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Abstract
Point cloud registration is an essential step in the process of 3D reconstruction. Considering that the surface of rock mass
is complex and mainly composed of planes, in this paper, we introduce a novel and automatic 3D registration method for
rock mass point clouds based on plane detection and polygon matching. Firstly, planes are detected from rock mass point
clouds by an efficient tripe-region growing method, and then, the corresponding polygons are calculated by concave hull
method. Secondly, PCA-based polygon matching procedure is used for coarse registration. Finally, ICP method is applied to
fine registration. The performance of this method was tested in different rock mass point clouds. Compared with the existing
methods, the proposed method demonstrates a reliable and stable solution for accurately registering in rock mass scenes.

Keywords Automatic registration · Rock mass · Plane detection · Polygon matching

1 Introduction

Terrestrial laser scanning (TLS) can deliver dense and accu-
rate 3D point clouds [1,2] and is widely used in many
scientific fields including 3D model reconstruction [3], 3D
object recognition [4,5] and cultural heritage management
[6]. TLS has limited measurement range, and thus, in order
to obtain full coverage of a scene multiple scans from dif-
ferent viewpoints are necessary. Then, multiple point clouds
must be transformed into a common coordinate system in a
registration step. Hence, point cloud registration [7] is a key
component in processing 3D point clouds data.

In rock engineering, the technique of laser scanning can
rapidly obtain the spatial information about rock mass as
point clouds. The 3Dmodel of rock mass reconstructed from
point clouds is the initial input for numerical analysis meth-
ods, which can be efficiently used for the analysis of rock
stability [8,9]. As the important step of 3D reconstruction,
point cloud registration is also attracted increasing attention
in the field of rock engineering.

The purpose of registration is to find a transform matrix
between two point clouds scanned from different viewpoints.
Although several methods have been proposed for automatic
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registration [10], they still have more or less difficulties in
dealing with rock mass point clouds due to the unique geo-
metrical characteristics of rock mass, for example, different
orientations of discontinuities, irregular shapes and different
roughness. As shown in Fig. 1, rockmass discontinuities [11]
which are represented by planes are important features in
rock engineering. Recognition discontinuities can not only
be used for registration but also provide initial primitives
(planes) for 3D reconstruction of rock mass. Motivated by
this significant feature, plane information is more suitable
for registration between rock mass point clouds than other
features.

In this paper, we focus on 3D rigid registration for rock
mass point clouds. Firstly, planes are extracted in rock mass
point clouds using an efficient plane detection method. Then,
polygon matching procedure is used for coarse registration.
Finally, fine registration is carried out using ICP method. All
processes are optimized for the rock mass scenes. Our work
makes the following contributions:

– An efficient triple-region growing method has been pro-
posed for plane detection in rock mass point clouds. The
advantages of different kinds of region growing (RG)
are exploited in this algorithm. This integrated strategy
exhibits better adaptability to complex rock structures
and moreover achieves higher accuracy than existing
methods.
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Fig. 1 Examples of natural rock mass. The outer surfaces of natu-
rally formed rock masses are often discontinuities, comprised mainly
of planes

– Considering that the surface of the rock mass is mostly
composed of planes and these planes usually have dif-
ferent shapes, a fast coarse registration method has been
proposed for rock mass scenes based on plane detection
and polygon matching. In the final step, iterative clos-
est point (ICP) method is performed for fine registration.
This strategy is fast and more suitable for registration
between rock mass point clouds.

– We conduct experiments on different rock mass point
clouds to evaluate the proposed method. The experi-
mental result shows that our method can achieve better
performance than the other compared methods on regis-
tration between rock mass point clouds.

The paper is organized as follows. The related work
is introduced first in Sect. 2. Then, the details of pro-
posed method are thoroughly discussed in Sect. 3. Section 4
includes a discussion and the experimental results. Finally,
we summarize this paper and introduce the future work in
Sect. 5.

2 Related work

2.1 Registration

3D registration is a crucial step in 3D model reconstruc-
tion [12]. Point cloud registration can be divided into coarse

registration and fine registration. Coarse registration is used
to determine approximation of transformation between two
point clouds. Fine registration focuses on obtaining more
accurate transformation after coarse registration procedure.

There has been a large body of work surrounding auto-
matic coarse registration; most of them are feature-based
methods. Coarse registration is an approach to calculate
a rough initial transformation to increase the performance
of fine registration. Rusu et al. [13] proposed point fea-
ture histograms (FPFH) for registration. In this method,
a histograms-based descriptor is computed for each point
within point cloud, and then, the correspondences between
points from different shapes are found based on this fea-
ture. Yang et al. [14] used the standard scale-invariant feature
transform (SIFT) detector to calculate the transformation in
point clouds. Guo et al. [15] proposed a rotational projec-
tion statistics (RoPS) feature for point cloud registration and
3D object recognition. In addition, 4-points congruent sets
[16,17] and spatial curves [18] are also commonly used in
coarse registration.

Xian et al. [19] produced an imaged-basedmethod for reg-
istration. They first convert point clouds to images based on
spherical projection. The method of SIFT was used to search
corresponding relationship in images. Then, the correspon-
denceswere applied to coarse registration in 3D point clouds.
Recently, deep-learning based method has been proposed for
3D registration. Elbaz et al. [20] use a deep neural network
auto-encoder for registration in point clouds.

The iterative closest point (ICP) [21] is one of the most
extensive access to fine registration. As ICP is a local opti-
mization, this method requires a suitable initial alignment to
reduce the possibility of local minimum. Coarse registration
is designed to overcome this limitation by determine approx-
imation of transformation between two point clouds. What
is more, some variants of ICP are proposed to improve the
performance. Yang et al. [22] proposed Go-ICP to extend
ICP with global optimal guarantee by adopting a branch and
bound strategy. Pomerleau et al. [23] developed a fast ICP
algorithm for real-time registration to adapt to SLAM sce-
narios.

2.2 Plane detection

Researchers have proposed several algorithms on 3D plane
detection. According to the working principle, Hough trans-
form (HT), random sample consensus (RANSAC) and region
growing (RG) are the most popular approaches to detect
planes in point clouds. This section discusses these algo-
rithms and their various optimizations which are intended to
accelerate plane detection in point clouds.

HT is a robust method, and it uses the correspondence
between the object space and the parameter space to detect
parameterizedmodels. The high computation cost is themain
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Fig. 2 The framework of the proposedmethod. Firstly, planes and poly-
gons are extracted from rockmass point clouds. Secondly, polygon pairs
can be determined on 2D coordinate system. Then, the centroid of plane

point sets corresponding to polygonpairs is used as point pairs for coarse
registration. Finally, ICP method is used for fine registration

problem of this method. Borrmann et al. [24] compared four
different optimized HT using a new designed sphere accu-
mulator. The experimental results present that randomized
Hough transform (RHT) outperforms all the other HT meth-
ods for detecting an unknown number of planes in point
clouds. Limberger and Oliveira [25] proposed a 3D Kernel-
basedHough transform (KHT) based onOctree and principal
component analysis (PCA) for real-time plane detection.

RANSAC is another model-based algorithm for detection
of geometric primitives, and it is an interactive method to
detect an accurate plane based on probability. Schnabel et al.
[26] proposed two optimizations to improve the performance
of RANSAC: localized sampling strategy based on Octree
and optimized score function based on statistics. Thismethod
is widely used for plane detection in the field of building
modeling.

RG [27] is a segmentation method based on neighbor-
hood information. A seed region is first picked randomly in
this method, and then, a local search is performed to expand
regions when the neighbors satisfy some conditions. There-
fore, different seed regions and growing rules influence the
performance of RG greatly. In general, the distance from
point to plane and the mean square error (MSE) were fre-
quently adopted as growing rules. Traditional RG usually
used a single point as growing unit. Poppoinga et al. [28]
proposed an optimized RG method using an incremental
version for plane parameters computation. Holz and Behnke
[29] extended the point normals captured from point cloud as
growing rules. Apart from this rules, Xiao et al. [30] designed
an optimized method for coplanarity test. Wang et al. [31]
improved the performance by an optimized MSE calculation
in the field of autonomous navigation.

It is noted that the growing unit is a single point in the
above traditional RG methods, which is inefficiency in pro-
cessing massive point clouds. Xiao et al. [5] presented a
voxel-based RG for plane detection in range images. In this
approach, point cloud is divided into small voxel and each
voxel satisfied with some conditions is regarded as growing
unit. Gomes et al. [32] presented a PCA-based algorithm to
detect planar and near-planar surfaces automatically. Oesau
et al. [33] used K-nearest neighbor (KNN) to select seed
points.

3 Methodology

This section presents the details of our methodology that
is proposed for registration on rock mass point clouds. The
framework of the proposed method is illustrated in Fig. 2.
The method consists of three sequent steps: plane detection,
polygon matching and registration. The functionality of each
step will be briefly explained next.

3.1 Plane detection

Several traditional methods have been proposed to detect
plane in point clouds; however, few methods can be directly
used for rocky points due to the unique geometrical character-
istics of rock mass, such as irregular shapes, wide variations
in elevations, large variations in spatial extents and the dif-
ferent roughness. A novel triple-RG method is proposed in
order to detect planes in rock mass point clouds efficiently.
The pipeline of this method is shown in Fig. 3. Because the
normal vector of each point plays an important role in detect-
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Fig. 3 The pipeline of plane detection in rock mass point cloud. Firstly,
point cloud is divided into small voxels. Secondly, a point-based RG
(first) is used in each voxel for coplanarity test to generate growing
units. Then, a voxel-based RG (second) is used to detect planes based
on the growing units. Finally, a plane-based RG (3rd) is used to process
the remaining points for detecting accurate planes

ing planes with different orientation, the normal information
should be pre-calculated.

3.1.1 Triple-region growing

The engineering point clouds obtained from laser scanning
are always massive. Thus, voxel-based RG (second) is cho-
sen in our method, which is more efficient for plane detection
than othermethods. In thismethod, point cloud is first divided
into small voxels according to the bounding box and specified
resolution. Then, these voxels are regarded as growing units
and clustered into completed planes byRG.However, the per-
formance of this method is greatly influenced by the quality
of seed regions. In order to detect planes accurately, we only
choose the voxels which pass the coplanarity test as growing
units. Several methods have been applied to coplanarity test.
Xiao et al. [5] used the minimum eigenvalue calculated by
the covariance matrix. If the points within a voxel are copla-
nar, the minimum eigenvalue is getting closer to zero. Gigli
et al. [34] estimated the least-squares plane aiming at each
voxel and used the distance variance between the point and
fitting plane for coplanarity test. These methods above are
efficiency but not accuracy. As shown in Fig. 4, the red and
blue parts represent two different planes within a voxel. If a
voxel contains two or more similar plane (Fig. 4a), this voxel
should be removed according to the traditional coplanarity
test, which will make the final plane incomplete. If a voxel
contains one big planes and some small planes (Fig. 4b), this
voxel may be accepted, which will make the final plane inac-
curate. This two situation often occurs at the boundary of
planes and will reduce the accuracy of voxel-based RG.

For solving this problem, we add two RG procedures.
A point-based RG (1st) is used for coplanarity test, which
can detect a best plane as growing unit within each voxel.
RG acquires high-quality and accurate growing unit effi-
ciently, which can improve the performance of voxel-based
RG. After the procedure of voxel-based RG, the completed

Fig. 4 Example of traditional methods for coplanarity test. a and b
Point clouds within a voxel, which contains two different planes (red
and blue parts). The rejection of awill make the final plane incomplete;
the acceptance of b will make the final plane inaccurate

planes can be roughly detected, but some information loss
exists at the boundary of planes. Because one voxel may
not contain one plane, the smaller plane points should be
removed after coplanarity test. Meanwhile, because of the
different degrees of roughness in rock mass point clouds,
some points with large roughness may be discarded as well.
Thus, we use a plane-based RG (third) to deal with the
remaining points. As the information loss often appears at
interiors and the boundary of planes, we only consider the
points located on these regions. In triple RG, we use the dis-
tance and the angle between two planes (or between points
and planes) as growing rules. The angle between two planes
constrains the orientation of the plane. The distance between
two planes constrains the spacing between planes. Larger
thresholds can adapt to complex environments, but will cause
inaccuracy. The details of triple-region growing are shown in
Fig. 5. After the procedure of triple-region growing, planes
can be detected from rock mass point clouds efficiently and
accurately.

Algorithm 1 shows the common RG method to detect
planes. All the three RGmethods above can use Algorithm 1
to detect planes by setting different growing units, growing
rules and seed selection strategy, respectively.
The process of triple-RG method is as follows:

(1) Point cloud is first divided into small voxels according
to the bounding box and specified resolution, and the
neighborhood information is built at the same time. The
resolution should be set manually according to the point
density and scale of point cloud. Low-resolution settings
may cause unfavorable results that there are not enough
points to fit the plane in each voxel. Large resolution
settings may generate negative influences that there are
too many planes within one voxel to reduce accuracy.
According to our experience, the minimum resolution is
more than ten times the average distance of points.

(2) A point-based RG (1st) is used in each voxel for copla-
narity test to generate growing units. In each voxel,
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Fig. 5 The procedure of triple-region growing. a Raw rock mass point
cloud; b result of point-based RG (first) for generate growing units in
each voxel; c result of voxel-based RG (second) for detecting initial

planes; d result of plane-based RG (third) to process remaining points
around initial planes for detecting accurate planes

Algorithm 1 Algorithm for RG
1: seed = select seeds from growing_unit_set ;
2: Plane = calculate the plane parameter of seed;
3: push the seeds in seed_queue;
4: while seed_queue is not empty do
5: sp = pop seeds from seed_queue;
6: while all the neighbors of sp are processed do
7: np = select one neighbor of sp do not be processed.
8: dis = calculate the distance between Plane and np;
9: angle = calculate the angle between the normal vector of

Plane and np;
10: if dis < dmin and angle < θmin then
11: push the np in seed_queue;
12: Plane = Plane + np;
13: recalculate the parameter of Plane;
14: end if
15: end while
16: end while
17: return Plane;

we choose points close to the center of the voxel as
seed points. Then, we choose 3 non-coplanar points
to fit plane P and begin to grow. Suppose that Ax +
By + Cz + D = 0 represents the plane P equation.
pi = (pxi , pyi , pzi ) represents the point within the
voxel and ni = (nxi , nyi , nzi ) is the unit point normal
vector of pi . The distance and the angle between neigh-
borhood points and plane P are used as growing rules.
If the distance between the point pi and the P (Eq. 1)

is less than the threshold dmin, and the angle between
the plane normal vector (A, B,C) and point vector ni
(Eq. 2) is less than the threshold θmin, the point pi can
be added to the plane P . After all the points within this
voxel have been calculated, one completed plane can be
detected. This process repeats 3 times, andwe choose the
plane containing the largest number of points as grow-
ing unit in each voxel. According to our experience, the
distance threshold dmin does not exceed 0.1m and the
angle threshold θmin does not exceed 15◦. The result of
this process is shown in Fig. 5b.

∣
∣Apxi + Bpyi + Cpzi + D

∣
∣

√
A2 + B2 + C2

≤ dmin (1)

arccos

(∣
∣Anxi + Bnyi + Cnzi

∣
∣

√
A2 + B2 + C2

)

≤ θmin (2)

(3) A voxel-based RG (second) is used to detect planes
based on the growing units. This process repeats iter-
atively relied on neighborhood information. Each itera-
tion can detect one completed plane and contain three
steps: firstly, plane which contains the most number of
points is selected as seed plane. The distance and the
angle between two plane are used as growing rules.
Then, the neighbors of seed plane satisfied with the
growing rules are added together with the seed regions.
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Fig. 6 The method to compute polygon from point clouds

Finally, these neighbors become new seed regions to
expand regions until no voxels are added as seed regions.
The result of this process is shown in Fig. 5c.

(4) A plane-based RG (third) is used to detect accurate
planes. Firstly, we select a plane as seed plane at one
time from theplane setwhich is detected in the procedure
of voxel-based RG. Then, the points around seed plane
were verified to determine whether the point belongs to
this plane. In this process, we choose the same growing
rules as first RG. This process mainly focuses on the
remaining points, which mainly exist in rough regions.
Therefore, the threshold used in third RG should be
set manually according to the roughness. Experiments
demonstrate the threshold should be 50–100% greater
than the threshold used in first RG. The result of this
process is shown in Fig. 5d.

Algorithm 2 PCA-based Polygon Matching
Input: poly_source_set , poly_target_set ;
Output: relationship_set ;
1: for each polygon sourcei in poly_source_set from i to M do
2: calculate the centroid (Os) of sourcei (Eq3)
3: translate the coordinate center to the centroid (Eq5)
4: transform sourcei into a 2D coordinate (Eq6 - 7)
5: for each polygon target j in poly_target_set j to N do
6: Ssi = the area of sourcei
7: St j = the area of traget j
8: Ssi

⋂
t j = the area of intersections between sourcei and

target j
9: if Sr ≥ 90% (Eq8) then
10: save the corresponding relationship in relationship_set
11: remove target j from poly_target_set
12: end if
13: end for
14: end for
15: return relationship_set ;

3.1.2 Polygon detection

Because point clouds are unorganized and do not contain
topology information, it is inconvenient to find the corre-
spondences between two point clouds. Thus, we use polygon
based on planes which are detected after the procedure of
triple-region growing to find the correspondences between
two point clouds. Concave hull and convex hull are the most

commonly used to compute polygon from point clouds. As
shown in Fig. 6, the convex hull does not represent the bound-
aries of a given set of points well. Therefore, in this paper we
use concave hull to detect polygon from point clouds. Con-
cave hull method has been provided in the open-source point
cloud library (PCL). The parameter of alpha in this method is
determined as 0.5. Each polygon contains some ordered 3D
points which approximately represent the boundary shape of
a planar point cloud.

3.2 PCA-based polygonmatching

In order to find the correspondences between point clouds,
PCA-based polygon matching method is proposed in this
paper. Algorithm 2 shows the PCA-based polygonmatching.
Firstly,we choose a polygon sourcei from poly_source_set
and then calculate the centroid Os by Eq. 3. Then, we trans-
late the coordinate center to the centroid by Eq. 4. Suppose
that sourcei contains n points, pi is the coordinates of one
points in sourcei .

Os = 1

n

n
∑

i=1

pi (3)

pi = pi − Os (i ∈ [1, n]) (4)

Secondly, we transform source into a 2D coordinate sys-
tem using PCA. Because the planes and polygon detected
from point clouds are of approximately two-dimensional
shapes, finding correspondences between polygons in 2D
coordinate system is more efficient and concise. As one
of the most popular techniques to reduce dimension, PCA
is applied. We assemble the covariance matrix Σ by Eq.
5. λ j and v j are the eigenvalues and eigenvectors of Σ

(λ0 < λ1 < λ2). Because the polygon is a 2D shape, the
minimum eigenvalue λ0 is close to zero. Suppose that the
matrix T = {v1, v2}, then the 3D points in source can be
transformed to 2D coordinate system by Eq. 7. In rock mass
point clouds, most of the planes are irregular. Therefore, the
two different orthogonal axes are easy to distinguish accord-
ing to eigenvalues.

Σ = 1

n − 1

n
∑

i=1

pi p
T
i (5)

Σ · v j = λ j · v j , j ∈ {0, 1, 2} (6)

pi_2d = pi ∗ T (i ∈ [1, n]) (7)

Finally, polygon matching can be implemented on 2D
coordinate system. As the planes in rock mass point clouds
are always irregular, the area of polygon is used to determine
the correspondences between polygons. As the correspond-
ing polygons may have similar number of points, we sequen-
tially select one polygon target j from poly_target_set if
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Fig. 7 Example of polygon matching

the difference between the number of points in sourcei and
target j is less than 20%.Then,we calculate the area (Ssi

⋂
t j )

of intersections between sourcei and target j . Two polygons
sourcei and target j are matched, if the similarity rate (Sr)
satisfies Eq. 8. As shown in Fig. 7, red and blue parts rep-
resent two different polygons, and the area of polygon can
help find the correct match. After traversing the polygons in
poly_source_set , all correct correspondences will be deter-
mined.

Sr = 2 ∗ Ssi
⋂

t j

Ssi + St j
≥ 90% (8)

3.3 Registration

After finished determining the correspondences between
polygons, a coarse registration will be implemented firstly
in the registration procedure. In this paper, we focus on
rigid registration, which has the 6DoF (6 degrees of free-

dom) transformation between the point clouds. Suppose that
source point cloud P contains K key-points (pk), and the
corresponding points are qk in target pointsQ. The aim is to
estimate the transformation T = [R|t], and then, we should
minimize an alignment error measure ε by Eq. 9, where R
(3DoF) is the rotation matrix and t is the translation matrix.
Quaternion q = {q0, v} = {q0, q1, q2, q3} is often used to
parameterize rotation matrix R by Eq. 10.

ε =
K

∑

k=1

‖qk − (Rpk + t)‖2 (9)

R =
⎡

⎣

1 − 2q22 − 2q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 1 − 2q21 − 2q23 2q2q3 + 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 1 − 2q21 − 2q23

⎤

⎦ (10)

In order to estimate the transformation, we should find
at least 3 corresponding points. Quaternion q = {q1, q2,
q3, q4} is often used to parameterize rotation matrix R. In
the proposed method, we use the best 3 point pairs to esti-
mate accurate transformation and we can also use all the
point pairs for more stable estimation. Firstly, three poly-
gon pairs which have top three similarity rates are selected
from relationship_set . Then, we can find the correspond-
ing plane point sets easily. Considering noise and equipment
errors, we use the centroid of point sets as corresponding
points, and then, the coarse transformation matrix can be
estimated according to these points. Finally, a typical ICP
method is performed for fine registration. ICP method has
been provided in the open-source PCL.

Fig. 8 Rock mass point clouds
data used for experimentation.
Data 1 contain small-scale rock
mass point clouds with small
rotation and translation matrix.
Data 2 contain middle-scale
point clouds with large rotation
matrix. Data 3 contain big-scale
rough rock mass point clouds
with partial overlap
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Fig. 9 Results achieved by using the proposed method with different
Gaussian noises. a–d Data 1 with different Gaussian noises varying
from δ = 0.00 to δ = 0.20; e–h registration results of a–d using the

proposedmethod. i–l data 2with different Gaussian noises varying from
δ = 0.00 to δ = 0.20;m–p registration results of i–l using the proposed
method

4 Experimental results and analysis

In order to test the performance of ourmethod, three different
rock mass data sets are assessed to validate the method, as
shown in Fig. 8. All the rock mass data come from a public
LiDAR data set at Rockbench [35]. Each of the rock mass
data has two rock mass point clouds: source_cloud (red part)
and target_cloud (blue part). Data 1 contain small-scale rock
mass point clouds with small rotation and translation matrix.
Data 2 contain middle-scale point clouds with large rotation
matrix.Data 3 contain big-scale rough rockmass point clouds
with partial overlap. Root mean square (RMS) error is com-
puted for evaluating the performance. Firstly, the robust test
is performed. Then, we compare the proposed method with
other registration method to validate the performance of our

method. For comparison, the terminating condition of ICP in
all comparisonmethods is set as the difference value of REM
error between two iterations which is less than 1.0e−5. Our
technique has been implemented in C++, and all the exper-
iments are carried out on PC with Intel I7-7700, 8GB RAM.

4.1 Robust test

In this part, we use data 1 and data 2 to validate the robust
of our method. We add Gaussian noise with three different
standard deviations (δ ∈ {0.10, 0.15, 0.20}) to target_cloud.
Meanwhile, we rotate and translate the target_cloud to dif-
ferent initial positions for testing the robust of our method.
The results are shown in Figs. 9 and 10. Because plane fea-
ture is a relatively stable feature in rock mass point clouds,

123



An automatic 3D registration method for rock mass point clouds based on plane detection and… 677

Fig. 10 Results achieved by using the proposed method with different initial position. a–d data 1 with different initial positions; e–h registration
results of a–d using the proposed method. i–l data 2 with different initial positions;m–p registration results of i–l using the proposed method

Table 1 Results achieved by using the proposed method with different
kinds of Gaussian noises and different initial positions

Different Gaussian noise Different initial position

δ RMS error (m) Position RMS error (m)

0.00 Fig. 9a 0.0051 Fig. 10a 0.0052

0.10 Fig. 9b 0.0271 Fig. 10b 0.0051

0.15 Fig. 9c 0.0312 Fig. 10c 0.0051

0.20 Fig. 9d 0.0337 Fig. 10d 0.0050

0.00 Fig. 9i 0.0051 Fig. 10i 0.0051

0.10 Fig. 9j 0.0338 Fig. 10j 0.0051

0.15 Fig. 9k 0.0378 Fig. 10k 0.0052

0.20 Fig. 9l 0.0410 Fig. 10l 0.0051

the initial position has low influence on performance of our
method. The RMS error is shown in Table 1, and the results

show that the proposed method has reliable performance for
registration between rock mass point clouds, which contain
different noises.

4.2 Comparison

4.2.1 Plane detection

Plane detection is an important part of this paper, and the
performance of our method highly depends on the quality of
planes in rock mass point clouds. Therefore, we first test the
performance of the plane detection. To validate the perfor-
mance of our method, we compared it with three different
plane detection methods. The first method (method I) is the
optimized RANSAC technique of Schnabel et al. [26]. The
performance of RANSAC was improved by the localized
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Fig. 11 Results of different plane detection methods on rock mass data 1 and data 2. Different colors represent different planes

Table 2 Accuracy and running
time of different plane detection
methods

Method Data1 Data2

Number of planes Accuracy (%) Time (s) Number of planes Accuracy (%) Time (s)

Our method 23 85.9 0.892 22 88.3 1.132

Method I 25 72.3 1.783 27 79.1 2.101

Method II 23 84.4 53.24 31 84.4 73.24

Method III 28 56.3 48.76 24 66.5 69.8

sampling strategy and was widely used in some open-source
and commercial softwares. The second method (method II)
[36] is an combination methods of HT and RG, which was
applied to rock mass point clouds for plane detection. The
third method (method III) is a simple RG method in open-
source PCL. Data 1 (17 planes) and Data 2 (20 planes) are
used for performance comparisons.

In order to find correct corresponding planes in the next
procedure, the boundary of planes should be precise. There-
fore, the detected planes should have clear boundary and do
not contain any other planes nor intersect with them. The
results of different method are shown in Fig. 11 and Table 2.
The experimental results show that RANSAC can detect
large-scale planes efficiently, but some mistakes are made
at the boundary and the rough regions, shown in Fig. 11b,
f. A completed plane is segmented into two or more planes
using the simple RG method because of the different rough-
ness and orientation in rock mass point cloud, shown in
Fig. 11d, h. Therefore, a single method is not sufficient for
plane detection from rock mass point clouds. As shown in
Fig. 11c, g, method II takes advantages of both HT and RG
methods which has a good performance on detecting planes
in rock mass point cloud, but the high computation cost in
the procedure of HT influences the efficiency of this algo-
rithm. Compared with other methods, the proposed method
can detect complete planes from rock mass point clouds effi-
ciently and accurately. The planes detected by our method
have clear boundary and can be used for polygon matching.

4.2.2 Registration

For performance comparisons, we used ICP and 3D normal
distribution transform (3D-NDT) implementation for regis-
tration in point clouds, and these methods are available in the
PCL [37]. What is more, a fast registration algorithm [19]
based on spherical projection and feature extraction (method
IV) is also used for comparisons. Both RMS error and run-
ning time of each method are computed for performance
evaluation.

The result of each method is shown in Fig. 12. As shown
in Fig. 12f, j, ICP is a local optimization and converges to a
local minimum on data 2. With a good initial position, ICP
can obtain an accurate transformation shown in Fig. 12b.
Thus, ICP cannot be directly used for rocky points. As shown
in Table 3, because of the procedure of coarse registration,
the proposed method can obtain an accurate initial position,
which can greatly improve the performance of our method.
Themethodof 3D-NDTcan improve the efficiency compared
with ICP in some scenes, but it still has many difficulties in
dealing with rock mass point clouds as shown in Fig. 12g.
Method IV has a better performance than the method of ICP
and 3D-NDT. This method converts point clouds to images
based on spherical projection. SIFT is used to find corre-
sponding relationship on images. Thus, color information is
needed in this method. However, in some complex scenes, it
is difficult to obtain accurate color information. In addition,
at the procedure of spherical projection, some useful infor-
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Fig. 12 Registration result of different methods on different rock mass data

Table 3 REM error and running
time of different registration
methods

Method REM error (m) Running time (s)

Data1 Data2 Data3 Data1 Data2 Data3

Proposed method 0.005 0.005 0.016 3.7 4.8 8.2

ICP 0.005 2.370 0.192 31.8 201.7 128.4

NDT 0.035 1.430 0.204 321.6 78.6 63.1

Method IV 0.017 0.005 0.037 27.5 21.3 33.5

mation may be removed. The RMS and running error are
shown in Table 3. The experimental results show that simple
transformation can be computed easily by all the methods.
The proposed method has the best performance for regis-
tration in dealing with rough rock mass point clouds such
as data 3. In summary, compared with other algorithms, the
proposed method can be applied to registration between rock
mass point cloud efficiently and accurately.

5 Conclusions and future work

This paper focuses on the field of 3D registration between
rock mass point clouds. In rock engineering, planes detected

from rock mass point clouds are one of the most important
features, which can be used for the analysis of rock stabil-
ity. Thus, a novel automatic registration method based on
plane detection and polygonmatching is introduced.A triple-
region growing method is applied to detect planes on rock
mass point clouds. This method is optimized for rock mass
scenes and can be directly used on complex rock mass point
clouds which contain irregular planes and different degrees
of roughness. As plane features are relatively stable features
in rock mass point clouds, the proposed method is robust
to noise. Thus, compared with the other registration meth-
ods, our method is more efficient and accurate in dealing
with rock mass point clouds. What is more, planes detected
from rock mass point clouds can provide the initial primi-
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Fig. 13 Rock mass model reconstructed from data 1. This reconstruc-
tion method is based on our registration method, and the result of plane
detection as shown in Fig. 5d

tives (planes) for 3D reconstruction of rock mass as shown in
Fig. 13. However, the proposed method is designed for rock
mass scenes and the irregular plane shapes are important cri-
terion to find the correspondences between point clouds. The
proposedmethodmay have low performance in other scenes.
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