ally consists of storing some events in the queue and then
periodically popping some of them from the queue, comput-
ing new events, pushing them into the queue and so forth as
needed.

1.5 The properties of kinetic data structures

According to [4,5,13], there are four basic properties thatmay
be used to judge the effectiveness of a particular data structure
for kinetic data. These are responsiveness, efficiency, locality
and compactness. Note that these properties are dependent on
the exact implementation of the given kinetic data structure,
not only on its type and the property it is maintaining. For
the purposes of the KDS properties description, let us denote
that a given KDS contains n moving primitives. Let us also
denote that a function is small if it is bounded by O(logε(n))

or O(nε), for an arbitrarily small ε > 0.
Note that any minor change in the kinetic data structure

may influence quite a large number of certificates; it is often
convenient to be able to determine the relationship between
each primitive and the certificates it may directly affect.

As said before, the kinetic data structures use a priority
queue for event management. The length of the queue may
be then expressed as a function of the size of the input data
n.

Responsiveness A responsive kinetic data structure is
such aKDS that takes only a small amount of time to han-
dle every certificate failure (an internal or external event).
Handling of the event may includes changing the topol-
ogy of the data structure, altering its properties, adding
new certificate functions or removing old ones, etc. If
expressed as a function of n, a KDS is responsive if the
time required to handle every certificate failure is small.

(Weak) Efficiency KDS is said to be efficient if the total
number of events processed in the worst case is asymp-
totically the same as (or slightly larger than) the number
of external events processed in the worst case. Let us note
that these two worst cases do not necessarily need to be
the same cases (which is the reason that this property is
called weak efficiency).
Strong Efficiency KDS is strongly efficient if and only
if the ratio of all processed events to processed external
events in the worst case is small for any given motion.
Locality A kinetic data structure is called local if the
number of directly affected certificates is small for any
input data.
Compactness A given data structure is compact if the
maximum number of events ever present in the queue is
small.

1.6 Kinetic triangulation events and properties

In order to explore the properties of external events in KDS,
we need to be able to describe the changes in the topology that
are associatedwith the events. In order to do that, let us extend
the idea of graph isomorphism for the kinetic environment.

Let T (P, t) denote the state at time t of triangulation
T (P), constructed over a set of n time-dependent points P =
{p1(t), . . . , pn(t)}, where ∀pi ∈ P : pi (t) = (xi (t), yi (t)).
Let E = {e1, . . . , em} be a set of m edges in T (P). Let
∀ei ∈ E : ei = (pk, pl) if ei is the edge defined by points
pk, pl ∈ P . Finally, let E(t) be the set of edges in a kinetic
triangulation at time t .

Definition 4 (Kinetic Equality): Given two triangulations
T1(P, t1), T2(P, t2) constructed over the same set of (time-
dependent) points, the triangulations are kinetically equal iff
they are isomorphic.

Note that since the two graphs are constructed over the
same set of points, the isomorphism condition is met iff
∀(u, v) ∈ E1 ⇔ (u, v) ∈ E2. We will denote this rela-
tion as T1(P, t1) ∼= T2(P, t2). In other words, we say that
two kinetic triangulations constructed over the same set of
points are kinetically equal if their topology is identical and
the edges in those two triangulations connect the same pairs
of points. Note that it is not necessary for the triangulations
to have equal values of time in order to be kinetically equal
and therefore the (moving) points do not need to be at the
same positions.

Let E = (
tex1 , . . . , texn

)
, texi < texi+1∀i < n be the set of

all time values for which external events happen in T (P, t).
Formally, we can state that:

∀texi ∈ E ∃ε > 0 : T (P, texi − ε) � T (P, texi + ε) (2)
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Equation 2 describes the life cycle of a kinetic triangu-
lation over a time interval [tex1 ; texn ] and highlights the fact
that external events change the topology of the triangulation
as the set of edges defined by the triangulation changes with
each external event. It is also worth mentioning that some
of the states of T (P, t) may be topologically equal to other
states that existed in the triangulation for earlier values of
t—this is the whole purpose of using the kinetic approach
to handle data structures over sets of time-dependent data.
By computing the times of external topologic events, we
are able to determine every single different state of the data
structure during its life cycle without the risk of missing
any of them. The internal events are more complicated to
describe, and we shall discuss them later in this text with
a concrete data structure to provide an example of their
effect.

1.7 Combinatorial tools

It has been shown in [4,24] that the combinatorial analysis of
the kinetic properties of different kinetic data structures may
be converted to the problem of analysing the upper enve-
lope of a set of their predicate functions. The number of
changes in the “topmost” function in the upper envelope is
then closely connected to the length of the corresponding
Davenport–Schinzel sequence. This sequence is defined as
follows:

Definition 5 (Davenport–Schinzel Sequence) [24]: Let n, s
be two positive integers. A sequence σ = (σ1, . . . , σm) of
integers is an (n, s)-Davenport–Schinzel sequence if it is
non-repeating and satisfies the following conditions:

1. ∀i : 1 ≤ σi ≤ n
2. Any non-repeating subsequence of σ made of only two

integers is of length at most s + 1.

Let us denote the length of the longest (n, s)-Davenport–
Schinzel sequence by λs(n). It has been shown in [24] that
the tight bounds on the value of λs(n) involve theAckermann
function.

Definition 6 (Ackermann Function) [24]:

A(m, n) =

⎧⎪⎨
⎪⎩

n + 1 if m = 0

A(m − 1, 1) if n = 0

A(m − 1, A(m, n − 1)) otherwise

Let us also denote that A(n) = A(n, n) and that α(n) is
the inverse function of A(n). It has been shown in [24] that
α(n) ≤ 4 for any practical values of n. For the purposes of
this text, we will need the following values of λs(n):

Theorem 1 (Values of λs(n))

λ1(n) = n
λ2(n) = 2n − 1
λ3(n) = Θ(nα(n))

λ4(n) = Θ(n · 2α(n))

More details on Davenport–Schinzel sequences, Ackermann
function and its inverse with respect to kinetic data structures
can be found in [3,24].

2 Kinetic locally minimal triangulation

2.1 Predicates and certificates

As given in Definition 2, LMT(P) is proven valid by
comparing the lengths of the two possible diagonals in
convex quadrilaterals; this gives us two different predi-
cates that need to be checked—the length comparison itself
and the convexity check of the four points. Let PQ =(
pi , p j , pk, pl

)
, PQ ⊆ P , be a subset containing four points

which create two adjacent triangles. From the kinetic point
of view, every such quadrilateral in LMT(P)will be checked,
thus creating two certificates: one for the local minimum
LM(PQ) and the other for convexity CH(PQ):

LM(PQ) = |pi − p j | − |pl − pk | (3)

O(pi , p j , pk) = sgn

⎛
⎝det

⎡
⎣
xi yi 1
x j y j 1
xk yk 1

⎤
⎦

⎞
⎠ (4)

CH(PQ) = O(pi , p j , pl) > 0 ∧ O(p j , pl , pk) > 0

∧O(pl , pk, pi ) > 0 ∧ O(pk, pi , p j ) > 0 (5)

The certificate in (3) compares the lengths of the two
possible diagonals inside the quadrilateral PQ and from the
practical point of view; it makes perfect sense to simplify it
by comparing square lengths, therefore simplifying the com-
putation by removing the square root operations. The second
certificate in (5) is necessary because the check for a shorter
diagonal in any given quadrilateral is valid only if it is convex.
In order to determine if the convexity condition is met, we
need to compute the value of (4) for each triplet of vertices
in PQ . This equation determines the orientation (clockwise
or counterclockwise) of the vertex and its two neighbours.

Basic examples of the two cases described earlier are pro-
vided in Fig. 1 with a convex quadrilateral in Fig. 1a and
a non-convex quadrilateral in Fig. 1b. You can see that the
locally minimal (i.e. shorter) edge is chosen for the convex
configuration of points but not for the non-convex one.

Let us introduce point movement into the data structure
by defining that ∀pq ∈ P : pq(t) = (xq(t), yq(t)). We can
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(a) Convex quadrilateral (b) Nonconvex quadrilat-
eral

Fig. 1 Possible quadrilateral configurations

see that the certificates defined in the previous text are now
functions of time. If we limit the point movement so that
xq(t), yq(t) are polynomials, the certificates will be poly-
nomials of time as well. This restriction is quite common
in kinetic data structure research as it provides a reasonably
robust way of approximating more sophisticated trajectories
and a good platform for further analysis and comparisonwith
other kinetic data structures.

In the following text, we will illustrate the colinear and
topologic events in KLMT. Let us take a closer look at a
non-convex quadrilateral of four points just like the one we
describe in Fig. 1b except that the point p j will now move
along a linear trajectory as shown in Fig. 2. As we can see,
the edge pk pl is clearly shorter than the edge pi p j from the
very start of our analysis as shown in Fig. 2a. As described
in the previous text, we can see that the common edge shared
by the two triangles cannot be swapped because the quadri-
lateral is non-convex. Due to the movement of p j , we can
see in Fig. 2b that at a certain point in time, points p j , pk, pl
become colinear and the quadrilateral becomes convex. We
will call this type of event a colinear event.However, the edge
still cannot be swapped because the quadrilateral is now in a
singular state and the edge should formally appear immedi-
ately after p j moves away from the line pk pl , the result of
this edge swap is shown in Fig. 2b, this is called a topologic
event which is in this particular case represented by a swap
of the diagonal in the quadrilateral.

Note that the colinear event is an internal event because it
does not change the topology of the data structure but is nec-
essary to be processed in order to schedule and de-schedule
the topologic events, which, on the other hand, are external
events because they result in topology changes represented
by the edge swaps as described above. Generally, the two
types of events are not directly tied together, and it is not
necessary for the edge swap to follow immediately after the
colinear event, and in some configurations, it will not happen
at all. An example of such a configuration is shown in Fig. 3.
The length of the edge pi p j is shorter than the length of edge
pk pl for any value of time. In this case, the colinear events
will be scheduled but no topologic change will occur in the
triangulation.

Figure 4 shows another significant case. We can see that
in the initial state, the length of edge pi p j is shorter than
pk pl and the quadrilateral is non-convex. Due to the move-
ment of p j , the two edges become of equal length when p j

reaches the position of p′
j and finally pi p j becomes longer

than pk pl , here represented by the position of p′′
j . During this

whole period of time, the quadrilateral remains non-convex
and therefore no topology change can be performed on the
triangulation even though a topologic event would be sched-
uled at the time when p j = p′

j .

2.2 Combinatorial analysis

We shall now explore the basic kinetic data structure proper-
ties of KLMT as defined in the previous section. First, let us
consider the responsiveness and compactness.

Lemma 1 KLMT is responsive.

Proof There are two different types of events in KLMT: col-
inear and edge swap. To prove that KLMT is responsive,
we need to show that handling them will take only a small
amount of time:

Colinear Since this event is internal, it will not directly
affect the data structure in any way. However, if the
affected quadrilateral was non-convex prior to this event,
it becomes convex and therefore valid for topologic

Fig. 2 Events in KLMT

(a) Initial configuration (b) Colinear event occurs (c) Topologic event oc-
curs
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Fig. 3 Non-convex
configuration without external
events

(a) Initial configuration (b) Colinear event occurs (c) Convex quadrilateral 

Fig. 4 Non-local case of KLMT

events. Because of that, we need to schedule up to one
topologic event for the newly convex quadrilateral. And
vice versa if the quadrilateral was convex prior to the col-
inear event, we need to de-schedule up to one topologic
event that might have been scheduled for the quadrilat-
eral.
Edge Swap This is an external event because swapping
the inner edge in a convex quadrilateral will change the
topology of KLMT. The result of the edge swap is up to
5 new quadrilaterals being formed in the triangulation.
(One is created by the edge swap, and the other four
may be created from the newly created triangles and the
triangles directly adjacent to the quadrilateral.) For each
of those quadrilaterals we need to schedule up to one
new event (either colinear or topologic, depending on the
actual current state of the quadrilateral). Also, up to four
events may be de-scheduled, because the quadrilaterals
that were used to compute them do not exist any more as
a result of the edge swap.

Each of the aforementioned operations is independent on the
total number of points in the triangulation; therefore, we can
see that the amount of time required to handle the events in
KLMT is O(1). Also, the topologic changes performed as a
result of handling an external event are local and will only
affect the related quadrilateral. �

Note that the movement of points may affect the topology
of multiple quadrilaterals at the same time. If such circum-
stances occur, it is vital to know that every single topologic
change that is to happen in the data structure will be accom-
panied by a corresponding event and every single processed

topologic event will result in one change in topology of the
data structure.

Lemma 2 KLMT is compact.

Proof To prove that KLMT is compact, we need to show that
the number of events ever present in the queue is small. There
is only a constant number of events that can be scheduled for
any given edge present in the triangulation represented by the
roots of the certificate function for the given quadrilateral.
When an edge is removed from the triangulation as a result
of handling a topologic event, the connected events are also
removed from the event priority queue.And since the number
of edges in K LMT (P); P = {p1, p2, . . . , pn} is O(n) at
any given time, we can see that KLMT is compact. �

Before we proceed to the evaluation of KLMT efficiency,
we need to be able to determine the worst-case number of
external events this data structure can process during its
lifetime. Let us state that λs(n) is the maximum length of
(n, s)-Davenport–Schinzel sequence (see [2]).

As shown in [2], the number of topologic events in a
kineticDelaunay triangulation in two-dimensional Euclidean
space is bounded by O(n2λs(n)), if each subset of P of size
4 generates at most a constant number s of external events.
The same proof is also valid for KLMT: since we limited the
movement of the points in P to polynomial trajectories, (3)
will be a polynomial and therefore provide a constant num-
ber of roots (which correspond with the topologic events).
We can also see that similarly to KDT, the topologic events
are also bound to a single quadrilateral and leave its bounding
edges unchanged.

Corollary 1 The upper bound on the total number of external
(edge swap) events in KLMT(P) is O(n2λs(n)).

Theorem 2 The number of internal (colinear) events pro-
cessed by KLMT(P) is bounded by O(n2λs(n)).

Proof As stated in the previous text, internal events do not
change the topology of the kinetic data structure by their def-
inition. Therefore, if the number of possible internal events
on each quadrilateral is constant, the total number of inter-
nal events is bounded by the number of external events in the
data structure because new quadrilaterals can only be formed
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Fig. 5 Non-local case of KLMT

as a result of handling external (edge swap) events. We can
see in (5) that the number of internal events for any given
quadrilateral is equal to the number of roots of a polynomial
equation, therefore independent of the size of P and therefore
constant. �

It was also shown in [1] that the convex hull of a moving
point set may change Θ(n2) times, which implies a lower
bound of Ω(n2) topologic events in any triangulation con-
structed over a set of moving points.

Lemma 3 KLMT is strongly efficient.

Proof From Theorem 2 we can see that the upper bounds
on internal (colinear) and external (topologic) events are
O(n2λs(n)). Corollary 1 shows that the number of exter-
nal events in KLMT(P) is bounded by O(n2λs(n)). Let us
write the ratio of the number of all processed events to the
number of processed external events as follows:

O(n2λs(n)) + O(n2λs(n))

O(n2λs(n))
= O(n2λs(n))

O(n2λs(n))

O(n2λs(n))

O(n2λs(n))
⊂ O(logε n)

We can see that the ratio is small as defined in the previous
text and therefore KLMT(P) is strongly efficient. �

Lemma 4 KLMT is not local.

Proof Consider the triangulation in Fig. 5—all the points in
KLMT but q are placed on a circular arc. The triangulation
is locally minimal, and no edge swaps can be performed
because the quadrilaterals containing q are non-convex, yet
q is connected to all other points in P , the number of which
is bounded by Θ(n). Therefore, q is included in every single
certificate that will occur in KLMT(P) and any change of q
will affect all the enqueued certificates. �

3 Comparison to kinetic Delaunay
triangulation

3.1 Basic properties comparison

As shown in [3], kinetic Delaunay triangulation (KDT) has
the following properties:

– KDT is responsive—managing an event takes almost
constant time for any event.

– KDT is strongly efficient—only events of one type exist,
and thus, all the events are external. Therefore, the ratio
of all processed events to processed external events is
Θ(1).

– KDT is not local—each moving point may be connected
to a relatively large number of neighbours and therefore
participate in a relatively large number of events.

– KDT is compact—although the precise relations between
the size of the input set, the allowed type ofmovement and
the size of the event queue are not known, compactness
of KDT has been shown—see [2,13].

As we can see, both triangulations are responsive, strongly
efficient, compact and non-local. In the case of the strong
efficiency, it is worth noting that in the case of KDT, there are
only external events of one type (cocircular events), whereas
in KLMT there are both external (topologic) and internal
(colinear) events, but we have shown that the ratio between
internal and external events in this data structure is small.

3.2 Combinatorial comparison

It has been shown in [2] that themaximumnumber of external
events in KDT(P) is O(ndλs(n)) using the same notation we
used in the proof of Theorem 2. Let us explore the following
lemma, which was first published in [18].

Lemma 5 The computation of certificates for external events
in KDT(P) is at least as computationally complex as for
KLMT(P) constructed over the same set of kinetic points
moving along polynomial trajectories of degree up to R > 0,
where R ∈ N.

Proof We can see from (1) that in order to compute the
predicates for KDT(P), we need to search for the roots of
polynomials of time which are of degree up to 4R. There are
two different types of events in KLMT(P); from Eq. (3) we
can see that in case of external events, we only need to solve
polynomials of degree up to 2R; Eq. (5) shows that the com-
putation of internal events requires us to solve polynomials
of degree up to 2R. �

From the practical point of view, it may be worth men-
tioning that if the points move along linear trajectories as
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stated before, their time-dependent coordinates are described
by polynomials xi (t) and yi (t) of degree one. This results
in solving quadratic equations for KLMT and fourth-degree
polynomials for KDT. Note that solving fourth-degree poly-
nomials usually cannot be done analytically which further
increases the overall complexity of maintaining the KDT,
especiallywhen compared toKLMT.Generally speaking, for
polynomial trajectories of any degree, the resulting certificate
computation in KLMT will require us to solve polynomials
of lower degree than the same task performed with KDT.

Theorem 3 Maintaining KDT(P) is at least as complex as
maintaining KLMT(P) over the same set of points moving
along linear trajectories in the Euclidean plane.

Proof Since handling each event takes constant time (topo-
logic and colinear) in both KDT(P) and KLMT(P), we need
to show that the number of processed events in KDT(P) is at
least as high as the number of processed events in KLMT(P).
We have shown that the maximum processed number of
events of any type in both the considered data structures is
O(ndλs(n)). For example, if we limit the movement of the
points in P to linear trajectories in the Euclidean plane, we
can see that the maximum number of roots of (1) is 4 and
because λ4(n) = Θ(n · 2α(n)), the upper bound of topologic
events in KDT(P) is O(n3 · 2α(n)), where α(n) is the inverse
Ackermann function.

Similarly, we can see that the maximum number of roots
of (3) and of (5) is 2 and since λ2(n) = 2n − 1, the upper
bound on both the number of topologic and colinear events in
KLMT(P) is O(n3). We can see that the task of maintaining
the two compared kinetic data structures is asymptotically
the same and equal to O(n3) in both cases. However, since
n · 2α(n) > 2n − 1; ∀n > 0, we can see that the upper
bound on the number of processed events inKDT(P) is in fact
higher than the upper bound on the total number of events in
KLMT(P). �

4 Conclusion

Using the numerical apparatus published in [24], we have
shown that the bounds on the number of events processed
during the life cycle of KLMT in two-dimensional Euclidean
space are O(n2λs(n)), which is very similar to the case of
KDT. However, the certificates used to compute the events
are generally simpler in the case of KLMT which in turn
results in tighter bounds on the number of events. Given the
example of linear trajectories in the Euclidean plane, the total
number of events in KLMT is bounded by O(n3) which is
smaller for any values of n than O(n3 · 2α(n)), the respective
bound for the number of events in KDT. All the discussed
events can be handled in O(1), and therefore, the manage-
ment of KLMT should be computationally simpler than the

management of KDT. From the practical point of view, it is
necessary to note the fact that the management of KDT only
requires handling of one type of external events, while the
management of KLMT requires us to handle internal events
as well and this may lead to increased numerical instability.
The practical comparison of the two data structures should
be done as part of our future work.
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