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Abstract
Conventional geometrical camera calibration algorithms are usually based on running some iterative algorithms on test images
obtained carefully from reference objects with precisely known pattern. Providing these test images and running the iterative
algorithms are often time-consuming and sometimes costly. In addition, they are usually very sensitive to image distortions.
To overcome these problems, an efficient and practical camera calibration method using a single rectangular reference object
is proposed. The reference object can be as simple as an A4-size paper placed on a table. Using the coordinate of four corner
points of reference image, generate eight equations. This paper first describes an analytical method to solve the equations
and then provides a step-by-step algorithm. The proposed algorithm is evaluated using simulated images generated with both
Autodesk 3ds Max software and Microsoft Camera Calibration data set. The results show that the accuracy of the proposed
method is very close to the best ones available, while its sensitivity to distortion and computational load is the least. In addition,
the required reference object is the simplest one.

Keywords Camera calibration · Single image · Machine vision · Camera parameters

1 Introduction

Camera calibration is often used as an essential early stage
in computer vision to derive metric information from 2-D
images. The task of camera calibration is to estimate the
parameters that govern the relationship between the 2-D
image perceived by a camera and the 3-D information of
the photographed object [1]. Camera intrinsic parameters
describe the camera model, and extrinsic parameters define
the relative location and orientation of the camera in the
real world. Camera calibration is an indispensable step in
a wide spectrum of applications, such as metrology, video
surveillance, augmented reality presentation, virtual content
insertion and 3-D reconstruction to provide the geometric
mapping between 2-D image positions and 3-D real-world
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coordinates [2–4]. Several methods have been proposed to
accomplish this task.

Camera calibration methods that use collinear points on
a 1-D object with rotation, planar motion, general motion
and non-collinear points under special motion require two
or more images of the reference object, while it would be
more practical if the calibration method required only a sin-
gle image. One common technique is to take 2-D images of a
reference object and then estimate both intrinsic and extrinsic
parameters from the2-D images basedon a cameramodel [1].
Using an accurate 3-D reference point, one can obtain precise
camera parameters by applying 3-D reference object-based
calibration algorithms [5–7]. A 2-D plane-based calibration
method [8–10] is more desired because the 2-D paper on
which a checker pattern is sketched is easily available, com-
pared to a precise 3-D reference object. A camera calibration
scheme that uses a simple reference object is more preferred
in the realworld, as it results in systemswith quickly response
to various camera configurations in both outdoor and indoor
applications.

Self-calibration is discussed in many previous works
[11–14]. It estimates camera parameters from feature points
in an image scene without any reference object. However, it
needs many reliable feature points and multiple image views
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in order to extract accurately camera parameters, as a draw-
back.

An important type of techniques that usually use a stick
consisting of at least three points to calibrate camera param-
eters is 1-D calibration techniques. The method using 1-D
object proposed by Zhang [15] has a simpler structure than
the 2-Dmodel plane. This calibration technique uses a termi-
nal point as a fixed reference point and rotates a 1-D object
around it. For this calibration technique, at least six views
of the 1-D object are required with three collinear points as
reference.

Many other researchers have been inspired by Zhang’s
algorithm. The degenerate cases or critical motions, where
the above 1-D object-based calibration fails, are studied by
Hammarstedt et al. [16]. In [17], it has been shown that the
rotating 1-D object is in essence equivalent to a 2-D pla-
nar calibration object, and also shown that when the object
undergoes planar motion, the calibration principle still holds.
Although the 1-D reference object is constrained to rotation
and planar motion, Qi et al. [18] developed a camera calibra-
tion method using a 1-D object with general motion. Wang
et al. [19] proposed amulti-camera calibration algorithmwith
a 1-D object under general motion. de Francca et al. [20] pro-
posed a linear algorithm with the normalized image points,
which significantly improved the accuracy of the calibration
introduced in [15].

To avoid possible non-positive-definite values of the
image of absolute conic (IAC), Wang et al. [21] minimized
the norm of algebraic residuals considering to the constraint
that the solution was positive definite. In [22], a calibration
method using a single image and a special combination of
twoorthogonal 1-Dobjects is proposed. Each object has three
collinear points, sharing a common one. The discussed cali-
bration algorithm uses the five points to estimate the extrinsic
parameters. This algorithm is very sensitive to distortion
and its accuracy decreases dramatically as the distortion
level increases. In [23], a more accurate algorithm based on
weighted similarity invariant for camera calibration is pro-
posed. However, it needs multiple images of rotated object to
obtain the resultwhich increases its overhead and complexity.
Recently, Zhao et al. [24] have studied a camera calibration
methodusing three non-collinear points. The algorithmneeds
some image of precisely rotated object to work. The final
accuracy is strongly related to these rotations. The human
body as a 1-D reference object also was used in order to esti-
mate camera parameters from images of human faces [25]
and walking humans [26].

It is important that the system operators have a flexible
and simple calibration method to handle camera configura-
tions and obtain camera parameters smoothly even out of
laboratory. Such methods should offer a camera calibration
technique using just one single simple object as reference. A
well-known approach that uses a single image is the camera

calibration based on vanishing points [1]. In [27], a calibra-
tion method has been discussed that uses vanishing points
to estimate intrinsic parameters from a single camera and
extrinsic parameters from a pair of cameras. Next, in [28] a
method for measuring intrinsic parameters using vanishing
points from one image of model planes has been developed.
Cipolla et al. [29] proposed a method to compute both intrin-
sic and extrinsic parameters from three vanishing points and
two reference points from two views. The vanishing points
computed from static scene structures are used for camera
calibration in [30, 31]. It is possible to use orthogonal 2-D
model planes as one of the means to obtain both intrinsic and
extrinsic parameters by using vanishing points from a sin-
gle image. That is, one can estimate the intrinsic parameters
from the vanishing points detected in the image and obtain
the extrinsic parameters using plane homographies [7]. All
above-mentioned algorithms suffer from the lack of accuracy
and high complexity.

There has been a proliferation of research on sports video
analysis in the recent years [32–34]. Camera calibration also
plays a vital role in sports video analysis, enabling a variety
of applications, such as semantic/tactic analysis [35], 3-D
ball trajectory reconstruction [36] and free viewpoint video
synthesis [37]. For sports videos, instead of setting up a cali-
bration object, a passive object such as the courtwith a known
3-D model is often exploited to compute the camera projec-
tion matrix. One classical way is based on the detection of
correspondingpoints, the reference pointswhose coordinates
are known in both the 3-D real-world and the 2-D image, such
as intersection points of court lines and characteristic points
on court objects (e.g., a net post in tennis or badminton). Then
by solving a set of linear equations obtained from these cor-
responding points, the camera projection matrix is computed
[35]. In [38], a calibration technique based on geometric
analysis is proposed. This method can estimate the camera
parameters from just one view of only five corresponding
points. Geometric analysis is used to realize camera cali-
bration from four coplanar corresponding points and a fifth
non-coplanar one. For applications of sports video analysis,
it is also easy to find four planar points (e.g., intersections
of court lines) and a non-planar one (e.g., a point on a court
object).

In [39] and [40], a simple rectangular reference object is
used for camera calibration. The proposed technique in [39]
requires a single image having two vanishing points. Using
four points of the object and the two vanishing points, it
provides just the intrinsic parameters of camera. In [40], a
single image of a scene rectangle of an unknown aspect ratio
is used for camera calibration. It uses the vanishing points to
center the quad and then rectifies the image to get a rectangle.
The intrinsic and extrinsic parameters of camera are then
extracted with the cost of using some iterative solutions.
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In this paper, a new calibration algorithm using just one
image and a simple 2-D reference object with four corner
points is proposed. It is absolutely practical and one can even
use an A4-size paper as the reference object and is very fast
as it uses just one single image. The proposed method is
of high applicability in many types of scenes. For example,
in an indoor scene, one will be able to set four reference
points on the floor (e.g., corners of ceramic tiles) to conduct
our calibration method. In an outdoor scene, one can simply
choose four preselected (vs. premarked) points on the ground
as reference points. For applications of sports video analysis,
it is also easy to find four reference points (e.g., intersections
of court lines). The proposed method is very accurate, and
compared to the other ones, it has less distortion sensitivity.

This paper is organized as follows: Sect. 2 describes
the calculation of camera parameters based on four corner
points of a 2-D reference object. The camera calibration
algorithm is discussed in Sect. 3. Section 4 provides simula-
tions and experimental results, and finally, Sect. 5 provides
conclusions.

2 Mathematic fundamental of propose
method

Suppose points P ′
1 to P ′

4 are the corner points of the refer-
ence object in X ′,Y ′, Z ′ coordinate system as in Fig. 1. The
corresponding points on the image plane are named as a1 to
a4. The relation between these eight points can be described
by:

a j �
[
x j
y j

]
�

⎡
⎣Uj

Vj

S j

⎤
⎦ �

⎡
⎣ f 0 x0
0 f y0
0 0 1

0
0
0

⎤
⎦ ×

[
R T
0 1

]
×

⎡
⎢⎢⎣

X ′
j

Y ′
j

Z ′
j
1

⎤
⎥⎥⎦

x j � Uj
S j

y j � Vj
S j

, for j � 1, 2, 3, 4
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Fig. 1 Space location of camera and reference object

R � RX × RY × RZ �
⎡
⎣ 1 0 0
0 cos(θx ) − sin(θx )
0 sin(θx ) cos(θx )

⎤
⎦

×
⎡
⎣ cos

(
θy

)
0 sin

(
θy

)
0 1 0

− sin
(
θy

)
0 cos

(
θy

)
⎤
⎦ ×

⎡
⎣ cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

⎤
⎦
(2)

T �
⎡
⎣ TX
TY
TZ

⎤
⎦ (3)

in which f is the camera focal length, R is rotation matrix and
T is camera translation vector into space coordinates (Eqs. 2,
3). We will consider that f is equal in x and y directions, prin-
cipal point is projection center and there is no lens distortion
to simplify equations.

It is desired to obtain extrinsic parameters of camera
in space coordinates from intrinsic parameters of it. With
today’s technology, the image center coordinates of the cam-
era are available and we take them as initial values.

To solve this problem, suppose that reference object is
moved to the center of camera coordinateswhich is (X , Y , Z )
by rotation matrix of R and translation matrix of T, as shown
in Fig. 2. The camera coordinates of the corner points of the
reference object is now as follows:

P ′
1 �

⎡
⎣ l1
l2
0

⎤
⎦ P ′

2 �
⎡
⎣−l1

l2
0

⎤
⎦ P ′

3 �
⎡
⎣−l1

−l2
0

⎤
⎦

P ′
4 �

⎡
⎣ l1

−l2
0

⎤
⎦ (4)

in which l1 and l2 are halves of reference object dimensions.
Equation (5) shows the relation between P ′

j and Pj points.

Pj �
⎡
⎣ XPj

YPj

ZPj

⎤
⎦ �

[
RT −RTT
0 1

]
× P ′

j j � 1, 2, 3, 4 (5)
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Fig. 2 Reference object transferred to camera origin coordinates
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As a result, the coordinates of image points is calculated
as:

⎡
⎣Uj

Vj

S j

⎤
⎦ �

⎡
⎣ f 0 x0 0
0 f y0 0
0 0 1 0

⎤
⎦ ×

⎡
⎢⎢⎣

XPj

YPj

ZPj

1

⎤
⎥⎥⎦

a j �
[
xa j

ya j

]
�

⎡
⎣

Uj
S j
Vj
S j

⎤
⎦ �

⎡
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f ×XPj
ZPj

+ x0
f ×YPj
ZPj

+ y0

⎤
⎥⎦,

for j � 1, 2, 3, 4 (6)

Having the image of reference object, the a j , and actual
reference object corners, the P ′

j , using (5), (6) (l1, l2 and a1
to a4 are known) one can calculate unknown R, T and f as
follows.

Defining Bj , a, b, c, D2 j , D1 j as in Eq. (7) to (2).

Bj �
(
xa j − x0

f

)
/

(
ya j − y0

f

)
, for j � 1 to 4 (7)

a � cos
(
θy

) × cos(θz) (8)

b � sin(θx ) × sin
(
θy

) × cos(θz) (9)

c � cos(θx ) × sin(θz) (10)

D2 j � Bj × cot(θz) − 1, for j � 1 to 4 (11)

D1 j � −1 − Bj × tan(θz), for j � 1 to 4 (12)

These abstract equations are concluded:

(l1 − TX )a + (l2 − TY )

[
b + c

D21

D11

]

− TZ

[
−b cot(θx ) + ctan(θx )

D21

D11

]
� 0 (13)

(−l1 − TX )a + (l2 − TY )

[
b + c

D22

D12

]

− TZ

[
−b cot(θx ) + ctan(θx )

D22

D12

]
� 0 (14)

(−l1 − TX )a + (−l2 − TY )

[
b + c

D23

D13

]

− TZ

[
−b cot(θx ) + ctan(θx )

D23

D13

]
� 0 (15)

(l1 − TX )a + (−l2 − TY )

[
b + c

D24

D14

]

− TZ

[
−b cot(θx ) + ctan(θx )

D24

D14

]
� 0 (16)

Solving the above equations will result in:

Q1 � D21

D11
− D22

D12
− D23

D13
+
D24

D14
(17)

Q2 � D21

D11
− D22

D12
+
D23

D13
− D24

D14
(18)

K1 � Q1

Q2
(19)

K2 � 4 × l1
l2 × (

K 2
1 − 1

) × Q2
(20)

K3 � −K2

2

(
D23

D13
+
D22

D12

)
− K1 × K2

2

(
D23

D13
− D22

D12

)

(21)

K4 � −tan(θx ) (22)

K5 � l2 × K1 (23)

K6 � K3 × [cot(θx ) + tan(θx )] (24)

K7 � l2
2

[
K2

(
D21

D11
− D23

D13

)

−K1

[
2 × K3 + K2

(
D21

D11
+
D23

D13

)]]
(25)

TY � K4 × TZ + K5 (26)

c � K2 × a (27)

b � K3 × a (28)

TX � K6 × TZ + K7 (29)

Define g j variables for j� 1–4 as Eq. (30) and parameters
H1 and H2 as in Eqs. (31) and (32).

g j � xaj − x0, for j � 1 to 4 (30)

H1 � l1 + l2 × (K2 + K3)(1 − K1) − K7

g1
(31)

H2 � −l1 + l2 × (K2 + K3)(1 − K1) − K7

g2
(32)

Now substituting g j , H1 and H2 in Eqs. (5) and (6), one
can reach Eqs. (33) and (34).

H1 × f cos(θz) � (l1 − TX )tan
(
θy

) − (l2 − TY )

× sin(θx ) − Tzcos(θx ) (33)

H2 × f cos(θz) � (−l1 − TX )tan
(
θy

) − (l2 − TY )

× sin(θx ) − Tzcos(θx ) (34)
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Subtracting (34) from (33), θy can be obtained as:

θy � arctan

(
(H1 − H2) f cos(θz)

2 × l1

)
(35)

Using (27) and (8) and (10), θx is calculated as:

θx � arccos

(
K2

cos
(
θy

)
cos(θz)

sin(θz)

)
(36)

In the next step, using Eqs. (26), (29) and (33) will result
in TZ as:

TZ � H1 f cos(θz) + (K7 − l1) tan
(
θy

)
+ (K5 − l2)sin(θx )

−K6 tan
(
θy

)
+ K4 sin(θx ) − cos(θx )

(37)

Till now, the rotation angle values, θx and θy , and transla-
tion vectors (TX TY TZ ) have been obtained based on the θz
value. Assume H3 defined as in Eqs. (38):

H3 � −l1 + l2 × (K2 + K3)(−1 − K1) − K7

g3
(38)

Rewriting Eq. (33) for j� 3, we have:

H3 × f cos(θz) � (−l1 − TX )tan
(
θy

) − (−l2 − TY )

× sin(θx ) − Tzcos(θx ) (39)

Considering (28), (33), (34) and (39), one can show that

(H1 − H2)(H2 − H3) f
2cos2(θz) + 4l1l2K3 � 0 (40)

Now the focal length f can be calculated as:

f �
√

−4l1l2K3

(H1 − H2)(H2 − H3)cos2(θz)
(41)

To calculate θz , we can follow the same routine. Rewriting
Eq. (33) for j� 4 and assuming that H4 is defined as in
Eqs. (42), we reach Eq. (43).

H4 � l1 + l2 × (K2 + K3)(−1 − K1) − K7

g4
(42)

H4 × f cos(θz) � (l1 − TX )tan
(
θy

) − (−l2 − TY )

× sin(θx ) − Tzcos(θx ) (43)

Considering Eqs. (33), (34), (41) and (43), one can show
that:

H1 − H4 � H2 − H3 (44)

h1

h2

d3

d4

Fig. 3 Chessboard as a reference object

To simplify Eq. (44), assume that m1 to m4 are as in
Eqs. (45)–(48).

m1 � g1g2B3B4(B1 − B2) (45)

m2 � g3g4B1B2(B3 − B4) (46)

m3 � m1

(
g4
B4

− g3
B3

)
+ m2

(
g1
B1

− g2
B2

)
(47)

m4 � m1(g3 − g4) + m2(g2 − g1) (48)

Solving Eq. (48) now leads to the following equation
which gives us the θz value:

m3 − m4 × tan(θz) � 0 (49)

After finding the θz value, it is now possible to find all the
camera extrinsic parameters.

3 Proposed computing algorithm

We summarize a calibration algorithm based on the above-
derived equations as follows.

1. Determining corner points of the rectangular plane from
image.

2. Bj calculation using (7) and g j calculation using (30).
3. θz calculation using (49).
4. D1 j and D2 j calculation using (11) and (12).
5. K1, K2, K3 and K7 calculation using (19)–(21) and

(25).
6. H1, H2 and H3 calculation using (31), (32) and (38) and

then f calculation using (41).
7. Determining θy using (35).
8. Determining θx using (36).
9. K4, K5 and K6 calculation using (22)–(24).
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Table 1 Extrinsic parameters for simulation

θZ θY θX TZ TY TX

45° 35° 25° 1.8 m 3.4 m 0.2 m

10. TZ calculation using (37).
11. TY and TX calculation using (26) and (29).

Using the previous mentioned algorithm, all of the vari-
ables are calculated. Note that if θz is zero or π

2 , Eqs. (11)
and (12) will not result in D1 j and D2 j , so the rest of the
parameters will not be obtained and the algorithm will not
work. This is not important because with careful choosing 2-
D reference object position in 3-D space, it can be avoided.

So far, the camera is calibrated in relation to 2-D reference
object coordinates. If the space coordinates is not the same as
to 2-D reference object one, the camera should be calibrated

in relation to space coordinates. To achieve this, it is sufficient
to rotate and transform the space coordinates in relation to
the 2-D reference object coordinates which are considered as
follows:
[
R T
0 1

]
�

[
RS2 TS2
0 1

]
×

[
R′ T ′
0 1

]
(50)

in which RS2 is the rotation matrix and TS2 is the translation
vector both calculated in above and R′ and T ′ are the rotation
matrix and the translation vector of the space coordinates
in relation to 2-D reference object coordinates, respectively.
Note that while the position of the 2-D reference object is
available, T ′ and R′ are available. So the camera is calibrated
in relation to space coordinates.

The previous mentioned algorithm could be used for a
multi-camera system. Since in a multi-camera system, all the
cameras will not see the object necessarily, calculation of the
extrinsic parameters will be a problem [41]. Considering that

Table 2 Simulation results for
different values of distortion
STD

Algorithm [22] Our method [7] [22] Our method [7]
Distortion STD � 1 Distortion STD � 2

�TX 0.0121 0.0193 0.0097 0.0268 0.0381 0.0209

�TY 0.0942 0.0022 0.0110 0.2646 0.0043 0.0235

�TZ 0.1592 0.0131 0.0079 0.3816 0.0251 0.0162

�θx 4.1646 0.1207 0.1310 8.50 0.2405 0.2766

�θy 2.3324 0.1290 0.1362 7.84 0.2549 0.2827

�θz 5.5240 0.1545 0.1955 13.35 0.2999 0.4124

� f 279 7.789 6.690 1052 15.31 14.30

Time(s) 0.177 0.060 0.463 0.210 0.052 0.456

Distortion STD � 3 Distortion STD � 4

�TX 0.055 0.0571 0.0375 0.055 0.0770 0.0375

�TY 0.6678 0.0065 0.0365 0.6678 0.0084 0.0365

�TZ 0.7408 0.0376 0.0243 0.7408 0.0499 0.0243

�θx 13.2 0.3604 0.4870 13.2 0.4856 0.4870

�θy 17.07 0.3813 0.4830 17.07 0.5113 0.4830

�θz 25.21 0.4352 0.7225 25.21 0.5836 0.7225

� f 1885 22.89 24.52 2422 30.11 39.80

Time(s) 0.213 0.057 0.448 0.225 0.055 0.440

Distortion STD � 5 Distortion STD � 6

�TX 0.0763 0.0975 0.0876 0.0861 0.1141 0.1255

�TY 1.1411 0.0105 0.0718 1.9292 0.0122 0.0947

�TZ 1.617 0.0645 0.0442 2.3948 0.0758 0.0520

�θx 21.77 0.5950 1.1067 24.43 0.6891 1.5057

�θy 26.53 0.6271 1.0492 27.61 0.7187 1.4092

�θz 38.94 0.7314 1.6521 41.63 0.8936 2.2983

� f 2509 39.15 59.66 3024 45.69 81.86

Time(s) 0.253 0.061 0.444 0.258 0.065 0.470
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Four points: one-pass geometrical camera calibration algorithm 419

Fig. 4 Comparison of our method to the existing methods

the 2-D plane used for the calibration is seen with all cameras
or several 2-D planes are used in such a way that all of the
cameras see one 2-D plane at least, the proposed algorithm
could be used for all of the cameras of the multi-camera sys-
tem. Since every camera has its own coordination system, the
extrinsic parameters of each camera should be transformed
to the multi-camera coordination system. To accomplish this
job, the method used in [22] could be used.

4 Simulation and experimental results

4.1 Computer-aided simulation

The 1-D and 2-D calibration methods presented in [22] and
[7] have been used in comparison with our proposed method.
An ASUS N501VW laptop with 12 GB DDRIV RAM and a
core i7 6700HQ CPU is used to run the algorithms. For the
2-D algorithm of Ref [7], a uniform two-dimensional array
of 8 × 8 points in a rectangle of 70 × 70 cm2 is considered
as in Fig. 3, with h1 � 70 cm, h2 � 35 cm, d3 � 70 cm, d4
� 35 cm for the proposed object of [22]. It is assumed that
camera has a focal length of 1700, unity aspect ratio, zero
skew and lens distortion with the principle point at (500,
500). The image resolution is 1000 × 1000. The extrinsic
parameters of camera are given in Table 1.

a

b

c

Fig. 5 Comparison of our method to the existing methods. a Average
location error; b orientation error; c focal length error

Fig. 6 Generated image by 3ds Max software for calibration

To evaluate the effect of distortion, a Gaussian noise with
zero mean and different values of STD, between 1 and 6
pixels, is added to the position of 8 × 8 reference points in
the image.

For each value of injected distortion, the algorithm is per-
formed 1000 times and the absolute average error and total
simulation timeper eachmethod aremeasured. Table 2 shows
the results and it is clear that by increasing the distortionSTD,
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Fig. 7 Rotated image generated by 3ds Max software for calibration
algorithm comparison

Fig. 8 Third image generated by 3ds Max software required for cali-
bration proposed in [7]

our proposed method outperforms the rivals and in STD �
6, the maximum angle error of our algorithm is almost less
than the minimum of [22] algorithm with STD � 1.

In addition, the proposed algorithm is three times faster
than [22] and seven times faster than [7].

The results in Table 2 are used to draw graphs in Figs. 4
and 5 in which the vertical axes are logarithmic to present
the difference. Figure 5a and b shows the average attitude

measurement error, consisting of location error and orienta-
tion error, respectively. The focal length measuring error is
reported in Fig. 5c. Again one can see that the presentmethod
has least distortion sensitivity especially when the distortion
increases.

4.2 Data calculated using Autodesk 3ds Max 2013

Here Autodesk 3ds Max 2013 is used to generate reference
images as in Figs. 6, 7 and 8. In these images, the chess-
board size is 30 × 40 cm2. For Ref. [22], parameters are h1
� 30 cm, h2 � 15 cm, d3 � 40 cm, d4 � 20 cm, while
Ref. [7] uses the 64 points in the chessboard as before. Cali-
bration result comparison of three calibration methods with
the image produced with Autodesk 3ds Max 2013 (Fig. 6) is
given in Table 3.

Considering the previous explanations for our algorithm
and its disability near θz � 0, now we rotate the image in
respect to z-axis which is shown in Fig. 7. Calibration result
comparison is given in Table 4. The third image required for
calibration method in [7] is shown in Fig. 8.

As given in Table 4, the proposed algorithm is practically
more accurate than other algorithms.

4.3 Experimental results

In this section, the validity of the proposedmethod is assessed
by the experimental results. For this purpose,Microsoft Cam-
era Calibration data set is applied [42].

In this data set, the reference object which is like a chess-
board has dimensions of 17 cm×17 cm. Ref [7] uses all
the 256 corner points in the reference object, while ref [22]
uses just five points, three corner points and two on the out-
side edges. For this algorithm, we have h1 � 17 cm, h2 �
10.256 cm, d3 � 17 cm, d4 � 10.256 cm.

Ref [7] needs at least three reference images, and the
images shown in Figs. 9, 10 and 11 are used for this method.
Our proposed method and Ref [22] need just one image to
work. Tables 5 and 6 show the results of three calibration
methods of images in Figs. 9 and 10. Ref [7] corresponding

Table 3 Calibration result
comparison for image 6 The real value Results Errors (%)

[7] Our method [22] [7] Our method [22]

TX 75 75.09 75.24 76.38 0.12 0.32 1.84

TY − 75 − 74.5 − 74.89 − 75.05 0.79 0.15 0.07

TZ − 75 − 73.35 − 75.05 − 74.62 2.2 0.07 0.51

θX − 45 − 44.47 − 44.93 − 44.85 1.18 0.16 0.33

θY − 35 − 34.69 − 35.01 − 35.56 0.89 0.03 1.6

θZ 0 − 0.56 0.009 − 0.8 – – –

f 4830 4800 4823 4854 0.63 0.15 0.50
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Table 4 Calibration result
comparison for image 7 The real value Results Errors (%)

[7] Our method [22] [7] Our method [22]

TX 75 75.78 74.90 78.5 1.04 0.13 4.67

TY − 75 − 73.72 − 74.87 − 80.01 1.71 0.17 6.68

TZ − 75 − 74.29 − 74.90 − 82.22 0.95 0.13 9.62

θX − 41 − 40.3 − 40.97 − 42.46 1.71 0.07 3.56

θY − 32.35 − 31.98 − 32.32 − 32.02 1.14 0.09 1.02

θZ 28.29 28.63 28.29 27.26 1.20 0.00 3.64

f 4830 4800 4816 5243 0.63 0.29 8.55

Fig. 9 Selected image from Microsoft Camera Calibration data set for
calibration

Fig. 10 Rotated image selected fromMicrosoftCameraCalibration data
set for calibration algorithm comparison

data in Tables 5 and 6 have similar intrinsic parameters, while
there are extrinsic data in Figs. 9 and 10.

Looking carefully at Tables 5 and 6, we can say that our
proposed method accuracy is somewhere between Refs [7]
and [22]. When the reference object normal is not along the

Fig. 11 Third image selected from Microsoft Camera Calibration data
set required for calibration proposed in [7]

Table 5 Calibration result comparison for image 9

The real value Results

[7] Our method [22]

TX − 3.84 − 3.87 − 3.58 − 3.40

TY 3.65 3.67 3.52 4.01

TZ 12.79 12.75 12.28 12.58

θX 0.80 1.14 0.91 1.08

θY 6.85 6.70 6.90 7.46

θZ − 5.95 − 5.99 − 5.94 − 3.98

f 832.5 830.1 784.3 760.8

camera z-axis, our algorithm works better and the results are
similar to those of Ref [7] as given in Table 6 which is related
to Fig. 10. We must consider that the image used in data set
has a lot of lens distortion which reduces the accuracy of our
method.

5 Conclusion

In these papers, a mathematic calibration method to find
all extrinsic and intrinsic parameters of a camera using just
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Table 6 Calibration result comparison for image 10

The real value Results

[7] Our method [22]

TX − 2.94 − 2.98 − 2.51 − 2.40

TY 3.78 3.79 3.69 4.17

TZ 14.25 14.19 14.07 13.95

θX − 0.51 0.79 − 0.28 2.99

θY 23.76 23.62 23.79 22.96

θZ − 6.33 − 6.15 − 6.35 − 10.91

f 832.5 830.1 865.2 821.3

one 2-D reference object is proposed. Then the accuracy of
the method during different distortions is evaluated. Using
images obtained with 3ds Max software, the algorithm is
simulated. Finally the method is applied to Microsoft Cam-
era Calibration data set for obtaining experimental results.
For comparison, works in [7, 22] are considered.

Considering the results, the proposed method has the least
distortion sensitivity and computational load, while its accu-
racy is slightly less than the 2-D calibrationmethod andmuch
better than 1-D ones. In addition, the used reference object
is the most simple and available among other rivals and so
the proposed method has suitable for applications of sports
video analysis.

Appendix

How to get a relationship from (13)–(16) to (17)–(35)

Summing Eqs. (13) and (14), we have:

− 2TXa + (l2 − TY )

[
2b + c

(
D21

D11
+
D22

D12

)]

− TZ

[
−2b cot(θx ) + ctan(θx )

(
D21

D11
+
D22

D12

)]
� 0 (51)

Summing Eqs. (13) and (15), we have:

− 2TXa + l2c

(
D21

D11
− D23

D13

)
− TY

[
2b + c

(
D21

D11
+
D23

D13

)]

− TZ

[
−2b cot(θx ) + ctan(θx )

(
D21

D11
+
D23

D13

)]
� 0 (52)

Summing Eqs. (13) and (16), we have:

2(l1 − TX )a + l2c

(
D21

D11
− D24

D14

)

− TY

[
2b + c

(
D21

D11
+
D24

D14

)]

− TZ

[
−2b cot(θx ) + ctan(θx )

(
D21

D11
+
D24

D14

)]
� 0 (53)

Summing Eqs. (14) and (15), we have:

2(−l1 − TX )a + l2c

(
D22

D12
− D23

D13

)

− TY

[
2b + c

(
D22

D12
+
D23

D13

)]

− TZ

[
−2b cot(θx ) + ctan(θx )

(
D22

D12
+
D23

D13

)]
� 0 (54)

Summing Eqs. (14) and (16), we have:

− 2TXa + l2c

(
D22

D12
− D24

D14

)
− TY

[
2b + c

(
D22

D12
+
D24

D14

)]

− TZ

[
−2b cot(θx ) + ctan(θx )

(
D22

D12
+
D24

D14

)]
� 0 (55)

Now subtracting Eq. (52) from (55) and keeping in mind
that Q1, Q2, K1, K2, K4, K5 are defined as Eqs. (17–20) and
(22–23), we reach Eq. (26). In the same way, Eq. (27) is
obtained from subtracting Eq. (53) from (54).

Substituting Eqs. (22), (23), (26) and (27) in Eqs. (51) and
(52), one can reach Eqs. (56) and (57), respectively.

− 2TXa + l2(1 − K1)

[
2b + K2a

(
D21

D11
+
D22

D12

)]

+ 2bTZ [cot(θx ) + tan(θx )] � 0 (56)

− 2TXa + l2K2a

(
D22

D12
− D24

D14

)

− l2K1

[
2b + K2a

(
D22

D12
+
D24

D14

)]

+ 2bTZ [cot(θx ) + tan(θx )] � 0 (57)

Again subtracting Eq. (56) from (57) and keeping in mind
that K3 is defined as Eq. (21), we reach Eq. (28). Finally
with the assumption that K6,K7 as defined in Eqs. (24, 25),
substituting Eq. (28) in Eq. (57) one can reach Eq. (29).
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