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Abstract
In the traditional gait skeleton model, the fixed length proportions among different bones cause the loss of model personality,
and the shoulder and hip points that are blocked by the body are difficult to be extracted. For those problems, amethod based on
the spatial and temporal fusion between vision and tactility is proposed, bywhich a equal proportion 3Dgait skeletonmodel can
be restructured in the camera coordinate system accurately through a single-frame image. In the geometric analysis process,
some logical assumptions are proposed according to human anatomy and the laws of human movement, and an effective
method is proposed for the extraction of thigh slope. The experimental result shows that the consistent equal proportion
models, in which single bone length error is eventually controlled within ± 5mm, can be extracted in different position under
the premise of rapidity with the aid of this method. The extracted shoulder and hip points also meet the real human body
skeleton structure, which lays the foundation for the integrity and rationality of the entire skeletal model.

Keywords 3D gait skeleton model · Spatial and temporal fusion · Shoulder and hip points · Equal proportion restructure

1 Introduction

Gait recognition is to identify individuals based on their
walking posture, medical studies show that human gait has
differences, and each person has their own unique walk-
ing style [1]. Compared to other biometrics (fingerprints,
faces, irises, etc.), gait recognition has the advantages of
being non-contact, noninvasive, easy to perceive, difficult
to hide and difficult to camouflage. The existing methods
can be divided into three categories: structural characteri-
zation, non-structural characterization and fusion character-
ization [2]. Structural characterization method, also known
as model-based method, is one of the important directions
of gait recognition. Although the accuracy is slightly lower
than the other two methods, it has great advantages in rapid
recognition.
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Zhang [3] created a five-link bipedal humanmodel, which
is used together with the human body’s height vector and the
base height vector to characterize gait. Lu [4] proposed a
body layered deformable model that divides the body into
several blocks and calculated 22 parameters including body
shape and dynamic features as the gait features. Lin [5] per-
formed gait recognition based on the extracted angle and
other related parameters in the 2D contour image. These are
the early exploration of the human bodymodel for gait recog-
nition. Feature extraction and recognition are performed by
the kinematic data of some bones, but the feature is less, and
the importance of bone length is neglected, which makes the
recognition error larger.

Hamzaçebi [6] proposed a new MD-SLIP template based
on the general spring-loaded SLIP template for leg move-
ments,which enhances the stability of gait tracking.Wang [7]
established a skeletal model from the joint point coordinates
automatically acquired by Kinect which can obtain infrared
images. Wang [8] proposed a new method based on global
optimization for searching these correspondences,whichper-
forms favorably methods in highly cluttered backgrounds.
Zhang [9] introduced the contourlet transform into the gra-
dient vector flow (GVF) Snake model to effectively extract
edge features. Zhang [10] created an initial 3D model using
the example-oriented radial basis function model that maps
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the set of 30 measurements to the body shape space and is
established based on the given examples. Kusakunniran and
Wu [11] utilized procrustes shape analysis and related sim-
ilarity measure methods for identification problems caused
by speed changes. These studies reflect the process of mak-
ing the human body model more accurate in identifying
and tracking, where the researchers overcome the influences
of walking speed, complex backgrounds, etc. However, the
selection of the shoulder and hip joints is not accurate enough
for overusing the anatomical bone proportion and the results
of bodymodel pattern recognition, and the application in gait
recognition is still insufficient.

Particularly, people have done a lot of research and made
great progress in the analysis of human body models based
on HumanEva datasets. Sigal [12] described a baseline algo-
rithm for 3D articulated tracking, which help establish the
current state of the art in human pose estimation and track-
ing. Poppe [13] presented an example-based approach to
pose recovery, using histograms of oriented gradients as
image descriptors to test on theHumanEva-I andHumanEva-
II datasets, which provides the 3D error of human joints.
Zhang [14] extended the Gaussian process latent variable
model (GPLVM) for JGPM learning, where two heuristic
topological priors, a torus and a cylinder, are considered
and several JGPMs of different degrees of freedom (DoFs)
are introduced for comparative analysis to estimate 3D gait
kinematics. Jahangiri [15] proposed a method to generate
multiple hypotheses for human3Dpose all of themconsistent
with the 2D detection of joints in a monocular RGB image.
These studies provide tracking and prediction of human 3D
models and analysis of joints errors, but lack of spatial posi-
tion calculations and extension to the application for gait
recognition.

Establishing a model with high-precision bone length
and angle is the purposes and key to the model-based
method, which plays a decisive role in the subsequent feature
extraction and recognition process [3–19]. From the above
research, we can find that: (1) The traditional method of
skeletal model applied to gait recognition lacks the appli-
cation of bone length and the reasonable determination of
hip and shoulder joints. (2) In human pattern recognition,
the extraction of certain joints (shoulders, wrists, knees and
ankles) has reached a certain degree of precision. However,
there is a lack of an accurate transform from the planar
position to the spatial position and an extension to gait recog-
nition.

In traditional spatial positioning only by vision, at least
two cameras are required. Each camera produces a cal-
ibration error after performing spatial calibration. When
calculating the spatial position, these two errors are not a
simple superposition, but a random coupling error which is
difficult to analyze and will be lager if the samplingmoments
of the two cameras are not uniform. Therefore, tactility is

introduced to replace a vision in this paper. the positioning
error in the tactility is almost negligible due to the force par-
ticularity of the second phalangeal end, so there is only one
camera calibration error, and it is easy to analyze and reduce.
The shape of tactile sensor is a square with a side length
of 8.4mm, and when used for spatial positioning, it can be
ensured that the positioning error of Z-axis coordinates is less
than 4.2mm at any distance.

Out of these considerations, a method for extracting a
gait model based on the spatial and temporal fusion between
vision and tactility is proposed to rapidly establish a dedi-
cated 3D gait skeleton model for individuals, which is based
on the accurate plane coordinates obtained by human body
model pattern recognition and the equal length of the bones
on the left and right sides in human anatomy. Moreover, the
use of tactility lays the foundation for the study of gait recog-
nition through dynamic response of the ground support to
human motion.

2 Theory and extractionmethod of 3D gait
skeletonmodel

The human skeleton is made up of many rigid bones con-
nected by joints. The gait skeleton model presented in this
paper (see Fig. 1) simplifies these rigid bones into line seg-
ments with joint points as their endpoints. The model mainly
considers joints which have relative movement to the center
of gravity during walking (S: shoulder, E : elbow, W : wrist,
H : hip, K : knee, A: ankle, M : phalangeal end). The mid-
points of the hips and shoulders (SC: shoulders’ midpoint,
HC: hips’ midpoint) were introduced for simplifying the
model, and reasonable assumptions based onhuman anatomy
were proposed:

1. left body (L: left body) and right body (R: right body)
are symmetrical to each other;

2. the same kinds of bones in the left body and right body
are equal in length.

Fig. 1 The position schematic
of the joint points selected in the
gait skeleton model
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Fig. 2 The plane formed by the swing of each bone of the gait skeleton
model in the actual movement, where all the planes are parallel to the
walking direction

Each joint has multiple degrees of freedom which causes
the complexity of human behavior [4]. In the walking pro-
cess, these joints generally only have a large variation in
one degree of freedom, but have little variation in others.
Therefore, the following reasonable accommodations were
proposed:

1. the oscillating planes of the bones represented by K −H ,
K − A, E − S, E − W and SC − HC are parallel to the
walking direction andperpendicular to thewalking plane;

2. the skeletons represented by HR − HL and SR − SL are
parallel to the walking plane.

According to the different spatial positions of different
skeletal joints during walking, as shown in Fig. 2, the joints
of this gait skeleton model can be assigned to seven planes
(except the joint M):

Plane 1: The oscillating plane of the bones represented by
SR − ER − WR ; Plane 2: The oscillating plane of the bones
represented by SL −EL −WL ; Plane 3: The oscillating plane
of the bones represented by HR − KR − SR ; Plane 4: The
oscillating plane of the bones represented by HL −KL − SL ;
Plane 5: The symmetry plane of Planes 1–4, including SC and
HC; Plane 6: The plane of rotation of the bones represented
by HR − HL ; Plane 7: The plane of rotation of the skeleton
represented by SR − SL .

2.1 The spatial and temporal fusion

In the experimental process, visual data and tactility data are
measured in different ways. It is difficult to unify the sam-
pling frequency and corresponding start–stop time periods
of both parties. In this paper, both data will be unified in time
though the coupling relationship between the plantar pres-
sure and the distance of the human feet. After the time is
unified, the gait skeleton model will be extracted by spatial
fusion.

Fig. 3 Schematic of the distance between the two feet during the time
fusion

Fig. 4 Definition of pressure region on the plantar pressure integration
map
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Fig. 5 The distance difference curve of the adjacent frame in the visual
date(the distance of present frame—the distance of previous frame)

Fig. 6 The plantar pressure curve over time in different regions

2.1.1 The temporal fusion

During walking, the distance between the two feet (the num-
ber of pixels from the toes of the front feet to the heels of the
other feet, see Fig. 3) and the plantar pressure (see Fig. 4) will
change regularly with time, which are repeatable and stable.
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Fig. 7 The fusion curve of width difference and plantar pressure

Figure 5 shows the distance difference curve of the two
feet of the adjacent frame. The sampling frequency of the
camera ( fc) is 30 frames per second. The positive and neg-
ative differences represent the increase or decrease in the
distance between the present frame and the previous frame,
respectively, so the positive zero points N1 and N2 are the
critical frames from increase to decrease, and the width of
the feet in those frames is the largest.

Figure 6 shows the curve of the plantar pressure over time
in the three regions, whose starting time was not a moment
with that of Fig. 5. The sampling frequency of the plantar
pressure test equipment ( fw) is 50 frames per second. In the
walking process, the pressure on the left and right feet is
equal at moment t1 and t2. When the pressure on the left and
right feet is equal, the heel of one foot and the forefoot of
the other foot land at the same time, the inclinations of the
two feet are the smallest relative to the ground. Therefore,
the moment t1 and t2 can be considered as the moment when
the distance of two feet is the largest within the allowable
range of error.

Compared to the camera, plantar pressure test equipment
has higher sampling frequency and higher data accuracy. For
this reason, the visual data are integrated into the timeline of
the plantar pressure data by using the characteristic moment
of the widest feet distance. Define that the plantar pressure
of the both feet in Fig. 6 is equal at the moments t1, t2, t3
· · · t j , j ∈ N+, and the positive zeros in Fig. 5 appear at
the frames N1, N2, N3 · · · Ni , i ∈ N+. There are multiple
characteristic moments in the entire walking process, so the
matching function is introduced under the assumption where
the moment of first frame N1 in Fig. 6 corresponds to the
moment T1 in Fig. 5 for improving the precision of the fusion:

f (T1) = 1

n

√
√
√
√

n
∑

i= j=1

(Ti − t j )2 (1)

Fig. 8 The imaging process and principle of the Walkway frame in the
lens

where n is the number of characteristic moments, Ti =
T1 + (Ni − N1)/ fc is the moment of each positive zero point
in Fig. 5. When the matching function f (T1) obtains the
minimum value, the errors of the corresponding characteris-
tic time points of the visual data and the tactility data are the
smallest, and the value of T1 at this time is set as the moment
of the N1 frame in the visual data, which represents that the
process of time fusion is unified. The fusion of visual data
(Fig. 5) and tactility data (Fig. 6) is shown in Fig. 7.

2.1.2 The spatial fusion

In the visual imaging process, the actual direction of the
object is the same as the imaging direction of the camera
screen, but is opposite to the imaging direction on the cam-
era imaging surface (see Figs. 8, 10, 11). The experimental
equipment includes a camera lens and the plantar pressure
test equipment (hereinafter referred to as Walkway).

The visual and tactility data are spatially fused according
to the imaging principle of the black rectangle frame of the
Walkway in the lens. As shown in Fig. 8, use the optical cen-
ter O1 of the lens as the origin and the optical axis of the
lens as Z -axis to establish the coordinate system O1 − xyz.
The length of the rectangular frame ofWalkway is L , and the
width is W . The four vertices of the frame are represented
by a, b, c, d, and their coordinates belong to unknown vari-
ables. The image points on the imaging plane corresponding
to the four vertices are represented by a′, b′, c′, d ′, and their
coordinates belong to known variables.

When the seven planes of the human skeleton model are
parallel or perpendicular to the imaging surface, the calcula-
tion time and difficulty of the visual geometry can be reduced.
Therefore, the experiment requires that the imaging coordi-
nates of theWalkways frame in the lens satisfy the following
relationship:

ya′/xa′ = yb′/xb′ = −yc′/xc′ = −yd ′/xd ′ . (2)

In this condition, the Plane adcd is perpendicular to the
Y -axis , the Line bc is parallel to the X -axis. The Line ab and
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Fig. 9 The selection principle of the M-joint coordinates in the coor-
dinate system O2 − xy in the tactility data

Line cd are symmetric about Plane yOz. The walking direc-
tion at any time during the experiment is processed parallel
to the X -axis. According to geometric relations, the seven
planes can be divided into two categories:

1. Planes 1–5 are parallel to the imaging plane, referred to
as parallel plane.

2. Planes 6–7 are perpendicular to the imaging plane,
referred to as vertical plane.

Position of a plane requires only three space points, so
the six points (a, b, c, a′, b′, c′) are used for analysis. The
expression for the point imaging principle is described as:

(X ,Y , Z) = −γ (x, y, p) (3)

where p represents the camera focal length, γ represents
the distance ratio relative to the origin between the space
point (X ,Y , Z) and its imaging point (x, y, p). It can be
seen from formula 3, when the coordinates of points a′, b′, c′

are known, the spatial position of points a, b, c is determined
by the distance ratio γa , γb, γc. According to the condition
lab = W , lbc = L , and

−→
ab⊥−→

bc . The expressions of γa , γb,
γc are described as:

γb = γc = L/(xb′ − xc′) (4)

γa = γbxb′/xa′ . (5)

To locate each square pressure sensor (side length is cs)
of Walkway, take the Point b as the origin, the Edge bc as
X -axis, the Edge ba as Y -axis, and side length cs as the unit
length to establish a plane coordinate system O2 − xy. The
spatial coordinates of any Point (i, j) in O2 − xy can be
calculated by the space fusion formula:

(x, y, z)i j = γb(xb′ , yb′ , p)

+ i[γa(xa′ , ya′ , p) − γb(xb′ , yb′ , p)]cs/W
+ j[γc(xc′ , yc′ , p) − γb(xb′ , yb′ , p)]cs/L. (6)

2.2 Spatial geometry analysis

For obtaining the position of the relevant joints as accurately
as possible and reducing the error, the extraction order of
the skeletal model joints is taken from known to unknown.
Unlike hard-to-handle vision data, the position of the human
body is more accurately and easily located by tactility. The
points of the upper and lower limbs are all in two parallel
planes and one vertical plane, which causes that the spatial
coordinates of the joints of the upper and lower limbs can be
obtained in the same algorithm. In this paper, take the process
of obtaining the joint point spatial coordinates of the lower
limbs as the example to perform spatial geometry analysis.

Fig. 10 The imaging process
and principle of the lower gait
skeleton model in vision where
Planes 3, 4, 5 and imaging
surface are parallel to each other,
parallel to the walking direction,
perpendicular to the Plane 6
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Fig. 11 Imaging of human lower skeleton model in imaging surface

2.2.1 The spatial coordinates ofM

In the plantar pressure distribution (see Fig. 9) measured by
the Walkway, the highest point means the main stress point,
which is considered as the position of the phalangeal end M .

As shown inFig. 9, the coordinates (iMR , jMR ), (iML , jML )

of the M joint points in O2 − xy can be obtained by the pres-
sure distribution, which are the position coordinates of the
pressure peaks. Through the space fusion formula 6, the two
points are transformed from O2 − xy to O1 − xyz and the
spatial coordinates of MR and ML are obtained. The left and
right sides of the skeletal model are symmetrical and Plane
5 is a parallel plane, so the Z -axis coordinate expression at
any point on Plane 5 is described as:

zPlane5 = (zMR + zML )/2 (7)

where zMR represents the Z -axis coordinate of MR , zML rep-
resents the Z -axis coordinate of ML .

2.2.2 The spatial coordinates of A and K

The imaging principle of human lower limb is shown in
Fig. 10. In O1−xyz, the length of the bone KR− AR is equal
to the length of the bone KL−AL , and the Plane 3, Plane 4 are
perpendicular to the Z -axis.When the camera is imaging, the
imaging points of joints AR , AL , KR , KR are represented by
AR′ , AL ′ , KR′ , KR′ in the image surface and their coordinates
can be extracted directly as known variables. According to
�O1ALKL ∼ �O1A′

L K
′
L and �O1ARKR ∼ �O1A′

RK
′
R ,

the Z -axis coordinate expression of any points of the Plane
3 and Plane 4 is described as:

zPlane3 = 2zPlane5lA′
L K

′
L
/(lA′

RK
′
R

+ lA′
L K

′
L
) (8)

zPlane4 = 2zPlane5lA′
RK

′
R
/(lA′

RK
′
R

+ lA′
L K

′
L
) (9)

where lA′
RK

′
R
represents the length of A′

R −K ′
R , lA′

L K
′
L
repre-

sents the length of A′
L − K ′

L . When the values of zPlane3 and

zPlane4 are calculated, the spatial coordinates of joint points
A and K can be obtained by formula 3.

2.2.3 The spatial coordinates of H

Obstructed by the body, the imaging coordinates of the joints
H on the imaging surface are difficult to be extracted directly.
For this problem, a method based on human anatomy is pre-
sented through visual geometry analysis in our experimental
environment. As shown in Fig. 10, Plane 3, Plane 4 and Plane
5 are perpendicular to the Z -axis, Plane 6 is perpendicular
to the Y -axis, and the length of the skeleton KR − HR is the
same as the length of the skeleton KL − HL . By the condi-
tions�O1HLKL ∼ �O1H ′

L K
′
L ,�O1HRKR ∼ �O1H ′

RK
′
R

and ZHR = ZHL , we can infer that:

lH ′
L K

′
L
:lH ′

RK
′
R

= zPlane3:zPlane4 (10)

yH ′
L
:yH ′

R
= zPlane3:zPlane4 (11)

where lH ′
RK

′
R
represents the length of H ′

R − K ′
R , lH ′

L K
′
L
rep-

resents the length of H ′
L − K ′

L .
As shown in Fig. 11, the human lower limbs skeleton

model forms 5 segments on the imaging surface. For get-
ting the coordinates of joints H ′

R and H ′
L that blocked by the

body, it is necessary to know the coordinates of joints K ′
R and

K ′
L , the slope k1 of bone H ′

R − K ′
R and the slope k2 of bone

H ′
L −K ′

L , where the coordinates of joints K
′
R and K ′

L can be
directly extracted as known variables, but the slope k1 and
k2 which are also blocked by the body are also difficult to be
directly extracted. For this problem, a method was proposed
by visual geometry analysis (in Fig. 12).

As shown in Fig. 12, there are two oblique truncated
cones in the space (representing the left thigh and right thigh,
respectively). Assume that the centerline of the top and bot-
tom circle of the truncated cone represents the thigh bone.
When viewed from different angles, the position of the two
thigh in plane image will be very different, and 3 imagines of
different visual angles are taken as examples. In each visual
imaging, the plane images form a coincident part, an irreg-
ular quadrangle. The position of these quadrilaterals in the
visual images will rise or fall regularly with the continuous
change of the viewing angle, but the slope of the thigh bone
will not change.

In practical applications, the plane line l5, l6 regularly
exists so short that the error is relatively large, and the plane
line l7, l8 cannot be directly extracted due to the blocking of
the body(as shown in the imagine of visual angle 3). How-
ever, the position of the intersection q, the plane line l9, l10
is relatively accurate and easy to be extracted (as shown in
the imagine of visual angle 2). Therefore, make the lines
l11, l12, respectively, perpendicular to l9 and l10 though the
intersection p, and the slope of the line l13, l14 connecting
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Fig. 12 The principle of
selecting the slope of the thigh
bone H − K , in which the
slopes of the l13 and l14 are
selected as the slope of the thigh
bone H − K

Thigh bone

Right thigh
Left thigh

Imagine of
visual angle 1

Imagine of
visual angle 2 Imagine of

visual angle 3
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l9 l10

l3

l2

l4

l1

q

q1
q2

q3

l11 l12

l13 l14

y

z

x

Coincident
part

the midpoints of the opposite sides of the new quadrilat-
eral q1q2q3q is defined as the slope k1 and k2. Under the
assumption that the centerline of the upper and lower bottom
circles represents the tight bone. When the straight line l3, l4
is parallel to the line l1, l2 (as shown in the imagine of visual
angle 1), the line connecting the midpoints of the opposite
sides of the quadrilateral is only the tight bone. Actually, the
assumed slope itself does not represent the true value, and
the final slope obtained by the above method differs slightly
from the assumed slope. Therefore, it is reasonable to repre-
sent the slope of the tight bone with the midpoint line of the
new quadrilateral q1q2q3q. The final result shows that the
positions of H joints obtained by the above method meet the
actual body structure.

Assume that the slope of the line containing H ′
R and H ′

L
is k, the Y -axis coordinate of the intersection of Line lH ′

RH
′
L

and the Plane yO1z is e. Through the formula (10, 11), the
analytical formulas of k and e can be described as:

P1k2 + P2k + P3
P4k − P5

= P6k2 + P7k

P8k − P9
= e (12)

where
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

P1 = −xK ′
R
t − xK ′

L
λ

P2 = xK ′
R
tk2 + xK ′

L
λk1 + yK ′

R
t + yK ′

L
λ

P3 = −yK ′
R
tk2 − yK ′

L
λk1

P4 = t + λ

P5 = tk2 + λk1
P6 = yK ′

R
− yK ′

L
λ − xK ′

R
k1 + λxK ′

L
k2

P7 = xK ′
R
k1k2 − λxK ′

L
k1k2 − yK ′

R
k2 + λyK ′

L
k1

P8 = k1 + λk2
P9 = k1k2 + λk1k2
λ = zPlane3/zPlane4

t =
√

1 + k21/
√

1 + k22

(13)

when k and e are calculated, the spatial coordinate of joint
H can be calculated by formula 3.

From the above analysis we can know, the spatial coordi-
nates of all joints can be obtained by themethod of this paper,
which means that the skeleton model of the human body can
also be reconstructed in O1 − xyz. The gait skeleton model
obtained by this method is reconstructed according to the
actual positions of the joint points, so it is not affected by the
visual observation angle and has good versatility.

3 Experiment and result analysis

In this experiment, a white wall is selected as the back-
ground, and the experimental equipment include: 1. camera
with monocular zoom lens; 2. Walkway Metric 3150TL foot
pressure test equipment (Walkway). The focal length of the
monocular zoom lenswas 27mmafter calibration.The length
of Walkways black frame was 2035mm, and the width was
455mm. 9152 square sensors whose side length is 8.4mm
are distributed on the Walkway. The sensor of the Walkway
uses piezoresistive sensing technologywith amaximummea-
surement value of 862Kpa. It’s detection frequency can reach
50HZ, and it can even be upgraded to 185HZ if equipped
with a dedicated detection module. The matching software
can clearly record and display the 2D and 3D foot pressure
contours at each moment and provide a variety of fixed and
custom foot pressure analysis functions, such as the real-time
position of the pressure center, the integral of the pressure-
receiving area, the target area pressure value curve and so
on. Although experiments and data processing can be easily
carried out through theWalkway, the piezoresistive structure
results in the sensor’s distribution density and limit pressure
values not coexisting. If you want to obtain higher density
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Fig. 13 The relative position of the selected 4 samples and the camera
lens

pressure data, then the limit measurement pressure value
will inevitably decrease. When used with other devices, if
the detection frequencies of the two devices are inconsistent,
the data correspondence is difficult due to the fixed frequency
of the Walkway, which brings errors to the processing.

During the experiment (see Fig. 13), first place the lens at
a distance (Distance 1) away from the background to ensure
that the relevant bones and joints of the walking sample are
completely imaged in the lens. Then adjust the angle and
position of the lens, and make the image of the Walkway
frame in the lens satisfy formula 2, which is called position
adjustment. After the adjustment was completed, the sample
walks from left to right on the Walkway and the data collec-
tion was performed at the same time. Finally, change the lens
placement distance (distance 2) and repeat the experiment.
Figure 14 shows the process of matching the visual data to
the timeline of the tactility data, in which the value of T1, the
moment of the N1 frame, is 1.433s when the minimum of
f (T1) is taken.
In the experimental results, we selected four groups of

samples from different sides of different distances about one
subject to analyze the experimental results (see Figs. 15,
16, 17, 18, 19, 20, 21, 22), where the visual images were
background-removed and the process of extracting the slope

Fig. 15 Visual graphics at right side of distance 1

Fig. 16 The tactile images at right side of distance 1

Fig. 17 Visual graphics at left side of distance 1

Fig. 18 The tactile images at left side of distance 1

of the thigh bone was expressed. The relevant joint coordi-
nates and the parameters that can be extracted accurately by
vision are shown in Tables 1, 2 and 3, and the coordinates of
the second phalangeal end in O2 − xy that can be extracted
by tactility are shown in Table 4.

Fig. 14 The time fusion
schematic of visual data and
tactility data, in which there are
two moments when the distance
between the two feet is the
largest, and the fusion process is
based on the timeline of the
tactility data
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Fig. 19 Visual graphics at right side of distance 2

Fig. 20 The tactile images at right side of distance 2

Fig. 21 Visual graphics at left side of distance 2

Fig. 22 The tactile images at left side of distance 2

Table 1 Joint point coordinates that can be directly extracted from two
samples of distance 1 (mm)

Joint point Right side of distance 1 Left side of distance 1

x y x y

ER − 7.452460 − 4.890322 8.665001 − 4.305875

EL − 3.477000 − 3.979388 4.968015 − 3.970222

WR − 9.523121 − 2.909576 8.779359 − 1.313805

WL − 3.189796 − 1.928369 3.652465 − 1.858532

KR − 4.066684 2.602730 6.189723 2.878149

KL − 5.590436 2.630228 7.462935 2.692209

AR 2.491428 5.981522 6.050922 6.682509

AL − 6.074492 6.126433 8.922524 5.957952

3.1 Results and analysis

Thewalking postures of the skeletonmodels in different loca-
tions are complex, and the swing angles of the same bone are
also different, which makes the characteristics of the model
difficult to directly analyze and compare. Taking into account
that the length of each bone does not change with the angle,
the accuracy of the experimental results is verified by ana-
lyzing the bone length.

Table 2 Joint point coordinates that can be directly extracted from two
samples of distance 2 (mm)

Joint point Right side of distance 2 Left side of distance 2

x y x y

ER − 9.393923 − 5.157884 9.780644 − 4.500109

EL − 4.884211 − 4.140013 5.889861 − 4.672082

WR − 11.307887 − 2.329494 9.250757 − 1.227818

WL − 4.996387 − 1.505420 4.033948 − 1.868571

KR − 6.001164 2.927471 7.081452 3.507117

KL − 7.078833 3.306336 8.652780 3.024806

AR − 2.813114 7.449841 7.230291 8.588617

AL − 7.410994 8.184436 10.706854 7.593006

Table 3 The γ values of the Walkway frame at different distances

Location γb(γc) γa

Distance 1 86.169681 101.15897

Distance 2 68.420524 84.90186

Table 4 M point coordinates in O2 − xy that can be directly extracted
from Plantar pressure distribution

Location Right foot Left foot

i j i j

Right side of distance 1 132 9 184 29

Left side of distance 1 47 9 4 33

Right side of distance 2 138 11 183 35

Left side of distance 2 53 11 10 34

Table 5 The random sampling time for solving the spatial skeleton
model once

Number 1 2 3 4 5 6 7

Time (µs) 14.6 18.5 11.4 18.8 57.2 20.5 6.7

Table 6 The bone length at distance 1 and the measured values (mm)

Skeleton
type

Right side
of distance 1

Left side
of distance 1

Measured
values

SR − SL 440.289 480.1 450

S − E 223.351 236.567 230

E − W 242.285 261.709 249

HR − HL 145.965 163.098 155

H − K 324.887 334.081 330

K − A 339.705 345.757 345

Table 5 shows the random sampling time for solving the
spatial skeleton model by the LabVIEW through the algo-
rithm of this paper according to the data in Tables 1, 2, 3 and
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Table 7 The bone length at distance 2 and the measured values (mm)

Skeleton
type

Right side
of distance 2

Left side
of distance 2

Measured
values

SR − SL 443.156 456.967 450

S − E 225.725 242.869 230

E − W 239.084 260.097 249

HR − HL 140.092 162.302 155

H − K 319.854 335.758 330

K − A 335.326 347.36 345

Table 8 The average bone length of the same distance and themeasured
values (mm)

Skeleton
type

Distance 1 Distance 2 Measured
values

SR − SL 460.1945 450.0615 450

S − E 229.959 234.297 230

E − W 251.997 249.5905 249

HR − HL 154.5315 151.197 155

H − K 329.484 327.806 330

K − A 342.731 341.343 345

Table 9 The error rate between the average bone length and the mea-
sured values

Skeleton
type

Average bone
length (mm)

Measured
values (mm)

Error (%)

SR − SL 455.128 450 1.140

S − E 232.128 230 0.925

E − W 250.7938 249 0.720

HR − HL 152.8643 155 1.378

H − K 328.245 330 0.411

K − A 342.037 345 0.859

4. It can be seen that the time is up to 57.2µs and the mini-
mum is 6.7µs, which will be slightly different depending on
the configuration of the computer or the further function of
the program.With the visual acquisition frequency (33ms for
one frame) and the mature human body model pattern recog-
nition technology, this time can fully meet the requirements
of fast response.

Tables 6 and 7 show the bone lengths at different locations.
It can be seen that the bone lengths of the models extracted
from different locations have small fluctuations above and
below the actual measured values. The length errors of the
shoulder and hip bone are slightly larger than those of other
bones, that is because the coordinates of H and S points
are obtained by thigh slopes, which means that they have
one more calculation and error than coordinates of the other
points. Under the same distance, the lengths of the left and

right bones are overall larger or smaller, indicating that the
error originates from the initial positioning in the experiment,
which can be reduced through another position adjustment.

The average bone lengths of the left and right sides at the
same distance are shown in Table 8 where the average values
can be well fitted to the measured values of the sample. The
error on the left side and the error on the right side comple-
ment each other, and it is proved once again that the reason
why the overall length of the left or right side is larger or
smaller is the error caused by the position adjustment dur-
ing the experiment. The bone length error rate between the
average bone lengths and the measured values is shown in
Table 9 where each bone length error rate is eventually con-
trolled within 2%. It is proved that the model extracted by
this method can represent the true skeleton of human body
to some extent.

4 Conclusion and future work

In this paper, the gait skeleton model is rapidly extracted
through geometric analysis based on the spatial and tempo-
ral fusion of vision and tactility. Through the establishment
of equal-scale model whose bone length error is eventually
controlled within ± 5mm, not only the individualized bone
length is ensured, but also the model has good stability at
different distances from different angles. Although the joint
points were not automatically selected, the blocked shoul-
der and hip joints were fully analyzed and verified through
geometric analysis. The experimental results show that the
method proposed in this paper can quickly extract the skele-
ton model in which the bone lengths are representative.

In the research process of this paper, a high-precision
model was obtained through the fusion between vision and
tactility, and the tactility played a major role in the spatial
positioning accuracy. In the future work, we will use this
gait skeleton model to study the gait characteristics of tactile
and vision in time. Then the dynamics coupling relationship
between vision and tactility will be explored to improve the
recognition efficiency and recognition accuracy of gait recog-
nition according to the temporal and spatial fusion method
in this paper.
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