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Abstract
Discriminative Correlation Filters (DCFs) have demonstrated excellent performance in visual object tracking. These methods
utilize a periodic assumption of the training samples to efficiently learn a classifier on image patches; unfortunately, this
also introduces unwanted boundary effects. Recently, Spatially Regularized Discriminative Correlation Filters (SRDCFs)
were proposed to resolve this issue by introducing penalization weights to the filter coefficients, thereby efficiently reducing
boundary effects by assigning higher weights to the background. However, due to the variable target scale, defining the
penalization ratio is non trivial; thus, it is possible to penalize the image content while also penalizing the background. In this
paper,we investigate SRDCFs and present a novel and efficient part-based tracking framework by exploitingmultiple SRDCFs.
Compared with existing trackers, the proposed method has several advantages. (1) We define multiple correlation filters to
extract features within the range of the object, thereby alleviating the boundary effect problem and avoiding penalization of
the target content. (2) Through the combination of cyclic object shifts with penalized filters to build part-based object trackers,
there is no need to divide training samples into parts. (3) Comprehensive comparisons demonstrate that our approach achieves
a performance equivalent to that of the baseline SRDCF tracker on a set of benchmark datasets, namely, OTB2013, OTB2015
and VOT2017. In addition, compared with other state-of-the-art trackers, our approach demonstrates superior performance.

Keywords Correlation filter tracking · Discriminative Correlation Filter · Part-based tracking · Spatially regularized filter

1 Introduction

Visual object tracking constitutes one of the most funda-
mental problems in the field of computer vision and has
numerous applications, such as human–computer interac-
tion, vehicle navigation and automatic surveillance. Generic
tracking problems are considered online learning tasks in
which the trajectory of a target is estimated within an image
sequence specified by a bounding box in its first frame. Such
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problems are very challenging because the target can undergo
numerous rapid variations, making it difficult to constrain.
Typical examples of nuisances thatmust be overcome include
scale variations, geometric deformations and occlusions.

Most state-of-the-art approaches [2,6,9,13,14,17,18,28,
29,46,53] tackle tracking problems by learning the discrim-
inative appearance model of the object target; this model is
known as a classifier. In these scenarios, the tracker finds
the target location that can differentiate the target from
the environment. Recently, Discriminative Correlation Fil-
ter (DCF)-based approaches [2,3,6,13,14,18,22,27,45] have
been shown to achieve a fairly rapid and robust track-
ing performance, and thus, they have attracted considerable
attention. The main idea of a DCF is to learn a correlation fil-
ter that is used to localize the object within the next frame by
identifying the location of the maximal correlation response
(detection step); then, the location of the object is updated
by computing a filter whose correlation with the training
templates closely resembles a hand-crafted target response
(training step), which is usually taken as a Gaussian centered
on the current tracking result [2].Nearly allDCF-based track-
ers utilize a periodic assumption of the training samples to
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improve the efficiencies of both the correlation filter training
and the target detection computation. However, this periodic
assumption also introduces unwanted boundary effects; as
a consequence, the learned filter usually contains substan-
tial amounts of background information, thereby leading to
problems with the growth of the search area [15].

Recently, Danelljan et al. [6] proposed the use of Spatially
Regularized Discriminative Correlation Filters (SRDCFs)
to alleviate the above-mentioned boundary problem. In the
SRDCF, a spatial regularization component is introduced to
penalize the correlation filter coefficients. Filter coefficients
residing in the background region are penalized by assign-
ing higher weights, thereby forcing the correlation filters to
concentrate on the centers of the training patches and signif-
icantly mitigating the emphasis on background information
in the learned classifier. However, there are two problems
with the SRDCF tracker. First, the penalization of filter
coefficients is a smoothly increasing function; therefore, the
boundary edge between the object and background becomes
confusing. However, the SRDCF simply regards the area
beyond 1/2 of the target range as the background, thereby
neglecting the boundary edge and inevitably penalizing the
target content while also penalizing the background. Second,
due to these penalized weights, the correlation filter cannot
extract complete features from the target area.

In addition to DCF-based trackers, other researchers
[18,23,28] have successfully applied part-based tracking
strategies to correlation filter tracking. Themain idea of part-
based tracking is to construct an object appearance model
based on multiple parts of an object. When an object is par-
tially occluded, the remaining visible parts can still provide
reliable cues for tracking. Therefore, part-based algorithms
are helpful for improving the robustness of the tracking per-
formance in the event of partial occlusions.

In this paper, we investigated the SRDCF framework and
observed that the maximal target response of the correlation
filter is actually mapped to the central location of the corre-
lation filter learning area, indicating that the maximal target
response can be used to determine the receptive field of the
correlation filter. Therefore, when the penalization ratio is
reasonably set, the correlation filter can extract features from
different parts of an object by altering the location mapping
to coincide with the maximal target response.

Based on the observations above, we present a novel
and efficient Part-basedSpatiallyRegularizedDiscriminative
Correlation Filters (PSRDCF) (Sect. 4). In contrast to previ-
ous part-based methods, in the PSRDCF, it is not necessary
to cut the object into parts to separately train the associated
correlation filters. In this work, we introduce an enhanced
spatial regularizer to penalize correlation filters correspond-
ing to their spatial location, making the learning area of the
correlation filters much smaller than the target area. Thus,
the convolutional features of different parts of an object can

Fig. 1 Comparisons of our approach with the baseline SRDCF tracker
and other state-of-the-art trackers in challenging situations of back-
ground clutter, partial occlusion, in-plane rotation, and motion blur on
the Box sequence [41]. The proposed PSRDCF incorporates the part-
based tracking strategy into regularized correlation filters to learn more
robust convolution features, thereby demonstrating a better tracking
performance

be learned by defining regression targets at different loca-
tions (Sects. 4.2 and 5.1). Additionally, the coefficients of
our correlation filters are learned over the augmented training
samples with a circulant structure using different regression
targets. Moreover, we assume that the target response for
eachfilter is aGaussian function.During the trackingprecess,
the maximal convolution response of all correlation filters is
recorded to estimate the state of the object in the current frame
(Sects. 5.2 and 5.3). We further justify the SRDCF observa-
tions in Sect. 4.1 by altering the traditional target response
in the training stage.

Figure 1 illustrates comparisons of our approach with the
baseline SRDCF tracker and several other state-of-the-art
trackers. In comparison with prior methods, our main contri-
butions are as follows.

– We define multiple correlation filters to extract features
within the range of the object; this approach not only
alleviates boundary effects but also avoids problems in
which the target content is penalized.

– To the best of our knowledge, we are the first to combine
cyclic shifts of an object with penalized filters to build
part-based trackers. Based on the circulant structure of
the training samples, there is noneed to divide the training
samples into parts.

– Our method shows excellent experimental results on
three large-scale benchmark datasets, namely, OTB-2013
with 50 sequences, OTB-2015 with 100 sequences and
VOT2017 with 60 sequences.
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2 Related work

Visual tracking has been studied extensively in the literature
[2,12,27]. In this section, we provide a brief overview of the
trackers that are the most relevant to our work.

2.1 Generative versus discriminative tracking

Based on the target appearance model, tracking algorithms
are categorized as either generative [20,25,30,46,47,52]
or discriminative [16,24,31,33,34,39,42,44,49]. Generative
trackers search for a potential target location that is most
similar in appearance to the generative model; therefore,
it employs information from both the target and the back-
ground. Matthews et al. [30] developed a template update
method that can reduce the drifting problem by aligning
with the first template. Kwon and Lee [20] decomposed the
observation model into multiple basic observation models
to cover a wide range of pose and illumination variations.
Zhang et al. [46] formulated an object tracking algorithm
in a particle filter framework as a multitask sparse learn-
ing problem, and the algorithm was extended by exploiting
the relationships between particles in their subsequent work
[47]. Li et al. [25] proposed a comprehensive spatial fea-
ture similarity strategy to compute the confidence levels of
target features that can be used to determine the current
position of a target among candidates during the tracking
process. Zhong et al. [52] performed visual tracking in a
novel weakly supervised learning scenario where labels but
no ground truth are provided by multiple imperfect ora-
cles and proposed a probabilistic approach to simultaneously
infer the most likely object position and the accuracy of each
tracker.

Compared to generative trackers, discriminative approa-
ches regard tracking as a classification problem in which the
tracked targets are distinguished from the background.Wang
et al. [39] combined multiple instance learning and Bayes’
theorem to take full advantage of the information regarding
the targets and their surrounding background. Mbelwa et al.
[31] utilized objectness embedded in smoothing stochastic
sampling and improved Tree coherency approximate near-
est neighbor to address the problem of abrupt motions. Wu
et al. [42] exploited scale invariant normalized rectangular
features extracted from the adaptive compressive domain
to improve the discriminative appearance model. Li et al.
[24] adopted a self-adaptive multi-feature fusion strategy to
adaptively adjust the joint weights of fused features. Zhao
et al. [49] exploited structural sparse representation-based
semi-supervised learning and edge detection to improve the
performance of the discriminative tracker.

2.2 Discriminative Correlation Filters

Recently, DCF-based approaches that exploit the properties
of circular correlation have been shown to achieve a fairly
rapid and robust tracking performance [1–3,6,13,14,18,22,
27,45], and thus, they have attracted considerable attention
with regard to visual tracking. Bolme et al. [3] initially pro-
posed theMinimumOutput Sum of Squared Error (MOSSE)
tracker to encode the target appearance by learning an adap-
tive correlation filter that is restricted to using a single
feature channel, typically a grayscale image. Henriques et al.
exploited the circulant structure of adjacent image patches
[13] and further improved the performance by using His-
togram of Oriented Gradients (HOG) features [14] or color
names [37]. To effectively handle variations in the scale and
the drifting problem, Bai et al. [1] fused heterogeneous cues
with different object scales to learn an adaptive set of filter-
ing templates; this approach alleviates the drifting problem
by carefully selecting object candidates in different situa-
tions to jointly capture the variations in the target appearance.
Each of these DCF-based trackers uses the Fast Fourier
Transform (FFT) to significantly reduce the computational
effort required for training and detection based on a periodic
assumption of the training samples. However, this periodic
assumption also introduces unwanted boundary responses
and severely degrades the trackers performance.

To investigate the problem of boundary effects encoun-
tered for single-channelDCFs,Galoogahi et al. [18] proposed
an approach that solves a constrained optimization prob-
lem using the Alternating Direction Method of Multipliers
(ADMM) to ensure a correct filter size; however, this method
is restricted to the use of single-channel features and is
therefore inapplicable for our purposes. Danelljan et al. [6]
extended the findings of previous research [18] and presented
the SRDCF; they introduced a spatial regularization compo-
nent to penalize the correlation filter coefficients depending
on their spatial location. Their work provided a notable
improvement through the learning of multi-channel filters
on multi-dimensional features (i.e., HOG features [5]). In
another study [2], Bili et al. argued that the correlation oper-
ation employed in DCFs represents only an approximation
of the actual sample translations; thus, the traditional use of
a single centered Gaussian as the target response can lead to
unrecoverable drift. To circumvent this problem, Bili et al.
presented a generic framework that adaptively changes the
target response from frame to frame; as a result, the tracker is
less sensitive to cases in which circular shifts do not reliably
approximate sample translations.

2.3 Part-based trackers

Many trackers divide an entire target into separate parts
instead of learning an appearancemodel to increase the track-

123



512 D. Zhang et al.

ing robustness against partial occlusions [4,10,21,23,28].
Felzenszwalb et al. first demonstrated that the deformable
parts model [8] can be employed to reliably detect objects
even under heavy nongrid transformations and partial occlu-
sions. Cehovin et al. [4] combined the global appearance
with local appearance based on object parts using a novel
coupled-layer visual model. Godec et al. [10] employed
rough segmentation to describe the global appearance of
a target. The proposed tracker includes an online feature
selecting step, which enables a different part of the local
appearance to be described by a different feature. Yang et
al. [43] proposed a novel attentional tracking method that
utilizes spatially attentional patches, which include salient
and discriminative target regions; this method was proved to
be robust on a large variety of real-world videos. Kwon et
al. [21] represented a nongrid target object by a number of
local patches with color histograms. Zhang et al. [48] tracked
targets by matching parts among multiple frames. Latent
structured learningwas used in another study [51] that simul-
taneously addressed the tracker drift and occlusion problems
and proposed a robust visual tracking algorithm via a patch-
based adaptive appearancemodel driven by local background
estimation. As demonstrated by the above-mentioned stud-
ies, part-based trackers can obtain more robust and accurate
tracking results. However, the computational complexity of
thesemethods is high; consequently, it is difficult formultiple
part-based trackers to run in real time.

Our work is similar to other studies [23,27,28], insomuch
that the part-based strategy is used in the correlation fil-
ter. However, in contrast to the direct use of an existing
correlation filter to preserve the object structure for object
appearance modeling, the above-mentioned approaches uti-
lize correlation filter-based methods as base trackers, which
take advantage of the model and perform tracking in the
Fourier domain under the tracking-by-detection framework
to significantly improve the tracking efficiency.

3 SRDCF

As discussed above, the way to handle the boundary effects
in SRDCF [6] is to introduce a spatial regularization com-
ponent as the penalty term of the correlation filter, enabling
the learned filter to be less sensitive to the boundary of the
sample.We provide some details of the training of the convo-
lution filters, and the term “convolution” is used because the
SRDCF is modeled with convolution instead of correlation
[15].

Let f be the convolution filters that are learned from a
set of training samples {(xk, yk)}tk=1 sampled at each frame
k = 1, 2, . . . , t . Here, t denotes the current frame num-
ber. Each training sample xk ∈ R

d×M×N consists of a
d-dimensional featuremap (responsemap)with a spatial size

of M × N . yk denotes the desired target response, which is
usually assumed to be a Gaussian function with a peak value
centered on the base patch [3].We denote the feature channel
l of xk by superscript xlk , and yk is the desired convolution
response corresponding to training sample xk . The objective
of SRDCF is to learn a correlation filter f l by minimizing
the following loss:

εt ( f ) =
t∑

k=1

αk

∥∥∥∥∥

d∑

l=1

xlk ∗ f l − yk

∥∥∥∥∥

2

+
d∑

l=1

‖ω · f l‖2. (1)

Here, ∗ denotes circular convolution generalized to multi-
channel signals via conventional means by computing inner
products. · denotes element-wisemultiplication. Theweights
αk > 0 determine the impact of each training sample. The
regularization weightsω depend on their spatial locations for
the importance of the filter coefficients. That is, coefficients
in f residing outside the target region are suppressed by
assigning higher weights in ω and vice versa. Hence, the
emphasis on background information at the detection stage
is reduced.

The loss function (Eq. (1)) can be efficiently minimized
in the Fourier domain by exploiting the scarcity of the
DFT coefficients ω̂. Instead of relying on approximate solu-
tions, Danelljan et al. [6] proposed an iterative minimization
scheme based on Gauss–Seidel, which converges to the
global minimum of Eq. (1). We refer readers to Ref. [6] for
a detailed description of the SRDCF training procedure.

4 Proposed approach

4.1 Motivation

DCFs, including SRDCFs [6], are always trained online
with samples collected during tracking. Thus, the potentially
large number of samples can become a computational bur-
den that directly conflicts with real-time requirements. For
this situation, Henriques et al. [13] introduced the concept
of dense sampling in which the negative samples are gener-
ated by circular shifts of the actual samples; this approach
not only obtains a sufficient number of training samples but
also makes the kernel matrix highly structured. SRDCFs still
utilize circular shifts to obtain a sufficient number of train-
ing samples, thereby enhancing the discriminative power of
the learned model by emphasizing the appearance informa-
tion within the target region. Figure 2 shows an example of
circular shifts in a SRDCF.

As shown in Fig. 2, the SRDCF simply penalizes the back-
ground area,which is beyond1/2 of the target size, to alleviate
the boundary effects. The penalization is a smoothly increas-
ing function; however, it inevitably affects the target content,
leading to unrecoverable drift in many realistic tracking sce-
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Fig. 2 Illustration of a circulant structure (with image sequence Soccer
as the original vector) employed in the SRDCF. The green rectangle
outlines the target, while the blue rectangle denotes the fixed learning
area of the regularized correlation filter in the SRDCF. Due to the effect
of penalization, the correlation filter concentrates only on the centers of
the training patches, greatly alleviating the boundary effects. However,
penalization also causes the correlation filter to extract only the local
features of the target in certain patches (denoted as the green dashed
rectangles)

narios, such as those involving fast motion and occlusions.
Therefore, instead of simply setting the penalization ratio to
1/2, we conduct an in-depth investigation into the relation-
ship between the learning area of the correlation filter and
the target response. The results show that the maximal target
response maps to the center of the learning area of the cor-
relation filter in the SRDCF (training step). Therefore, the
maximal target response can be used to determine the learn-
ing area of the correlation filter.When the spatial penalization
is sufficiently large, the correlation filter can be employed to
extract features from different parts of an object by altering
the location mapping to the maximal target response; this
approach coincides with the central tenet of training a part-
based tracker.

Accordingly, this paper presents a novel part-based track-
ing framework by exploiting SRDCFs to extract global object
features. In general, part-based trackers [23,28] use seg-
mented samples to train structural correlation filters to extract
the convolutional features of different target regions while
sharing the same regression target. However, we define mul-
tiple correlation filters to separately extract the features from
different parts of the object. In contrast to previous part-based
methods, there is no need to cut the object into parts, and the
training input is only an image sample with a circulant struc-
ture. Furthermore, a number of regression targets are defined

as the label function. All filters are learned over the training
sample with a circulant structure, and each filter corresponds
to a different regression target to concentrate on different
parts of the object. In this way, we can eliminate some redun-
dant computations. Furthermore, we establish the regression
response as a Gaussian function with a peak value placed at
different positions.

4.2 PSRDCFmodel

With the aforementioned observations, we apply the part-
based strategy to Eq. (1). Let the training sample xk contains
I reliable parts, fi denotes the correlation filters of the i th
part, and its corresponding regression target during train-
ing is predefined by yi . Then, the resulting loss function is
expressed as

min{ fi |i∈{1,2,...,I }}

I∑

i=1

εt ( fi ), (2)

where

εt ( fi ) =
t∑

k=1

αk‖
d∑

l=1

Xl
k ∗ f li − yki‖2 +

d∑

l=1

‖ω · f li ‖2. (3)

Here, Xl
k = C(xlk) denotes the circulant data matrix gener-

ated by xlk as the original vector. Other parameters have the
same meaning as in Eq. (1). By applying Parseval’s theorem
to Eq. (3), the filter sets { fi |i ∈ {1, 2, . . . , I }} can equiva-
lently be obtained by minimizing the resulting loss function
(Eq. (4)) over the Discrete Fourier Transformed (DFT) filters
f̂ .

εt ( f̂i ) =
t∑

k=1

αk

∥∥∥∥∥

d∑

l=1

D(x̂ lk) f̂
l
i − ŷki

∥∥∥∥∥

2

+
d∑

l=1

∥∥∥∥
C(ω̂)

MN
f̂ li

∥∥∥∥
2

.

(4)

Here, D(x̂) denotes the diagonal matrix with the elements
of vector x̂ in its diagonal and the hat denotes the DFT of
a function. We reformulate Eq. (4) to an equivalent real-
valued optimization problem via the method proposed in [6]
to ensure faster convergence.

The DFT of a real-valued matrix constructs a matrix that
conforms to theHermitian symmetric.According to the prop-
erty of the Hermitian symmetric, we construct a mapping to
real value the Hermitian symmetric. Let f̃ li = B f̂ li ; f̃ li is

real valued by the Hermitian symmetry of f̂ li . According to
the property of the Hermitian symmetric, it can be concluded
that B is an extremely sparse matrix that contains, at most,
two nonzero entries in each row. Moreover, its value is fixed
throughout the tracking procedure [6].
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Now, we utilize the real-valued matrix demonstrated
above to remapping Eq. (4) into real-valued space. To sim-
plify the optimization function,we define Dl

k = BD(x̂ lk)B
H ,

f̃ li = B f̂ li , ỹki = B ŷki and C = BC(ω̂)BH

MN

εt ( f̃i ) =
t∑

k=1

αk

∥∥∥∥∥

d∑

l=1

Dl
k f̃

l
i − ỹki

∥∥∥∥∥

2

+
d∑

l=1

‖C f̃ li ‖2. (5)

We formulate the multi-channel signals and the correspond-
ing filter matrices into a unified form

εt ( f̃i ) =
t∑

k=1

αk‖Dk f̃i − ỹki‖2 + ‖W f̃i‖2. (6)

Here, Dk = (D1
k , . . . , D

d
k ) andW are the dMN×dMN block

diagonal matrix with each diagonal equal to C.
Now, Eq. (6) can be minimized by a closed form

t∑

k=1

αk D
T
k Dk f̃i − αk D

T
k ỹki + WTW f̃i = 0. (7)

Finally, Eq. (7) can be solved by solving the normal equa-
tions At f̃i = b̃ti , where

At =
t∑

k=1

αk D
T
k Dk + WTW , (8)

b̃ti =
t∑

k=1

αk D
T
k ỹki . (9)

A direct application of a sparse solver to the normal equa-
tions At f̃i = b̃ti is computationally very demanding since
the block structure is not attainable due to the structure of
the regularization matrixWTW in Eq. (8). To solve the prob-
lem, Danelljan et al. [6] proposed an iterative approach based
on the Gauss–Seidel method to efficiently compute the filter
coefficients, and the construction of the weights ω ensures
that both conditions are satisfied. In this paper, we use the
same approach to optimize the problem.

Although the spatial regularizer is enhanced in this work,
the properties of the regularization matrix remain the same.
Thus, the Gauss–Seidel recursion will still converge to the
solution of At f̃i = b̃ti .

According to the Gauss–Seidel method, the matrix At is
decomposed into a lower triangular part Lt and a strictly
upper triangular part Ut such that At = Lt + Ut . The
algorithm then proceeds by solving the following triangu-
lar system for f̃i in each iteration j = 1, 2, . . .,

Lt f̃
j
i = b̃ti −Ut f̃

j+1
i . (10)

Fig. 3 Visualization of the filter coefficients trained using a the standard
DCF [14], b the SRDCF [6] and c the proposed PSRDCF

The Gauss–Seidel recursion (Eq. (10)) converges to the
solution of At f̃i = b̃ti whenever the matrix At is symmet-
ric and positive definite. Note that all the correlation filters
are computed according to Eq. (10) based on At , and each
correlation filter is computed independently.

Figure 3 illustrates the filters learned by optimizing the
standardDCF loss [14], the SRDCF loss (Eq. (1)) and the pro-
posed formulation (Eq. (2)) using the spatial regularization
weights ω. The top layer plots the learned filters correspond-
ing to the image region used for training. Here, the target
area is outlined by the green rectangle. In standard DCF
((a), without spatial regularization), high convolution scores
appear both in the target area and in the background area.
In (b) SRDCF and (c) the proposed PSRDCF, regularization
weights with a strong penalty on the background and high
convolutionvalues only appear around the central area,which
increases the discriminative power of the learned model by
emphasizing the appearance information within the target
region. Furthermore, the proposed PSRDCF extracts features
from different object parts, demonstrating robustness in par-
tial occlusions. From the figure, the penalized area of the
spatial regularization weights is larger than that of standard
SRDCF. In other words, the filters learned by our approach
contain less information within the background.

5 Proposed tracking framework

In this section, we introduce the overall tracking framework
according to the PSRDCF proposed in Sect. 4.2. We first
present an outline of the proposed tracker in Algorithm 1
and show the flowchart of our method in Fig. 4. More details
are provided below.

123
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Algorithm 1: PSRDCF algorithm

Input: Initial target state {(u, v)(0), scale(0)}
Output: Estimated target state {(u, v)(t), scale(t)};

Correlation filter sets { fi }i∈{1,2,...,I }
repeat

/*Model update*/
Crop out the sample x(t−1) according to {(u, v)(t−1),
scale(t−1)} in frame t − 1 and extract the features;
Update A(t−1) and b(t−1)i for fi using Eqs. (11) and (12);
j ←0;
repeat

Get the filters { fi }i∈{1,2,...,I } in frame t-1 using Eq.(10);
until j≥ NGS ;
/*Target estimation*/
Crop out the searching windows
{Js}s∈{ac |c=�(1−C)/2�,...,�(C−1)/2�} according to {(u, v)(t−1),
scale(t−1)} in frame t ;
Fast sub-grid detection by Eq. (13);

Get {(u, v)
(t)
i , score(t)

i , scale(t)
i }i∈{1,2,...,I } for each image

part using the peaks of all response maps;
Estimate the target state {(u, v)(t), scale(t)} using Eqs. (15),
(16) and (17);

until End of video sequences;

5.1 Correlation filter learning

During the training stage, the correlation filter fi is updated
by extracting a new training sample xt centered at the target
location and combinedwith the target responses yti (a.k.a the
label function [3]). Here, t denotes the current frame number
and i denotes the index of the i th filter. We then update At

and bti in Eqs. (8) and (9) with a learning rate γ ≥ 0. In fact,
we replace the weight coefficient αk for each frame with a
fixed update rate γ .

At = (1 − γ )At−1 + γ (DT
t Dt + WTW ) (11)

bti = (1 − γ )b(t−1)i + γ DT
t ỹti (12)

In the first frame, we set A1 = DT
1 D1 + WTW and

b1i = DT
1 ỹ1i . Note that WTW is a regularization matrix,

which is previously computed once for the entire sequence,
and all the regression targets are also previously computed.
After the model update (Eqs. (8) and (9)), we perform a fixed
number NGS of Gauss–Seidel iterations (Eq. (10)) per frame
to compute the new filter f̃i .

5.2 Detection

At the detection stage, the location of the target in a new frame
t is estimated by applying the filter f̂t−1 obtained in the t −1
frame. To handle the problem of scale variation, we construct
a pyramid with different resolutions around the target. Let
P×Q denote the target size in a test frame andC be the num-
ber of scales S = {ac|c = �(1 − C)/2�, . . . , �(C − 1)/2�}.
Similar to [29], for each s ∈ S, we extracted a sample patch
Js of size sP × sQ centered at the previous target location.
ac is denoted as the scale incremental factor between feature
layers.

Danelljan et al. [6] employed the fast sub-grid detec-
tion strategy to efficiently compute pixel-dense convolution
responses and demonstrated exceptional results. We follow
the same strategy here.

Let r̂i :=F {R fi (J )} = ∑d
l=1 Ĵ

l · f̂ li be the DFT of the
convolution responses R fi (J ) evaluated at sample patch J .
Then, the convolution responses ri (u, v) at the continuous
location (u, v) ∈ [0, M) × [0, N ) in J are interpolated as

ri (u, v) = 1

MN

M−1∑

m=0

N−1∑

n=0

r̂i (m, n)e j2π( m
M u+ n

N v); (13)

here, j denotes the imaginary unit.

Fig. 4 Flowchart of the
proposed tracking algorithm.
Our tracking task is decomposed
into training the correlation filter
and updating the model. Each
correlation filter independently
tracks the corresponding part
and outputs a confidence map,
and we track the whole target by
combining the confidence maps
of individual parts using Eqs.
(11) and (12)
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To find the sub-grid location (u(∗), v(∗))i ∈ Ω , which
corresponds to the maximal convolution response. We first
evaluated the sample patch Js at all grid locations using

R fi (Js) = F−1{∑d
l=1 Ĵs

l · f̂ li }; here, · denotes point-wise
multiplication, theˆdenotes the DFT of a function and F−1

denotes the inverse DFT. Then, Eq. (13) is iteratively max-
imized using Newton’s method by starting at the location
(u(0), v(0))i . The gradient and Hessian in each iteration are
computed by analytically differentiating Eq. (13). The sub-
grid interpolation procedure is applied for each image patch
independently. Finally, we can obtain the maximum convo-
lution response of all the image patches as follows

scorei = max
s∈S max

(u,v)∈Ω
rsi (u, v). (14)

The part level with the highest maximal convolution
response is then used to update target location and scale.
The target location (u, v)i and scale scalei of i th part can be
obtained by argmax(u,v) scorei and argmaxs scorei , respec-
tively.

5.3 Target state estimation

We use the fast target estimation method demonstrated in
[29] to estimate the state of the target, including position
prediction and scale estimation. Given I image parts of sam-
ple xt in the frame t , as discussed above, we can obtain a set
{score(t)

i , (u, v)
(t)
i , scale(t)

i }i∈{1,2,...,I }.

(a) Position prediction. Most of the shifted image patches
should move in the same way between two consecutive
samples. Therefore, we chose the translation distance
as the criterion for object position estimation. First, n
parts with large motions between adjacent images are
excluded, and anewset {score(t)

j , (u, v)
(t)
j } j∈{1,2,...,(I−n)}

is produced. Then, the translation of the target object
could be calculated as follows:

trans(t) =
∑I−n

j score(t)
j trans(t)

j
∑I−n

j score(t)
j

, (15)

where trans(t)
j = (u, v)

(t)
j − (u, v)

(t−1)
j , which shows

that more robust tracking parts with higher detection
scores have a greater effect on the target position esti-
mation. Finally, the position of the target in frame t is
denoted as

(u, v)(t) = (u, v)(t−1) + trans(t). (16)

(b) Scale estimation. At the detection stage, we determine
the scale of each image part according to the maxi-
mal convolution response scorei . In general, the scale

difference between two adjacent image patches is typ-
ically smaller than its translation. Therefore, n′ parts
with the largest scale difference are excluded, and a new
set {scale(t)

k }k∈{1,2,...,(I−n′)} is produced. The average of
scales of all the remaining parts is taken as the scale of
sample xt , The scale of the target object could be calcu-
lated as follows:

scalet =
∑I−n′

k scale(t)
k

I − n′ . (17)

6 Experiments

To demonstrate the performance of the proposed approach,
we extensively evaluate our tracker on three challenging
benchmark datasets, namely, OTB2013 [40], OTB2015 [41]
and VOT2017 [19]. OTB2013 [40] contains 50 fully anno-
tated sequences that are collected from commonly used
tracking sequences, while OTB2015 [41] is an extension
of OTB2013 and contains 100 video sequences. VOT2017
[19] is the last version of the visual object tracking toolkit
which consists of 60 challenging videos that are automati-
cally selected from a pool of 356 sequences.

For all three datasets, we follow the evaluation protocol
established by the original authors and use the same parame-
ter values for all the sequences and all sensitivity analyses to
ensure a fair comparison. The experiments are implemented
inMATLAB on an AMDRyzen 5 1600X 3.6 GHz CPUwith
16 GB RAM.

6.1 Experimental setup

6.1.1 Comparison scenarios

We conduct four experiments to validate the performance of
the proposed approach.

– The first experiment is conducted to analyze the influence
of the number of parts on the tracking performance, and
we choose the best parameter setup for the following
experiments.

– In the second experiment, we perform ablation analyses
in accordance with different components of the pro-
posed method and compare the results with the baseline
approach.

– In the third experiment, we analyze the effectiveness
of removing boundary effects with several challenging
sequences; a comparison against the baseline approach
is given.

– Finally, in the last experiment, comprehensive analyses
are executed and we compare our tracker with state-of-
the-art trackers.
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Table 1 Exploration of different
numbers of individual parts for
the tracking performance

I OTB2013 OTB2015 VOT2017

DP OP FPS DP OP FPS Acc. Robust. EAO FPS

2 74.73 72.48 2.65 72.75 69.23 2.59 0.45 1.23 0.11 3.56

3 84.54 81.20 2.25 80.60 75.61 2.19 0.47 1.04 0.14 3.53

4 80.28 77.93 1.98 77.69 73.88 1.93 0.45 0.86 0.11 2.15

The best values are highlighted in bold

6.1.2 Performance evaluation methodology

For the two OTB datasets, we evaluate our tracking perfor-
mance by threemetrics, namely, theDistance Precision (DP),
Overlap Precision (OP) and Center Location Error (CLE).
The DP is computed as the relative number of frames in the
sequence in which the CLE is smaller than a certain thresh-
old, the OP is defined as the percentage of frames in which
the bounding box overlap surpasses a threshold, and the CLE
is defined as the average Euclidean distance between the cen-
ter locations of the tracked targets and the manually labeled
ground truth [40]. We present the results using the average
OP, DP and CLE over all 50 and 100 sequences. In addition,
following the standard evaluation strategy, we provide pre-
cision and success plots of the One-Pass Evaluation (OPE),
and we use the Area Under the Curve (AUC) of each plot to
rank the trackers.

The tracking performance for the VOT dataset is eval-
uated in terms of the accuracy (overlap with the ground
truth), robustness (failure rate) and Expected Average Over-
lap (EAO). Furthermore, we provide our tracking speed on
all three datasets.

6.1.3 Implementation details

(a) Spatial regularization parameter. In the proposed algo-
rithm, the weight function ω is constructed by starting
from a quadratic functionω(m, n) = μ+η[(m/ζ P)2+
(n/ζQ)2] with the minimum located at the sample cen-
ter. P × Q denotes the target size (see Sect. 5.2), while
μ and η are parameters. The minimum value of ω is set
toμ=0.1, and the impact of the regularizer is set to η=3.
In contrast to similar work [6], we introduce a stronger
constraint ζ to penalize the filter coefficients, making
the response maps smaller. Here, we set ζ=0.3. Further-
more, we simply remove all DFT coefficients smaller
than a certain threshold (in practice, the threshold is set
to 0.05) to ensure a sparse spectrum ω̂, and all parame-
ters for the baseline trackers are set to the same values
presented by the original authors.

(b) Feature representation. Similar to recent DCF-based
trackers [14,22], we use HOG features for image repre-
sentation with a cell size of 4 × 4 pixels. The samples
are presented by a square S × β grid of cells, where S

represents the target area and β (set as 4×4) represents
the ratio of the search area to the target area. Finally, to
alleviate boundary effects, the samples are multiplied
by a Hann window [14].

(c) Label function.At the training stage, each training sam-
ple is assigned a label. In the proposed approach, a
standard regression response matrix (a.k.a label func-
tion) is set to a Gaussian function, the peak value of
which is placed at the target center location [3], and
the matrix is cyclically shifted to construct different
response maps for each shifted image patch. The step
size of the cyclic shift is 1/4 the size of the sample area.
Moreover, the number of response maps is set to 3, and
the number of excluded samples n is set as 1.

(d) Other parameters. The learning rate γ and the num-
ber of Gauss–Seidel iterations NGS are set to the same
values as in the SRDCF [6] (γ = 0.025, NGS = 4).

6.2 Exploration study

In this section, we focus on an investigation of good practices
for obtaining better tracking results. Because we propose a
novel object partition approach in Sect. 4.2, the number of
individual parts is the most critical parameter influencing
the tracking performance. Therefore, we evaluate its effects
when its value varies as I = 2, 3, 4. Table 1 reports the results
on the three challenging datasets.

As shown in Table 1, the best tracking results are achieved
when the number of individual parts is set to I = 3. There-
fore, we choose I = 3 as good practice in the following
experiments.

6.3 Ablation analyses

In this experiment, ablation analyses are performed to illus-
trate the effectiveness of the proposed components. To verify
the contribution from each component in our algorithm, we
implement and evaluate three variations in our approach. At
first, the basic SRDCF [6] is implemented so that none of the
proposed components are utilized. Then, to verify the supe-
riority of the proposed object partition strategy, we apply it
to the baseline and combine different target responses with
two casually usedmerging algorithms, namely, maxmerging
[16] and average merging [7]. Finally, our part-based track-
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Table 2 Ablation analysis of
the proposed method with the
baseline tracker

OTB2013 OTB2015 VOT2017

DP OP DP OP Accu. Robust. EAO FPS

Basic SRDCF [6] 83.80 78.10 78.80 73.10 0.46 0.96 0.13 2.13

Part+Max [16] 83.80 78.70 79.60 74.20 0.45 1.02 0.13 3.50

Part+Average [7] 84.24 80.27 80.71 75.48 0.45 1.02 0.13 3.43

Part+TSE(OUR) 84.54 81.20 80.60 75.61 0.47 1.04 0.14 3.53

The best values are highlighted in bold

ing strategy is employed in combination with the adapted
Target State Estimation (TSE) approach.

Table 2 shows the results of the analyses onOTB2013 [40],
OTB2015 [41] and VOT2017 [19]. Evidently, all of the vari-
ations are helpful for improving the tracking performance.
Specifically, the TSE algorithm gains the best performance
among almost all evaluation criteria, thereby demonstrating
the effectiveness of our approach.

6.4 Boundary effects analyses

The boundary effect problem is represented by the case in
which the correlation filter learns an inaccurate represen-
tation of the image content because the training patches
contain periodic repetitions. When either partial occlusion
or plane rotation is present, the characteristics of the object
will become unclear. As a result, the filter usually contains a
large amount of background information about the nontarget
area; then, once the target produces a response that is lower
than the response generated by the nontarget area, the tracker
will drift.

In this section, to validate whether our approach can effec-
tively mitigate the boundary effect problem, we randomly
select several challenging scenarios with small tracking tar-
gets for comparison purposes. As shown in Fig. 5, six video
sequences with various challenges, such as occlusion and
scale variations, are selected.

As shown in Fig. 5a, the tracking target first exhibits par-
tial occlusion or slight rotation and then gradually appears in
the field of view; it is obvious that the SRDCF tracker loses
the target, indicating that the tracker is contaminated by the
nontarget area resulting from the boundary effect problem.
As shown in Fig. 5b, the tracking target first appears to be
completely occluded. In this case, the object is tracked by
the SRDCF tracker; however, when the target subsequently
reappears, the filter fails to give the correct response and
eventually loses the target. In addition, as shown in Fig. 5c,
the target exhibits more complex variations, including plane
rotation, nonrigid deformation and scale variations. In these
cases, the SRDCF tracks only part of the target. Surpris-
ingly, the tracking results in Fig. 5 demonstrate that the
proposed approach can overcome all of the above-mentioned
challenges and successfully track the target throughout the

process. This shows that the tracker proposed in this paper
can effectively alleviate the boundary effect problem during
the tracking process.

6.5 Comparisons with state-of-the-arts

6.5.1 Quantitative results on OTB2013 and OTB2015

We quantitatively evaluate the proposed approach on the
OTB datasets with comparisons against 32 state-of-the-art
trackers, including the 29 trackers in [40], among which
are SCM [53], TLD [17], CXT [32], STRUCK [12], KCF
[14], TGPR [9], VTD [20], SRDCF [6] and LSK [26],
among others. In addition, CNN-based trackers [36,38,50]
have recently been proposed, and they have demonstrated
great tracking performance; therefore, we also compare the
proposed approach with the best performing CNN-based
trackers, namely, CFNet [36] and DCFNet [38].

The OPE results over all 50 and 100 sequences for the top
10 ranked results are presented in Figs. 6 and 7 using the DP
and overlap success rates, respectively, and Table 3 reports
the results using the average OP, DP and CLE. For a clearer
comparison, we provide an attribute-based evaluation of the
100 sequences in Fig. 8.

Table 3 shows that the proposed algorithm performs favor-
ably against numerous state-of-the-art methods (including
correlation filters [6,14,17], part-based trackers [53] and
CNN-based trackers [36,38]). Note that over the entire 100
sequences, Benchmark II is more challenging, and all of
the compared trackers perform worse on Benchmark I. The
proposed method achieves the best results from among the
state-of-the-art trackers with average OP values of 81.2%
(I) and 75.6% (II) and average DP values of 84.5% (I) and
80.6% (II). Furthermore, the proposed algorithm performs
with lower CLE values of 26.3 pixels (I) and 29.2 pixels (II)
than the second best results of the SRDCF tracker of 8.9
pixels and 9.6 pixels, respectively.

As shown in Figs. 6 and 7, with regard to both the overlap
plot and the precision plot, the proposed approach achieves
the best performance, thereby outperforming the SRDCF,
and it is far more effective than correlation filters, part-based
trackers and CNN-based trackers. In summary, the proposed
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Fig. 5 Boundary effect analyses
on 6 challenging sequences
randomly selected from the
100-sequence benchmark [41]
for the proposed PSRDCF
tracker compared with the
SRDCF tracker. The image
sequences pose challenging
situations such as a partial
occlusion or plane rotation, b
complete occlusion and c
complex variations
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Fig. 6 Precision and success
plots over all 50 sequences
(OTB2013 [40]) using an OPE.
The legend contains the AUC
score for each tracker. The
proposed method performs
favorably against the
state-of-the-art trackers
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Fig. 7 Precision and success plots over all 100 sequences (OTB2015 [41]) using an OPE. The legend contains the AUC score for each tracker. The
proposed method performs favorably against the state-of-the-art trackers

Table 3 Comparison with
state-of-the-art trackers on the
OTB2013 (I) [40] and OTB2015
(II) [41] benchmark sequences

OUR SRDCF
[6]

CFNet
[36]

DCFNet
[38]

SCM
[53]

Struck
[12]

TLD
[17]

CXT
[32]

VTD
[20]

KCF
[14]

OP I 81.2 78.1 76.8 77.9 61.6 55.9 52.1 49.2 49.3 62.3
II 75.6 73.1 70.2 71.0 51.6 50.2 50.2 46.4 40.5 55.3

DP I 84.5 83.8 80.7 79.5 64.9 65.6 60.8 57.5 57.6 74.0
II 80.6 78.8 74.9 74.9 57.2 63.9 59.6 55.4 51.2 69.8

CLE I 26.3 35.2 35.5 31.3 54.1 50.6 48.1 68.4 47.4 35.5
II 29.2 38.8 40.0 40.5 61.6 47.2 60.3 67.7 62.0 44.8

FPS I 2.0 7.8 - 41.2 0.37 10.0 21.7 - - -
II 2.6 6.0 - 41.2 0.3 9.9 23.4 13.6 - -

The proposed approach performs favorably against the existing methods with regard to the OP (%) at an
overlap threshold of 0.5, DP (%) at a threshold of 20 pixels and CLE (in pixels). The top 3 ranked values are
highlighted in bold and in the colors red, green and blue, respectively

algorithm retains the advantages of the SRDCF and can
obtain improved results.

We further analyze the proposed approach under different
video attributes (e.g., illumination variations, deformation
and scale variations) annotated in the 100 sequences [41]
(Benchmark I) that are expected to benefit the most from
the PSRDCF framework. Figure 8 shows the success plot of
OPE for ninemain video attributes. Compared with the state-
of-the-art trackers, our tracker achieves the best tracking

performance except for occlusion, scale variation andboth in-
plane and out-of-plane rotations; in these cases, CNN-based
trackers perform better than our proposed tracker. The reason
for this is that CNN-based trackers utilize deep networks that
are pre-trained on large-scale datasets as a feature extractor,
which is more advantageous than training on hand-crafted
features. Compared with the SRDCF tracker, the proposed
tracker achieves a better performance on all attributes, includ-
ing background clutter (by 6.2%), out-of-plane rotation (by
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Fig. 8 Top 10 results of the attribute-based comparisons of the proposed tracker against various state-of-the-art methods over 100 sequences [41].
The number in each plot title indicates the number of sequences associated with the particular attribute

6.1%), scale variation (by 5.2%), out of view (16.8%) and low
resolution (by 5.2%). In these cases, this algorithm achieves
significant improvement over the baseline. In addition, in
the other attributes, such as illumination variation (by 4.2%),
in-plane rotation (by 2.2%) and occlusion (by 2.6%), our
algorithmstill performs slightly better. In conclusion, the pro-
posed algorithm improves the visual tracking performance,
especially in the case of out-of-view targets, background clut-
ter, scale variations, out-of-plane rotation and low-resolution
images.

6.5.2 Qualitative results on OTB

To visualize the superiority of our approach, we provide a
qualitative comparison of the proposed method with four
other state-of-the-art trackers, including SRDCF [6], KCF
[14], Struck [12] and TLD [17], on 10 challenging sequences
randomly selected from the OTB datasets [40,41]; these
comparisons are shown in Fig. 9. Generally, these track-
ers perform well, but the existing trackers exhibit a number

of issues. TLD and KCF drift in most of the scenes. Fur-
thermore, the SRDCF and Struck trackers cannot handle
partial occlusion (Box, Jogging-2), rotation (Freeman) or
background clutter (Skating1). In addition, Struck does not
perform well with partial occlusion (Jogging-2). Overall, the
proposed PSRDCF tracker performs well at tracking objects
on these challenging sequences. In addition, the CLEs are
compared frame by frame on the 10 sequences in Fig. 10,
which demonstrates that the proposed method performs well
against the existing trackers.

6.5.3 Evaluation on VOT2017

The VOT Challenge1 is a well-known competition among
short-term, model-free VOT algorithms, and it has been held
several times since 2013. In this section, we compare our
tracker with 9 state-of-the-art trackers that participated in the
VOT2017 challenge, including the baseline SRDCF tracker

1 http://www.votchallenge.net/vot2017/.
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Fig. 9 Qualitative results on 10 challenging sequences randomly
selected from the 100-sequence benchmark [41] for the proposed
PSRDCF tracker compared with the top 4 trackers (denoted in different
colors and lines). These image sequences pose challenging situations

such as a partial occlusion, b scale variation, c illumination variation,
d rotation and e background clutter. The proposed model outperforms
the other methods

[6]. Figure 11 illustrates that our PSRDCF tracker ranks first
among all 10 trackers according to the EAO criterion. In
addition, Table 4 shows that our tracker outperforms all other
trackers in theVOT2017 challengewith anEAOof 14.0%, an
accuracy of 45% and a failure rate of 86%, thereby achieving
relative gains of 0.6%, 1.0%and−6.0%over the SRDCF [6].

7 Conclusion and future work

In this paper, we propose a novel part-based tracking method
that accounts for parts of an object in multiple constrained

correlation filters. The utilization of circular shifts of the
training samples allows penalized filters to automatically
concentrate on target regions with different locations. Thus,
the proposed model preserves the ability to address bound-
ary problems existing in traditional DCF-based trackers and
also avoids damage to the image content due to this penal-
ization. Experimental results on three large-scale bench-
mark datasets, namely, OTB2013, OTB2015 and VOT2017,
demonstrate that the proposed approach performs better than
state-of-the-art methods.

Several limitations exist in our work. First, the proposed
PSRDCFmodel integrates a part-based tracking strategywith
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Fig. 10 A frame-by-frame
comparison of the CLEs (in
pixels) on 10 challenging
sequences: Box, Jogging-2,
Human5, Walking2, shaking,
Tiger2, Freeman3, Twinnings,
Board and Skating1. The
proposed approach provides
promising results compared
with the top 4 existing trackers
(we encourage the reader to
zoom in to the individual panels
for better viewing)
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Fig. 11 An illustration of the EAO plot on the VOT2017 challenge

Table 4 Comparisons with the top trackers on VOT2017 [19]

EAO Accuracy Failures FPS
OUR 0.140 0.45 0.86 3.53
KCF 0.135 0.44 0.80 60.01

SRDCF 0.134 0.46 0.96 2.13
GMD 0.130 0.45 0.93 4.11
FoT 0.130 0.39 1.14 163.10
CHT 0.121 0.41 1.03 112.97
MIL 0.118 0.38 1.13 5.99
BST 0.115 0.29 0.90 1.71
dprf 0.115 0.47 1.09 0
CMT 0.098 0.32 0.55 16.67

The top 3 ranked values are highlighted in bold and the colors are red,
green and blue, respectively

correlation filters that partially employs the intrinsic relation-
ship among local parts via spatial constraints to improve the
object detection accuracy; however, this strategy neglects to
apply structural information during the filter learning stage.
In future work, we will concentrate on how to better utilize
structural information. Second, we exploited the Gauss–
Seidel algorithm to optimize the objective function during
the training stage which is far from being real time. In future
work, wewill employ a better optimization algorithm to rem-
edy this issue. Third, CNNs are commonly used to address
computer vision problems and recently demonstrated state-
of-the-art performance [11,35]. Future researchwill consider
how to best apply CNN-based features to improve the accu-
racy of our tracker.
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