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Abstract
Effective functioning of outdoor vision systems depends upon the quality of input. Varying effects of light create different
weather conditions (like raining, snowfall, haze,mist, fog, and cloud) due to optical properties of light and physical existence of
different size particles in the atmosphere. Thus, outdoor images and videos captured in adverse environmental conditions have
poor visibility due to scattering of light by atmospheric particles. Visibility restoration (dehazing) of degraded (hazy) images
is critical for the useful performance of outdoor vision systems. Most of the existing methods of image dehazing considered
atmospheric scattering model (ASM) to improve the visibility of hazy images or videos. According to ASM, the visual quality
of dehazed image depends upon accurate estimation of transmission. Existing methods presented different priors with strong
assumptions to estimate transmission. The proposed method introduces a tight lower bound on transmission. However, the
accuracy of the proposed tight lower bound depends upon minimum color channel of haze-free image. Therefore, a prior is
proposed to estimate the minimum color channel of the haze-free image. Furthermore, a blind assessment metric is proposed
to evaluate the dehazing methods. Restored and matching corner points of the hazy and haze-free image are used to compute
the proposed blind assessment metric. Obtained results are compared with renowned dehazing methods by qualitative and
quantitative analysis to prove the efficacy of the proposed method.

Keywords Atmospheric scattering · Defogging · Dehazing · Fog · Haze · Optimization · Restoration · Transmission

1 Introduction

Outdoor vision systems perform well in perfect visibility.
However, physical properties of atmospheric particles and
optical behavior of light create varying weather conditions
(like hazy, mist, foggy, snowfall, and raining), which restrain
visibility of outdoor environment. The capability of out-
door visual systems (like surveillance, traffic monitoring,
object detection/recognition, and intelligent transportation)
is perverted due to amid weather. Images/videos which are
captured in poorweather have lowcontrast and faint color due
to improper visibility [1]. Therefore, an artificial intelligence-
based solution is essential for better utilization of outdoor
vision systems [2,3].

Light reflected from the surface of an object gets scattered
and absorbed by atmospheric particles. Therefore, images
fade in imperfect weather. Scattering produces the severe
effect than absorption,which is best described byASM.ASM
considers the consequences of physical and optical properties
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of light (such as varying shape and size of particles present
in the atmosphere, and wavelength of light) in image for-
mation [4–6]. According to ASM, the camera observes two
types of radiance: (1) a fraction of reflected light which is not
scattered (direct attenuation) and (2) a fraction of scattered
light (airlight). Therefore, the captured images lose contrast
and color [7]. Thus, dehazing using ASM is vital for visual
assisted systems.

Classical methods of image restoration are based on the
improvement in the histogramusing equalization and stretch-
ing,which enhance brightness and contrast of the hazy image.
However, these methods do not consider ASM. Thus, these
methods do not restore ideal image [8–10].

The depth of a scene point determines the concentration of
haze/fog in ASM [5,11]. The prime objective of the dehazing
is to recover the depth of each scene point. Once scene depth
is known, then ASM can be solved easily to obtain ideal
dehazing. Thus, dehazing is classified into three groups: (1)
extra information based, (2) multiple images based, and (3)
single image based.

Classical dehazing methods need extra information like
depth cues. These methods require user interaction for extra
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information. Therefore, these methods are not good for the
real-time applications [12,13]. Multiple image-based meth-
ods [14–18] require more than one images of the same scene
from varying degree of polarization to measure the depth of
scene. These methods involve extra hardware, which limits
their applicability. Thus, single image-based dehazing is of
prime focus nowadays [5].

Single image dehazing is based on observations or pri-
ors with strong assumptions. The success of single image
dehazing depends upon these assumptions. A few prominent
methods are presented in [5,19,20] based on single image
dehazing. In [5], a strong prior is presented to estimate trans-
mission,which is further refinedusing softmatting.However,
it is computationally expensive due to soft matting. In [19], a
fast guided filter is presented, which replaced soft matting in
[5] to improve computational efficiency. In [20], a boundary
constraint on the transmission is presented, which is further
refined using optimization. Method of [20] produces realis-
tic results. However, it is computationally inefficient for large
images. The proposed work presents a tight lower bound on
transmission, which is further optimized to estimate original
transmission using regularization. The arrangement of the
paper is as follows. Section 2 presents the literature. ASM is
discussed in Sect. 3. Details of the proposed work are pre-
sented in Sect. 4. Comparison of experimental results and
their analysis is discussed in Sect. 5. Finally, paper is con-
cluded in Sect. 6.

2 Related work

Single image-based dehazing is broadly classified into four
categories: (1) priors with filtering based, (2) observation and
statistics based, (2) sky region segmentation based, and (4)
optimization based.

Noteworthy single image dehazing methods based on
strong priors with filtering have been presented in [5,19–
33]. In [21], it is observed that haze-free images have more
contrast than the hazy images. Thus, local contrast of hazy
image is maximized to remove the haze. Obtained results
are bright. However, maximization of contrast distorts orig-
inal color which invalidates the physical significance of this
method.

The method in [22] approximates atmospheric veil with
the help of median filter. It can restore gray or color image.
However, it does not preserve gradients and performs poorly
in dense haze.

In [23], problem of [22] is solved by using a joint bilat-
eral filter to preserve edges. The initial atmospheric veil is
estimated using median filter and refined using joint bilat-
eral filter to recover edge information at depth. The strong
point of this method is computational efficiency, and it can
be utilized in real-time applications. However, this method

does not performwell for an object brighter than atmospheric
light.

An eminent work is presented in [5], in which statistics
of color channels of the outdoor haze-free images reveal that
most of the non-sky pixels are black at least in a channel. By
applyingminimumfiltering in the local neighborhoodofmin-
imum color channel of the haze-free image, a dark channel
prior (DCP) is obtained.Usually,DCP is completely dark and
used to solve ASM. DCP produces quality and bright results.
However, it generates poor results in case of sky images and
produces blocking artifacts near depth discontinuities due to
minimum filtering in the local neighborhood. Soft matting
is used to remove these artifacts, which is computationally
expensive.

The efficiency of DCP is increased by replacing soft mat-
ting with the guided filter in [19]. Transmission obtained by
DCP is further refined using the guided filter. Guided filter
transfers structure of a guide image to another image. Guide
image could be the same image or some other image. Guided
filter preserves the structure of the image and is comparably
faster than DCP. However, color distortion in images with
sky region is amplified by the guided filter.

In [24], DCP is modified to reduce blocking artifacts. The
modified DCP is computed as square root mean of pixels in
the local neighborhood of the hazy image to correctly esti-
mate transmission in the sky region. However, performance
of this method depends upon the proper selection of the size
of the local neighborhood.

Filtering-based methods seem good. However, accuracy
in transmission strongly depends upon assumptions and pri-
ors, and these methods are computationally inefficient. Thus,
some fast dehazing methods based on observation and statis-
tics have been presented in [2,30,31].

In [30], it is observed that the difference in saturation from
brightness increases with depth. Thus, a linear depth esti-
mation model is presented. However, the difference in the
brightness and saturation at edges will be very high even if
the edge is close to the camera. This indicates the wrong esti-
mation of depth at edges. Therefore, this method loses some
edges. An improved depth model is presented in [2], which
improves the depth and preserves more edge using median
filter. However, it restores images with homogeneous fog.

In [31], a fast linear transformation-based method is
presented to estimate theminimumcolor channel of the haze-
free image. It produces visually compelling results. This
method is fast and has real-time applicability. However, the
quality of results by this method depends upon the selection
of dehazing control factor ( a constant to suppress the value
of the minimum color channel).

DCP-based methods produced quality results for non-sky
images. Thus, a little effort has been made to handle images
with sky region based on segmentation of sky and non-sky
region. Generally, these methods obtain transmission for the
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sky and non-sky region separately. Important methods based
on sky region segmentation have been presented in [28,32,
33].

An adaptive sky region prior is presented in [32] to esti-
mate atmospheric light. Sky region is obtained by the color
edge detection technique. Color normalization is used to
avoid color distortion in the sky region.However, thismethod
is computationally inefficient.

In [33], sky/non-sky regions are separated. Region-wise
transmission is obtained using color characteristics of the sky
region, and DCP is used to obtain transmission of the non-
sky region. The guided filter is used to preserve the edges.
However, the selection of feature pixels is biased by maxi-
mum brightness and gradient, which limits the applicability
of this method.

In [28], a method is presented to decompose the hazy
image into sub-sky regions using quad-tree decomposition.
The image is segmented in sky/non-sky region using region
growing algorithm in which decomposed image is fed as
seed. The segmented image is further smoothen using the
gaussian filter. This method obtains natural and clear results
with less blocky artifacts. However, this method works well
for the images with large sky regions and inefficient for real-
world images.

Dehazing based on priors with filtering, observation and
statistics, and sky region segmentation requires significant
improvement to recover edges, restoration of original colors,
reduced artifacts, and efficiency. Dehazing based on opti-
mization [20,25–27] fills these gaps.

The optimization-based contrast improvement technique
is presented in [25] with an objective to reduce information
loss. Further, a method based on quad-tree sub-division is
used to obtain the value of atmospheric light. This method
solves the problem of overestimation. However, it loses some
edges due to window shifting operation in the local neigh-
borhood.

A boundary constraint on the transmission is presented in
[20], which is further refined using contextual regularization.
The problemof dehazing ismodeled as an optimization prob-
lembased on combined constraintwith aweighted l1− norm.
This method produces quality results with few assumptions.
However, the performance of this method depends on (1)
selection of two constants to compute boundary constraint
and (2) the number of iterations used to refine transmission
using regularization.

Dehazing problem is solved from the perspective of noise
in [26]. Two maps have been constructed to label severity of
noise and atmospheric light. Noise severity is defined as the
weighted sum of brightness and saturation. Particle swarm
optimization technique is used with an objective to maxi-
mize the saturation. This method estimates pixel-wise noise.
However, this method does not consider ASM. Thus, it is far
from the realistic dehazing.

Fig. 1 Atmospheric scattering model of image formation in poor
weather

A new non-local prior has been presented in [27]. The
method in [27] has observed that an image has less number of
distinct colors than the size of the image (number of pixels).
Pixels are clustered based on the amount of added airlight
( these clusters are called haze lines). Haze lines are used
to recover transmission, which is further refined using reg-
ularization. The advantage is that (1) it estimates pixel-wise
transmission and (2) it is linear and deterministic. However,
this method may produce wrong results if the atmospheric
light is significantly brighter than the scene, because most of
the pixels will point in the similar direction in such cases.

Optimization-based techniques produced compelling
results. These methods unveil the structure of the image, pro-
duce quality visual results, the faithful colors,
restore/preserve edges, and minimize overestimation of
transmission. However, these methods lack in the proper
focus of researchers due to computational inefficiency.

3 Problem formulation

The process of image formation in imperfect weather is
shown in Fig. 1. The sunlight reaches to an object by pen-
etrating the environment and reflected by the surface of the
object. Thus, camera receives the sum of the direct attenua-
tion and airlight as irradiance [4,5].

Physical properties of particles (such as size, type, den-
sity, and the presence of humidity) which are suspended
in the air determine the exact amount of light received
by the camera. Varying weather conditions depend upon
type(T ), size(S), concentration(C) of atmospheric particles,
and humidity level (H ) of atmosphere. Summary of typical
atmospheric conditions is presented in Table 1 [4].

Table 1 presents that smallest particles are air molecules.
Thus, air molecules scatter a negligible amount of light.
Therefore, the image captured in the presence of air
molecules is noiseless. Haze particles (such as ashes of the
volcano, combustion products, and sea salts) are larger than
the air molecules and are suspended in the gas.When humid-
ity increases to a very high level, these particles act as center
of small water droplets. Fog is a form of haze with satu-
rated humidity. Due to condensation, some of the nuclei grow
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Table 1 Different atmospheric
conditions based on physical
properties of atmospheric
particles [2,4]

Weather T S (µm) C (cm−3) H

Air Molecule 10−4 1019 Absent

Haze Aerosol 10−2 to 1 103 to 10 High

Fog Water droplet 1 to 10 100 to 10 Saturated

Cloud Water droplet 1 to 10 300 to 10 Saturated

Rain Water drop 102 to 104 10−2 to 10−5 Very high

to produce water droplets under saturated humidity. Thus,
increased humidity turns haze into fog. Cloud is a form of
fog. However, clouds are formed at higher altitude. Rain is
a very complex atmospheric condition, which causes spatial
as well as temporal variations in images [2,4].

ASM is mathematical represented by Eq. (1) [4,14].

J cd (y) = J co (y)Tran(y)
︸ ︷︷ ︸

direct attenuation

+ Ar (1 − Tran(y))
︸ ︷︷ ︸

airlight

(1)

where the first term of Eq. (1) is direct attenuation and the
second term is airlight, y is position of a scene point (usu-
ally coordinate), c ∈ (R,G, B) is color channel, Jo(y) is the
intensity of a scene point at location y in haze-free image,
Jd(y) is intensity of a scene point at location y in hazy image,
Ar is atmospheric light, and Tran(y) is the fraction of light
which directly reaches to camera and is termed as transmis-
sion at location y. Transmission is expressed as:

Tran(y) = e−β(λ)depth(y)

where 0 ≤ depth(y) ≤ ∞ is depth of a scene point from
camera at location y and β(λ) is atmospheric scattering coef-
ficient. Scattering coefficient is defined as in Eq. (2).

β(λ) = λ−η (2)

where the wavelength of incident light is λ, scattering coef-
ficient of incident light with wavelength λ is β(λ), and
0 ≤ η ≤ 4 is a constant which depends upon the size
of atmospheric particles. Pleasant weather composed of air
molecules, which are smaller in size than the wavelength
of light. Therefore, η = 4, which increases the effect of
wavelength. Thus, the sky seems blue in pleasant weather.
Wavelength will be less compared to the size of atmospheric
particles in hazy/foggy conditions. Thus, η = 0, in which
case scattering is independent of wavelength and β(λ) = β

will be a constant. This scattering effect is known as homoge-
neous scattering. However, atmospheric particle size varies
from 10−4μm to 10μm under thin fog or mild haze and pro-
duces varying scattering effects (heterogeneous scattering)
[2,4].

Theproposedmethod is basedonan assumption that atmo-
sphere is composed of small particles like haze and fog.

Therefore, β(λ) = β will be a constant. Thus, transmission
is redefined as in Eq. (3).

Tran(y) = e−βdepth(y) (3)

Equation (3) implies that 0 ≤ Tran(y) ≤ 1. Given an input
hazy image J cd (y), objective of dehazing is to estimate J co (y),
Tran(y) and Ac

r . Due to additive airlight in Eq. (1), Jo(y),
Jd(y) and Ar are coplanar vectors with colinearity at end
points [5]. Thus, dehazing is an ill-posed problem.

As mentioned in Eq. (1), the haze-free image J co (y) is
degraded due to multiplicative transmission Tran(y) and
additive airlight Ar (1−Tran(y)). Both these terms are influ-
enced by Tran(y). Thus, accurate estimation of Tran(y)
is essential for effective dehazing. The proposed method
obtains a tight lower bound on Tran(y) based on an observa-
tion of minimum color channel of hazy image. Contributions
of the proposed work are as follows:

1. Tight lower bound on the transmission is proposed,which
is further refined using contextual regularization to obtain
accurate Tran(y).

2. Proposed tight lower bound depends upon minimum
color channel of the haze-free image. Therefore, a prior
is proposed to estimate theminimum color channel of the
haze-free image using the hazy image.

3. Anewblind assessmentmetric is proposed tomeasure the
effectiveness of the dehazing method based on restored
and matching corner points.

4 Proposedmethod

4.1 Mathematical foundation of the proposed
method

Transmission can be obtained using Eq. (1) as in Eq. (4):

Tran(y) = J cd (y) − Ar

J co (y) − Ar
(4)

The proposedmethod is based on an assumption that trans-
mission at a pixel is identical in each color channel of hazy
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image. Therefore, the minimum color of hazy image can be
used to obtain transmission. Thus, Eq. (4) is transformed as:

Tran(y) = minc∈(r ,g,b)(J cd (y)) − Ar

minc∈(r ,g,b)(J co (y)) − Ar
(5)

wheremin(, , ) is a function to find minimum of three values
at location y, minc∈(r ,g,b)(J cd (y)) is minimum color channel
of hazy image, and minc∈(r ,g,b)(J co (y)) is minimum color
channel of haze-free image. Equation (5) can be rewritten
as:

Tran(y) = 1

1 − minc∈(r ,g,b)(J
c
d (y))−minc∈(r ,g,b)(J co (y))

minc∈(r ,g,b)(J
c
d (y))−Ar

(6)

According to Eqs. (3) and (6).

(

1 − minc∈(r ,g,b)(J cd (y)) − minc∈(r ,g,b)(J co (y))

minc∈(r ,g,b)(J cd (y)) − Ar

)

≥ 1

From Eq. (1) minc∈(r ,g,b)(J cd (y)) ≥ minc∈(r ,g,b)(J co (y))
due to additive airlight. Thus,

(

minc∈(r ,g,b)(J cd (y)) − Ar
)

<

0. However,
(

minc∈(r ,g,b)(J cd (y)) − Ar
)

> 0, if an object is
brighter than Ar . Therefore, Eq. (6) is corrected as:

Tran(y) = 1

1 +
(

γ (y)
|minc∈(r ,g,b)(J

c
d (y))−Ar |

) (7)

where | · | is modulus operator which returns absolute value,
and γ (y) = δ(minc∈(r ,g,b)(J cd (y)) − minc∈(r ,g,b)(J co (y))).

Parameter δ is introduced to control the value of γ (y). Equa-
tion (7) can estimate correct transmission of objects brighter
than atmospheric light.

The proposed method is based on statistics of γ (y). It can
be observed from Eq. (7) that increased value of γ (y) will
produce smooth and tight lower bound on Tran(y).

Figure 2 shows Tran(y) obtained using different depth
maps with varying δ = [1.2, 1.5]. Image shown in Fig. 2a
is a haze-free image J co (y). Different depth maps depth(y)
which are prepared randomly using uniform distribution are
shown in Fig. 2b. Atmospheric light is computed randomly
using uniform distribution to compute each Tran(y). Origi-
nal transmission Tran(y) are computed using different depth
maps (depth(y)) in Eq. (3) with β = 1. Figure 2d shows a
graph between Tran(y) and depth(y). Image J co (y) is cor-
rupted using Eq. (1) with different Tran(y) as shown in
Fig. 2d to obtain hazy images J cd (y). Hazy images J cd (y) are
shown in Fig. 2c.

In Fig. 2e, black curve is representing original Tran(y)
and red curve is representing Tran(y) with δ = 1.2. It can
be observed that the red graph is smooth and behave as tight
lower bound on original transmission. Thus, it can be inferred
that increased γ (y) gives lower bound on original transmis-
sion.

Blue curve in Fig. 2f is representing Tran(y) with δ =
1.5. It can be observed that the blue curve relaxes the lower
bound represented by the red curve. Thus, it infers that
increasing value of δ provides tight lower bound. However,
insignificant increase in γ (y) relaxes tight lower bound.
Therefore, tight lower bound can be obtained by increas-
ing γ (y) significantly. Thus, the proposed method is based

Fig. 2 Behavior of transmission with varying δ for a haze-free image. Black, red, and blue curve represents original transmission, transmission
with δ = 1.2, and transmission with δ = 1.5, respectively
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(a) (b)

Fig. 3 Haze-free image and ground truth of depth image selected from
NYU dataset [34]. a Haze-free image. b Ground truth of depth Image

on estimation of minc∈(r ,g,b)(J co (y)) with an objective to
increase γ (y) significantly.

Furthermore, the proposed tight lower bound is verified on
NYU dataset (NYU) [34], which contains haze-free images,
hazy images, and ground truth of depth images. A haze-free
image and ground truth of its depth image are selected to
validate the proposed tight lower bound. Selected images
are shown in Fig. 3. Ground truth of depth image shown in
Fig. 3b is used to compute original Tran(y) with increased
haze density (β = [1, 3, 5]). These transmissions are used
to contaminate haze-free image shown in Fig. 3a using
ASM to obtain hazy images. Figure 4 shows obtained hazy
images, original Tran(y), and behavior of Tran(y) with
δ = [1.2, 1.5] using Eq. (7).

Figure 4a shows that original Tran(y) is smooth and
reduces with increased haze density. Figure 4b shows hazy
images which are obtained using the transmissions shown
in Fig. 4a. Transmissions obtained using Eq. (7) with δ =
[1.2, 1.5] are shown in Fig. 4c, d.

Comparison graph of transmissions is shown in Fig. 4e.
Black, red, andblue curves inFig. 4e are representing original
Tran(y), Tran(y) with δ = 1.2, and Tran(y) with δ =
1.5, respectively. Figure 4e proves that red curve is a tight
lower boundonoriginal Tran(y), whereas blue curve relaxes
the tight lower bound. The proposed tight lower bound is
independent of haze density as shown in Fig. 4e.

Moreover, Fig. 4b shows that ceiling light is brighter than
atmospheric light. Transmissions obtained using Eq. (7) with
true atmospheric light are shown in Fig. 4c, d. Transmissions
of ceiling light in Fig. 4c, d are approximately accurate. Thus,
Figs. 2 and 4 validate the proposed tight lower bound which
is obtained using Eq. (7).

4.2 Estimation of minimum color channel

Minimum color channel of haze-free image minc∈(r ,g,b)

(J co (y)) is to be estimated from minimum color chan-
nel of hazy image minc∈(r ,g,b)(J cd (y)). Let minJd(y) =
minc∈(r ,g,b)(J cd (y)) and minJo(y) = minc∈(r ,g,b)(J co (y)).

Somemethods in the literature have been presented to esti-
mate minJo(y). In [24], a l2− norm−based modified DCP

Fig. 4 Original transmissions obtained with varying β = [1, 3, 5] using ground truth of depth image shown in Fig. 3b and behavior of the
transmission with varying δ = [1.2, 1.5]. In Fig. 4e, black, red and blue curve represents original transmission, transmission with δ = 1.2, and
transmission with δ = 1.5, respectively

123



Tight lower bound on transmission for single image dehazing 197

Fig. 5 Flow diagram of the proposed prior to estimate the minimum color channel of the haze-free image using Eq. (8). Hazy image is represented
by minJd , local neighborhood centered at location y is represented by ω(y), and C1(y) and C2(y) are minimum and maximum values in ω(y).
Circles with the symbol −, ∗, and / represent element-wise subtraction, multiplication, and division, respectively

Fig. 6 Comparison of transmissions obtained using method in [5,24,31] and the proposed method for image shown in Fig. 2c
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is presented.ModifiedDCP is robust and reduces blocky arti-
facts. However, it estimates more value of minJo(y) at long
distance, which overestimates transmission at long distance.
In [31], a piece-wise linear transformation-based technique
is presented. In [31], minJo(y) is overestimated, which also
increases transmission at long distance. In [31], overesti-
mated transmission is further tuned using a dehazing control
factor.

The proposed prior is based on the statistical behavior
of the local neighborhood of a pixel. The proposed prior
assumes thatminJo(y) non-linearly depends uponminJd (y)
in local neighborhood ω(y). Thus, the proposed prior can be
expressed as:

minJo(y) = minJd(y) − C1(y)

C2(y) − C1(y)
× minJd(y) (8)

where C1(y) = minlx∈ω(y)(minJd(x)), C2(y) = maxlx∈ω(y)

(minJd(x)), minlx∈ω(y)(:) and maxlx∈ω(y)(:) are the function
to find minimum and maximum in local neighborhood ω(y)
which is centered at location y.

In [31], C1(y) and C2(y) are minimum and maximum
intensities ofminJd(y), respectively. Thus,C1(y) andC2(y)
are constants. Due to constant value of C1 and C2, value of
numerator increases with depth. Due to increased value of
numerator, transmission at long distance is overestimated.
However, the proposed method is different than [31] due to
varyingvalues ofC1 andC2 in each local neighborhoodω(y).

Equation (8) ensures minJo(y) ≤ minJd(y). Numerator
in Eq. (8) measures variance of a pixel in local neigh-
borhood. Variance will be low in smooth regions; thus,
minJo(y) � minJd(y). There will be sudden change in
variance at depth discontinuities. Therefore, minJo(y) will
be overestimated. To reduce overestimation, the proposed
method further refines minJo(y) as:

minJro (y) = l
min

x∈ω(y)
(minJo(x)) (9)

where minJro (y) is refined value of minJo(y) at location y.
Figure 5 shows flow diagram of the proposed prior to esti-

mate minJo(y) using Eq. (8). A patch represented by a local
neighborhoodω(y) is processed to obtain value ofminJo(y)
at location y as shown in Fig. 5. Process shown in Fig. 5 is
repeated for each local neighborhood of each pixel of hazy
image to obtain minJo(y). The proposed method obtained
the results with local neighborhood of size 15 × 15.

Figure 6 shows a comparison of the transmissions which
are obtained using the methods in [5,24,31] and the proposed
method, for the hazy image shown in the last row of Fig. 2c.
It can be observed that transmission obtained using estimated
minJo(y) loses smoothness and accuracy. Transmission
obtained using the method in [5] achieves psnr = 55.90

with respect to original transmission. However, it is overesti-
mated at depth discontinuities, which produce halo artifacts
as shown in Fig. 6a. Method in [24] obtained psnr = 57.84,
which is more than psnr obtained by method in [5]. How-
ever, transmission estimated by [24] is more at long distance.
Transmission obtained by [31] achieves psnr = 58.84, and
it is more smooth and accurate than [5] and [24]. However,
the transmission obtained by the proposed method is more
accurate and smooth than [5,24,31]. The proposed method
obtains psnr = 61.14, which proves its accuracy.

Furthermore, it can be observed that the proposed method
is very close to the original transmission, which infers that
the proposed method tightens the bound on original trans-
mission. However, it losts smoothness due to the wrong
estimation at depth discontinuities. Therefore, the proposed
method used contextual regularization technique [20] to
improve accuracy and smoothness of the obtained transmis-
sion.

4.3 Estimation of atmospheric light

The proposed method uses existing techniques [5,20] of
atmospheric light estimation. However, selection of atmo-
spheric light using these methods is based on an assumption
that input image is hazy. Atmospheric light does not exist
in the clean image. Dehazing of clean images results into
unwanted enhancement due to incorrect transmission, which
darkens the dehazed image. Therefore, it is important to ver-
ify that the input image is hazy or not using haze detection
methods [35,36].

The proposed method relies on method in [20] for estima-
tion of atmospheric light (Ar ), which estimates Ar for each
color channel c as Ac. The method in [20] applies minimum
filter in the local neighborhood of each color channel and then
selects the maximum value of each channel as A. However,
the proposed method computes atmospheric light as:

Ar = min(Ac)

where c ∈ (r , g, b) is color channel, A is atmospheric light
obtained using method in [20], and Ar is atmospheric light
estimated by the proposed method.

4.4 Recovery of haze-free image

The proposed method computes Ar , estimates minJro (y),
and obtains Tran(y) by plugging values of Ar andminJro (y)
in Eq. (7) with δ = 1. Further, Tran(y) is regularized
using regularization method in [20]. Transmission obtained
after regularization is used to recover haze-free image using
Eq. (10).
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J co (y) = J cd (y) − Ar

max(Tran(y), 0.01)
+ Ar (10)

where J co (y) is intensity in c color channel of the haze-free
image at location y, J cd (y) is intensity in c color channel
of hazy image at location y, Ar is atmospheric light, and
Tran(y) is estimated transmission at location y. In denomi-
nator of Eq. (10), maximum of Tran(y) and 0.01 is used to
handle divide by zero exception.

5 Experimental analysis

Experiments have been performed to validate the effective-
ness and accuracy of the proposed method. MATLAB with
versionMATLABR2014a is used to implement the proposed
method on Intel CORE(TM) i7-4790 @3.60 GHz platform.
The proposed method is tested using qualitative and quan-
titative metrics on Waterloo dataset [37], Frida dataset [38],
NYU [34] dataset, and challenging hazy images taken from
[39,40].

Quantitative analysis of the proposed method is based on
measurement of visibility and structure of the image. Thus,
visibility of edges, gradients, color, and corner points are
used to measure the performance of the proposed method.
Quantitative metrics are classified into two classes: (1)
reference-based performance metrics and (2) non-reference-
based performance metrics [41,42].

5.1 Reference-based performancemetrics

In reference-based metrics [24], dehazed image and ground
truth of respective haze-free image is required to measure the
performance. In real scenarios, it is not possible to acquire
haze-free image with respect to the same hazy image due to
the natural constraint. Therefore, synthetic haze-free images
and their respective hazy images are obtained from Frida
dataset [38] and NYU [34].

Peak signal-to-noise ratio (psnr ), color distance (ΔE),
and metric Qu are used as the reference-based metric to eval-
uate the proposed method [43]. High psnr is an indication
of quality dehazing. The dehazed image is compared with
ground truth of the haze-free image to compute psnr as:

psnr = 10 × log
(Imagemax )

2

MError
(11)

where Error is mean square error and Imagemax is maxi-
mum intensity of image.

Metric ΔE and Qu are computed using the formulas
presented in [43]. Metric ΔE measures color difference
(color restoration capability) between ground truth of haze-
free image and dehazed image. Range of metric ΔE is

[0(worst)− 1(best)]. Metric Qu measures combined effect
of structural similarity index (ssim) and color distance [43–
47]. High value of metric Qu represents better performance
of dehazing.

5.2 Non-reference-based performancemetrics

The capability of dehazing can be measured using recovered
edges, their position, and matching. Three types of metrics
are used as non-reference-based parameter: (1)Metric emea-
sures number of edges recovered, (2) metric r is used to
show average visibility effect in the form of gradients, which
measures strength of dehazing method to preserve existing
edges, and (3) a new metric Crm is introduced to measure
effectiveness of dehazing method on the basis of restored
and matching corners. As high as the e and r , better will be
the performance of the dehazing method. Formulas used to
compute e and r are given in Eqs. (12) and (13) [40,41,48].

e = Nres − Nori

Nori
(12)

where Nres and Nori are number of visible edges in dehazed
image Io and hazy image Id , respectively.

r = exp

⎡

⎣

1

nr

∑

i∈Qr

log ri

⎤

⎦ (13)

where ri = ΔI ri
ΔI oi

, ΔI r , and ΔI o are the gradient of image

Io and image Id , respectively, and Qr is visible edges of the
image Io.

Furthermore, structural similarity of hazy image and
dehazed image is measured using ssim. A metric qm is
derived from e, r , and ssim to measure combined effect of
e, r , and ssim. Formula used to calculate qm is given as:

qm = e + r + ssim

Moreover, quality correlate (Q) is computed using High-
DynamicRangeVisualDifferencePredictor2 (HDRV DP2)
with version 2.2.1 [47,49,50], whichmeasures degradation in
visual quality of dehazed image with respect to the reference
image. Metric Q varies in the range [0(worst)−100(best)].

5.3 Metric Crm

Strength and effectiveness of dehazing method depend upon
smoothness and accuracy of estimated transmission. A
non-smooth and less accurate transmission generate wrong
gradients and edges, which improves the value of metric e
and r . Corner points affect the quality of results in image pro-
cessing. Thus, a new metric Crm is proposed to measure the
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Fig. 7 Values of (nc − rc) and mc obtained using NYU [34]. a Values of (nc − rc) and mc computed from hazy images and images which are
dehazed using original transmission, and b values of (nc − rc) and mc computed from hazy images and images which are dehazed using noisy
transmission. Red and blue curve represents the obtained values of mc and (nc − rc), respectively

(a) (b) (c) (d)

(g) (h)(e) (f)

Fig. 8 Visual comparison. a Hazy image, b [5], c [23], d [20], e [29], f [30], g [2], and h proposed method

performance of the dehazing based on corner points. Met-
ric Crm is a non-reference-based blind assessment metric,
which measures the effectiveness of dehazing based on the
number of restored and matching corners. The formula used
to calculate Crm is as follows.

Crm = mc

nc − rc
(14)

where nc is the number of corners present in hazy image
Jd(y), rc is the number of restored corners in dehazed image

Jo(y), and mc is the number of most likely matching cor-
ners. The high value of Crm indicates improved strength of
dehazing method. However, increased negative Crm infers
that dehazing method has preserved original corners and
restored degraded corners also. Thus, negativeCrm indicates
improved effectiveness and efficacy of dehazing method.

Theproposedmethod computesnc and rc usingharris cor-
ner detector [51]. Restored corners are matched with existing
corners in hazy image to track the number of most likely
matching corners mc.
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(a) (b) (c) (d)

(h)(g)(e) (f)

Fig. 9 Visual comparison. a Hazy image, b [5], c [23], d [20], e [29], f [30], g [2], and h proposed method

(a) (b) (c) (d)

(h)(e) (f) (g)

Fig. 10 Visual comparison. a Hazy image, b [5], c [23], d [20], e [29], f [30], g [2], and h proposed method
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(a) (b) (c) (d)

(h)(g)(e) (f)

Fig. 11 Visual comparison. a Hazy image, b [5], c [23], d [20], e [29], f [30], g [2], and h proposed method

(a) (b) (c) (d)

(h)(g)(e) (f)

Fig. 12 Visual comparison. a Hazy image, b [5], c [23], d [20], e [29], f [30], g [2], and h proposed method

5.4 Dataset

The proposed method used available standard dataset [34,
37,38]. Two types of the standard dataset are used to test
the performance of the proposed method: (1) Waterloo IVC
dehazed image database(WIVC) [37] and (2) Frida andNYU
dataset [34,38].

WIVC dataset is available online and consists of 25 hazy
images of varying outdoor scenes as well as indoor static
objects. Out of 25 images, 23 images are of real-world out-
door scenes which are faded by varying degree of haze and
3 images are of indoor static objects and contaminated by
homogeneous haze. This dataset also contains 8 different
dehazed images for every 25 images based on restoration
techniques proposed between 2009 and 2014. Thus, it con-

sists of 9 (1 hazy, 8 dehazed) images for each image in dataset.
The dataset provided all the 225 images [37]. This dataset is
used to compute non-reference-based metrics.

However, WIVC does not have ground truth of the haze-
free image. Thus, synthetic image dataset Frida [38] is used.
Frida dataset contains synthetic hazy images and their respec-
tive ground truths. Synthetic hazy images are categorized into
four categories, and each category has 18 hazy images: (1)
uniform fog, (2) heterogeneous fog, (3) cloudy fog, and (4)
cloudy heterogeneous fog. Frida is a synthetic dataset which
does not contain real-world images. Therefore, NYU is used
to evaluate the proposed method. NYU contains 1449 real-
world indoor hazy images with ground truth of depth images
and respective haze-free images.
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(a) (b) (c) (d)

(h)(g)(e) (f)

Fig. 13 Visual comparison. a Hazy image, b [5], c [23], d [20], e [29], f [30], g [2], and h proposed method

(a) (b) (c) (d)

(g) (h)(e) (f)

Fig. 14 Visual comparison. a Hazy image, b [5], c [23], d [20], e [29], f [30], g [2], and h proposed method

Furthermore, a few images captured by us during spring
season using Asus Zenfone with android 4.4.2 are also used
to validate the proposed method.

Images from WIVC are used to perform the qualitative
comparison. Frida and NYU are used to present quantita-
tive analysis. Results are compared with renowned existing
methods [2,5,20,23,29,30]. Visual comparison of results is
shown in Figs. 8, 9, 10, 11, 12, 13, and 14.

5.5 Evaluation of the proposedmetric

Proposed metric Crm is based on ratio of mc and (nc − rc).
Thus, the statistics of (nc − rc) and mc on first 50 images
taken from NYU [34] is used to test the robustness of Crm .

Original transmissions are required to evaluate the robust-
ness of Crm . Therefore, the ground truth of depth images is

used to obtain original transmission usingEq. (3)withβ = 1.
A little gaussian noise (with zero mean and standard devia-
tion σg = 0.05) is added to these original transmissions to
reduce their accuracy and smoothness. The original transmis-
sions and noisy transmissions are used to obtain 50 dehazed
images using ASM.

Graph shown in Fig. 7a, b presents the values of (nc−rc)
and mc for 50 images. Values shown in Fig. 7a are obtained
from images which are dehazed using original transmissions.
Values shown in Fig. 7b are obtained from images which
are dehazed using noisy transmissions. Figure 7a shows that
mc > 0 and (nc − rc) < 0 for all images. Thus, Fig. 7a
proves that if the accurate and smooth transmission is used
to restore haze-free images, then Crm < 0, which confirms
the accuracy of the proposed metric. However, in the case
of noisy transmission, the rate of reduction in (nc − rc) is
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very high as shown in Fig. 7b. Figure 7b proves that the value
of (nc − rc) is 100 times less than the respective value of
(nc − rc) in Fig. 7a, and mc � 0. Thus, Crm for images
which are dehazed using noisy transmission will be either
very close to zero or zero. As well as, it is observed that
increased noise level in transmission grows the rate of reduc-
tion, which results in Crm = 0.

Therefore, it can be concluded that accurate transmission
results into high value(negative or positive) of Crm . Inaccu-
rate transmission will result in Crm � 0, which proves the
robustness of the proposed metric.

5.6 Qualitative comparison

Figures 8, 9, 10, 11, 12, 13, and 14 show comparison of visual
results obtained by the methods in [2,5,20,23,29,30] and the
proposed method. Varying images are used to measure qual-
ity of the proposed method. Figures 8 and 9 are outdoor
images with sky region. Figures 10 and 11 are images with
small sky region. Figures 12 and 13 are images without sky
region. Figure 14 is an image with large sky region.

Method in [5] produces blocky and halo artifacts near
depth discontinuities due to patch-based filtering, which is
shown in each Figs. 8b, 9, 10, 11, 12, 13, and 14b. It can
also be observed that method in [5] produces color distortion
in sky region due to invalidity of DCP in sky, as shown in
Figs. 8b, 9b, and 14b. Method in [23] produces fine results
in comparison with method in [5] for sky images. However,
this method performs poorly for image in Fig. 13c due to the
presence of white goose in scene at short distance.

Method in [20] produces much fine results. However, this
method overbrightens the pixels at long distance in the case
of large sky region as shown in Figs. 8d, 9d, and 14d. In
[29], haze relevant features are learned to gauge haze density.
Results produces by method in [29] are shown in Figs. 8e,
9e, 10e, 11e, 12e, 13e, and 14e. However, visual quality of
results is poor at long distance due to increased effect of haze.
Results obtained in [30] are pleasant. However, visibility at
long distance in Figs. 9f, 10f, 13f, and 14f is not as good
as of [5,20] due to wrong depth estimation. In [2], visibility
at long distance is good compared to [30] due to improved
depth estimation. However, method in [2] overdarkens the
image in Fig. 11g due to wrong estimated transmission.

Result obtained by the proposed method for image in
Fig. 8a is shown in Fig. 8h. It can be observed that the
visual quality of image in Fig. 8h is better than methods in
[2,5,23,29,30]. There exists a fence in Fig. 8a, which is high-
lighted by a red rectangle. It can be noticed that the fence is
visible in Fig. 8b, c, e, f, g, and h. However, it can be noticed
in Fig. 8d that method in [20] produces smooth overbrighten
sky region, which results in loss of information at long dis-
tance in the form invisible fence. This proves accuracy of the
proposed method. Figures 8h, 9h, and 14h show that the pro-

(a) (b) (c)

(d) (e) (f)

Fig. 15 Handling of haze-free images. a Haze-free image, b dehazed
image obtained using method in [20], c transmission obtained using
method in [20], d estimated minimum color channel of haze-free image
using the proposed method, e transmission obtained by the proposed
method, f dehazed image obtained by the proposed method

(a) (b)

(c) (d)

Fig. 16 Evaluation of the proposed method based on hazy images with
man-made light

posed method clearly removes haze at long distance points
in large sky regions without overbrightening of the image.

Image shown in Fig. 11a is a challenging hazy image [2].
Haze distribution in Fig. 11a is complex as highlighted by
a blue rectangle. Figure 11b shows a little residual haze in
highlighted area due to halo artifacts.Method in [23] removes
residual haze as shown in Fig. 11c. However, it loses leaves
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Table 2 Comparison of e in
Figs. 8, 9, 10, 11, 12, 13 and 14

e [5] [23] [20] [29] [30] [2] Proposed

Fig. 8 0.031 0.088 0.246 0.027 0.116 0.031 0.047

Fig. 9 0.280 0.468 0.513 0.041 0.371 0.505 0.551

Fig. 10 0.888 0.845 1.070 0.960 0.461 0.448 0.936

Fig. 11 0.015 0.060 0.045 0.013 0.060 0.0208 0.067

Fig. 12 0.472 0.854 0.977 0.516 0.621 0.780 0.908

Fig. 13 0.353 0.388 0.563 0.368 0.286 0.341 0.409

Fig. 14 3.150 3.469 3.306 2.888 2.746 3.117 3.824

Table 3 Comparison of r in Figs. 8, 9, 10, 11, 12, 13 and 14

r [5] [23] [20] [29] [30] [2] Proposed

Fig. 8 0.838 1.246 1.317 0.861 1.286 1.194 1.320

Fig. 9 0.929 1.487 1.629 1.158 1.462 1.691 1.530

Fig. 10 1.725 2.143 2.524 2.209 1.555 2.084 2.160

Fig. 11 1.000 1.134 1.059 1.006 1.107 1.202 1.150

Fig. 12 1.084 1.566 1.576 1.159 1.472 1.400 1.500

Fig. 13 1.225 1.790 2.033 1.170 1.408 1.591 1.487

Fig. 14 1.847 2.721 4.820 1.496 1.826 3.969 2.683

as highlighted by a yellow circle in Fig. 11c. Method in [20]
obtains better results as shown in Fig. 11d. Method in [29]
is unable to remove haze in highlighted area as shown in
Fig. 11e. Method in [30] generated black spots inside rect-
angle as shown in Fig. 11f due to inaccurate depth. Method

in [2] improved the results of method in [30] as shown in
Fig. 11g. However, it darkens the result as highlighted by a
red rectangle in Fig. 11g. The proposed method obtains bet-
ter results in comparison with methods in [2,5,20,23,29,30]
for Fig. 11a. Visual quality of images in Figs. 10h, 11h and
12h is much better than other existingmethods, which proves
that the proposed method obtains natural results for images
with non-sky region, small sky region, large sky region, and
white objects.

Dehazing methods are sensitive to handle the exceptional
cases such as dehazing of the haze-free image and images
withman-made lights. A comparison of the proposedmethod
with [20] for haze-free images and images with man-made
light is shown in Figs. 15 and 16.

Figure 15a is a haze-free image. It can be noticed that
dehazed images are dark due to over enhancement as shown
in Fig. 15b, f. Dehazed image in Fig. 15f is little dark in com-
parison with Fig. 15b due to the proposed tight lower bound

Table 4 Comparison on the basis of ssim and qm

Figure [5] [23] [20] [29] [30] [2] Proposed
ssim qm ssim qm ssim qm ssim qm ssim qm ssim qm ssim qm

Fig. 8 0.832 1.703 0.744 2.079 0.826 2.389 0.876 1.765 0.911 2.314 0.502 1.728 0.736 2.103

Fig. 9 0.542 1.752 0.699 2.655 0.814 2.956 0.702 2.280 0.927 2.760 0.703 2.899 0.870 2.947

Fig. 10 0.741 3.355 0.737 3.727 0.671 4.266 0.722 3.892 0.910 2.928 0.814 3.346 0.452 3.540

Fig. 11 0.590 2.148 0.627 3.047 0.685 3.240 0.669 2.345 0.900 2.994 0.206 3.143 0.798 3.198

Fig. 12 0.938 1.953 0.706 1.901 0.933 2.038 0.974 1.994 0.971 2.139 0.464 1.688 0.893 2.097

Fig. 13 0.813 2.392 0.777 2.955 0.701 3.297 0.791 2.329 0.871 2.566 0.536 2.469 0.731 2.628

Fig. 14 0.883 5.881 0.877 7.068 0.725 8.852 0.844 5.229 0.926 5.499 0.688 7.775 0.854 7.362

Table 5 Comparison based on
Crm in Figs. 8, 9, 10, 11, 12, 13
and 14

Figure [5] [23] [20] [29] [30] [2] Proposed

Fig. 8 0.176 0.224 0.103 0.243 0.567 0.075 0.319

Fig. 9 0.611 2.210 3.540 0.386 0.564 1.950 − 1.550

Fig. 10 2.000 0.164 0.038 0.064 0.684 0.343 − 0.136

Fig. 11 1.403 0.107 0.111 1.536 5.243 0.022 1.400

Fig. 12 1.488 0.353 0.042 0.714 0.568 0.189 − 0.619

Fig. 13 0.494 0.275 0.054 2.636 0.502 0.331 − 0.509

Fig. 14 0.119 1.078 0.081 0.094 0.299 0.118 − 1.414
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on transmission. However, it can be noticed from Fig. 15d
that the minimum channel obtained by the proposed method
is almost dark in the entire image except for bright objects.
Thus, the proposed method will produce accurate transmis-
sion if the atmospheric light is estimated correctly.

Figure 16 shows the visual comparison of results obtained
by the method in [5,20] and the proposed method on hazy
image containing man-made light in the form of headlights
of the train. These types of hazy images are the typical case
of non-uniform atmospheric light [48,52]. Dehazed image
obtained by method in [5] is shown in Fig. 16b. The method
in [5] estimates atmospheric light from brightest pixels of
the hazy image due to which headlights of the train are
overbrighten as shown in Fig. 16b. Method in [20] modifies
method in [5] to estimate atmospheric light, which controls
overbrightening of headlights of train as shown in Fig. 16c.
The proposed method relies on the method in [20] for atmo-
spheric light estimation. Thus, in Fig. 16d visual quality
of headlights is same as shown in Fig. 16c. The dehazed
image in Fig. 16c is dark, which proves that method in
[20] overenhanced the image.However, the proposedmethod
obtainednatural colorwith significant enhancement as shown
inFig. 16d. It can be noticed that there exists a residual haze at
long distance in dehazed images shown in Fig. 16b–d due to
inaccurate atmospheric light estimation. Therefore, it can be
concluded that atmospheric light estimation influences trans-
mission estimation which controls visual quality of dehazed
image.

However, the proposed method estimates the minimum
color channel of the haze-free image, which is independent
of atmospheric light. Thus, Figs. 15 and 16 prove that the
proposed method is robust to handle exceptional cases if the
atmospheric light is estimated accurately.

5.7 Quantitative comparison

Non-reference-based metrics e, r , ssim, qm, rc, and mc are
computed for images shown in Figs. 8, 9, 10, 11, 12, 13 and
14. Tables 2, 3, 4, and 5 present values of e, r , ssim, qm and
Crm on each image.

Table 2 proves that the proposed method better recov-
ers edges than method in [2,5,29,30] for Fig. 8. Methods in
[20,23] recover little more edges than the proposed method
due to wrong transmission. However, these methods lose
gradients as presented in Table 3. The proposed method sur-
passes method in [2,5,20,23,29,30] on value of r for Fig. 8.

The proposed method obtains better value of e and r
for Fig. 9 than methods in [2,5,20,23,29,30]. The proposed
method performs well on the basis of e and r for Fig. 10
in comparison with other methods except method in [20,30]
due to overestimation of transmission by these methods.

For image shown in Fig. 11, the proposed method obtains
better values of e and r than all other existing methods. The

proposed method proved to be better than methods in [2,5,
23,29,30] for images in Figs. 12 and 13 on the basis of e and
r value. Method in [20] recovers little more edges and has
a little better visibility than the proposed method. However,
the proposed method recovers more edges and has proven
visibility for image in Fig. 14 in comparison with method in
[2,5,20,23,29,30].

Furthermore, values of ssim and qm are presented in
Table 4 to measure combined effect of e, r and ssim. Table 4
shows that the proposed method outperform on the basis of
qm value. Method in [20] has obtained high value of qm for
image shown in Fig. 8 due to recovery of wrong edges and
gradients. However, method in [20] obtains less value ofCrm

as presented in Table 5. The proposed method restores more
corners thanmethod in [20] as proved byCrm value for Fig. 8
in Table 5.

Value of qm obtained by the proposedmethod for image in
Fig. 10 ismore than the value obtained bymethods in [2,5,20,
23,29,30]. Value of qm obtained by methods in [20,23,29] is
more than the proposedmethod due towrong obtained values
of e and r , which is proved by obtained value ofCrm by these
methods as presented in Table 5. Obtained value of qm for
image in Fig. 11 by the proposed method is more or equal
to the value of qm obtained by methods in [2,5,20,23,29,
30]. The proposed method has better visibility and recovers
more edges for image in Figs. 12 and 13, which is proved by
obtained qm andCrm . Method in [20] obtained high value of
qm for image in Fig. 14 due to overestimation of transmission
at long distance point. However, it loses matching corners
which is proved by value of Crm .

Furthermore, Table 5 proves that the proposed method
perform well in comparison with methods in [2,5,20,23,29,
30] on the basis of metric Crm . Obtained value of e, r , ssim,
r , qm, and Crm proves that the proposed method recovers
original edges with better visibility.

Graph shown in Fig. 17 compares psnr between the trans-
mission obtained bymethod in [31] and the proposedmethod
on images taken from Frida [38] to differentiate the proposed

Fig. 17 Comparison of transmission based on psnr
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Fig. 18 Comparison based on metric Q, ssim, ΔE and Qu using NYU. a Metric Q, b metric ssim, c metric ΔE , and d metric Qu . Blue, red,
green, and purple curve represents value of metrics (Q, ssim, ΔE and Qu) obtained using methods in [2,20,30] and the proposed method

method from method in [31]. Figure 17 shows that the trans-
mission obtained by the proposed method is much closer to
ground truth, which is proved by psnr value achieved by the
proposedmethod. The graph shows that the proposedmethod
surpasses method of [31] on the basis of psnr for all images
of Frida.

Furthermore, results obtained by the proposed method are
compared on the basis of metric Q, ssim, ΔE and Qu using
NYU [34] withmethods in [2,20,30]. Figure 18 shows values
of metric Q, ssim,ΔE and Qu on first 50 images of NYU in
the form of graph. Table 6 presents average values of these
metrics obtained by methods in [2,20,30] and the proposed
method.

The proposed method obtains better visual quality of
dehazed images in comparison with methods in [2,20,30]
as shown in Fig. 18a. Structural similarity achieved by the
proposed method is much better than methods in [2,20,30],
which is proved in Fig. 18b. The proposed method restores
original colors in comparison with methods in [2,20,30] as
shown in Fig. 18c. Figure 18d proves that the proposed

method surpasses all other methods on the basis of metric
Qu .

Table 6 proves that the proposedmethod obtains high aver-
age value of metrics Q, ssim, ΔE and Qu in comparison
with methods in [2,20,30]. The proposedmethod achieves an
accuracy of 61.31% in visual quality restoration as proved by
the average value of metric Q. Structural similarity obtained
by the proposed method is 88% accurate, which proves that
the proposed method restores better contrast and preserves
the structure of the dehazed image. Average color distance
obtained by the proposed method is 87%, which infers that
the proposed method restores original colors.

6 Conclusion

Tight lower bound on the transmission is proposed. Tight
lower bound is further regularized using contextual regular-
ization to obtain accurate transmission. The accuracy of the
lower bound depends upon the correct estimation of the min-
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Table 6 Average value of metrics Q, ssim, ΔE and Qu on first 50
images of NYU

Metric [20] [30] [2] Proposed method

Q 55.74 59.06 56.51 61.31

ssim 0.82 0.85 0.72 0.88

ΔE 0.86 0.82 0.78 0.87

Qu 0.84 0.83 0.75 0.88

imum color channel of the haze-free image. Thus, a prior is
proposed to estimate theminimum color channel of the haze-
free image based on the method in [31]. Further, a new blind
assessment metric Crm is proposed to evaluate the perfor-
mance of dehazing methods. Effectiveness of the proposed
method is proved by visual quality of results and quantita-
tive metrics (such as e, r , ssim, psnr , qm, Crm , Q, ΔE and
Qu). Theproposedmethodobtains better results than existing
methods. The accuracy of the transmission obtained by the
proposed method is proved by psnr . However, the proposed
method is based on the regularization technique, which is
computationally intensive. Thus, a fast technique to estimate
precise transmission is essential. Moreover, estimation of
atmospheric light influences transmission estimation. Thus,
a robust method to estimate atmospheric light is required
to improve the performance of the proposed method. In the
future, we would like to focus on these issues.
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