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Abstract
To achieve superior image reconstruction, this paper investigates a hybrid regularizers model for image denoising and deblur-
ring. This approach closely incorporates the advantages of the total generalized variation and wavelet frame-based methods.
Computationally, a highly efficient alternating minimization algorithm containing no inner iterations is introduced in detail,
which synchronously restores the degraded image and automatically estimates the regularization parameter based on Moro-
zov’s discrepancy principle. Illustrationally, we demonstrate that our proposed strategy significantly outperforms several
current state-of-the-art numerical methods and closely matches the performance of human vision in solving the image decon-
volution problem, with respect to restoration accuracy, staircase artifacts suppression and features preservation.

Keywords Image restoration · Total generalized variation · Wavelet frame · Alternating minimization method · Discrepancy
principle

1 Introduction

Image restoration aims at recovering an underlying image u
from its observed degradation f . Mathematically, the basic
image restoration model is usually formulated as f = Ku+
n, with K being a bounded linear blurring (or convolution)
operator and n a white additive Gaussian noise with variance
σ 2. A classical way to solve this ill-posed inverse problem
is to add a regularization, resulting in the following energy
functional

min
u

J (u) + λ

2
‖Ku − f ‖22. (1)

Here, J (u) denotes the regularization term and λ is a positive
regularization parameter.

As is well known, several popular regularization tech-
niques have been developed in image processing. Among
them, partial differential equation and wavelet frame reg-
ularized methods are two popular approaches, which have
been studied extensively and made great successes. One suc-
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cessful example of variational methods is the total variation
(TV) [1] regularized model as

min
u

TV(u) + λ

2
‖Ku − f ‖22. (2)

Numerically, solving for the above model, there exist several
highly efficient numerical methods. Thereinto, simultane-
ously recovering the degraded image and estimating the
regularization parameter λ adaptively is a challenging sub-
ject. Up to now, various approaches have been sprung up
for the parameter selection automatically, such asMorozov’s
discrepancy principle [2–6], the generalized cross-validation
method [7,8], the L-curve approach [9] and the variational
Bayesian method [10,11]. One thing to be noted is that,
when the noise variance is available, Morozov’s discrep-
ancy principle is preferred to achieve the optimal parameter
λ adaptively.

This model performs well in preserving important detail
features for image denoising. Unfortunately, the numerous
staircase effect inevitably emerges due to the TV regular-
ized framework. To overcome this drawback, researchers
recently introduced the total generalized variation (TGV) as
penalty functional in image processing. More specifically,
the second-order TGV with weight α (TGV2

α) regularized
models [12–19] have been achieved extensive research and
attention. Thereinto, applied for image restoration, the result-
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ing model is given by

min
u

TGV2
α(u) + λ

2
‖Ku − f ‖22. (3)

Calculating for the minimization problem (3), Bredies et
al. [14] proposed a spatially dependent regularization param-
eter selection algorithm based on statistical methods. Later,
He et al. [18] introduced an adaptive parameter estimation
approach using the discrepancy principle.

Another well-adopted regularizer technique is the wavelet
frame-based methods [20–24] with the �1-norm of frame
coefficients. This shrinkage method makes the relevant theo-
retical analyses and calculations easier, and performs well in
image processing too. However, the only fly in the ointment
is that the Gibbs-like oscillations emerge frequently around
the image discontinuities.

Therefore, to better reconstruct the degraded image
and simultaneously preserve image features, a new edge-
preserving regularization scheme is reported in this work.
Namely, by integrating the merits of TGV2

α and wavelet
frame transform, and avoiding their main shortcomings, we
concentrate on a novel hybrid regularizers model for image
restoration. The optimization problem is established in the
following form

min
u

TGV2
α(u) + β‖Wu‖1 + λ

2
‖Ku − f ‖22, (4)

whereW is thewavelet frame transform. It is noteworthy that,
applying Morozov’s discrepancy principle, we will present
a fast numerical algorithm that can be used to achieve the
regularization parameter λ in (4) automatically. Therefore,
the concerned image reconstruction problem is formulated
as

min
u

TGV2
α(u) + β‖Wu‖1 s.t. ‖Ku − f ‖22 ≤ m2, (5)

where m2 = τn1n2σ 2, with τ being a noise-dependent
predetermined parameter and n1×n2 the image pixels. Gen-
erally, as discussed in [8], one can simply set τ = 1.

Subsequently, let us define the characteristic function
ID(u) as

ID(u) =
{
0, u ∈ D � {u : ‖Ku − f ‖22 ≤ m2},
+∞, otherwise.

(6)

Then, the constrained optimization problem (5) can be trans-
ferred into an unconstrained one as follows:

min
u

TGV2
α(u) + β‖Wu‖1 + ID(u). (7)

Our significant contributions of this article can be summa-
rized as follows. First off, on the basis of theTGVandwavelet

frame-based methods, we put forward a new hybrid regular-
izers model for image restoration. The inclusion of multiple
regularizers helps to obtain more accurate and stable numer-
ical solutions. The second important advantage is to develop
an extremely efficient alternatingminimization algorithm for
solving the resultingmodelwithout any inner iteration,which
simultaneously recovers the degenerated image and adap-
tively selects the optimal parameter λ using the discrepancy
principle.

The outline of this article is generalized as follows. Sec-
tion 2 gives a summary of the necessary definitions and
the basic properties on the proposed model. In Sect. 3, we
describe in more detail the alternating minimization method
that adaptively updates the regularization parameter in each
iteration step. And the convergence proof is also analyzed in
Sect. 4 in brief. Numerical results aiming at demonstrating
the effectivity of the new algorithm are provided in Sect. 5.
Finally, concluding remarks are drawn in Sect. 6.

2 Preliminaries

Our objective in this section is to give a brief introduction
and summarize the properties on the model (7). Referring
to [12,13,17], we begin with the concept of second-order
TGV.

Definition 1 Let Ω ⊂ R
d be a bound domain, and α =

(α0, α1) > 0. Then, the second-order total generalized vari-
ation for u ∈ L1(Ω) is defined as the value of the functional

TGV2
α(u) = sup

{ ∫
Ω

udiv2ϑdx
∣∣ϑ ∈ C2

c (Ω, Sd×d),

‖ϑ‖∞ ≤ α0, ‖divϑ‖∞ ≤ α1

}
,

(8)

where Sd×d represents the set of all symmetric d × d matri-
ces and C2

c (Ω, Sd×d) is the space of compactly supported
symmetric d×d matrix fields. Moreover, the space of bound
generalized variation (BGV) of order 2 endowed with

BGV2
α(Ω) =

{
u ∈ L1(Ω)

∣∣TGV2
α(u) < ∞

}
,

‖u‖BGV2
α

= ‖u‖1 + TGV2
α(u),

(9)

is a Banach space. Furthermore, thanks to [25], if Ω ⊂ R
d

is a bounded Lipschitz domain, then BGV2
α(Ω) = BV(Ω)

for all (α0, α1) > 0 in the sense of topologically equivalent
Banach spaces.

In the following, we focus on the dimension d = 2 and
denote the spaces: U = C2

c (Ω,R), V = C2
c (Ω,R2), and

W = C2
c (Ω, S2×2). Based on Refs. [12,17], the discretized

TGV2
α(u) of u ∈ U is then rewritten as

123



Total generalized variation and wavelet frame-based adaptive image restoration algorithm 1885

TGV2
α(u) = min

p
α1‖∇u − p‖1 + α0‖ε(p)‖1, (10)

where p = (p1, p2)T ∈ V , and ε(p) = 1
2 (∇ p+∇ pT) stands

for the symmetrized derivative. Here, the operators ∇u and
ε(p) are characterized by

∇u =
[
ux
uy

]
, ε(p) =

[
p1x

1
2 (p1y + p2x )

1
2 (p1y + p2x ) p2 y

]
.

(11)

Next, we briefly review the concepts of tight frame and
tight wavelet frame for L2(R2). More details regarding this
issue can be found in [21].

Definition 2 A countable set X ⊂ L2(R2) is called a tight
frame if

f =
∑
g∈X

〈 f , g〉g, ∀ f ∈ L2(R2), (12)

where 〈·, ·〉 is the inner product of L2(R2).

Furthermore, for given Ψ = {ψ1, . . . , ψr } ⊂ L2(R2),
the wavelet system X (Ψ ) is defined by the collection of the
dilations and the shifts of Ψ as

X (Ψ ) = {ψl,s,t : 1 ≤ l ≤ r; s, t ∈ Z},

where ψl,s,t is characterized by

ψl,s,t =
{
2sψl(2s · −t), s ≥ 0,
22sψl(2s · −2s t), s < 0.

(13)

If X (Ψ ) forms a tight frame of L2(R2), then the system
X (Ψ ) is called a tight wavelet frame and each function ψi ∈
Ψ (i = 1, . . . , r) is called a (tight) framelet.

At last, let us return to the existence of the solution to (7).

Theorem 1 The optimization problem (7) admits a solution.

Proof Let {uk} be a bounded minimizing sequence. By the
compactness property in the space BV(Ω), there exists a
subsequence of {uk} denoted by the same symbol and u∗ ∈
BV(Ω), such that {uk} converges to u∗ in L1(Ω). Subse-
quently, according to the standard arguments in [12,21,26,
27], the functions TGV2

α(u), ‖Wu‖1 and ID(u) are all lower
semi-continuous, proper and convex, and so is their weighted
sum. Therefore, this leads to that

inf
{
TGV2

α(u) + β‖Wu‖1 + ID(u)
}

≥ lim inf
k→+∞

{
TGV2

α(uk) + β‖Wuk‖1 + ID(uk)
}

≥ TGV2
α(u∗) + β‖Wu∗‖1 + ID(u∗),

which implies that u∗ is a minimizer of the problem (7). ��

3 Numerical algorithm

With the formulation of TGV2
α in (10), this results in the

minimization problem as follows:

min
u,p

α1‖∇u − p‖1 + α0‖ε(p)‖1 + β‖Wu‖1 + ID(u). (14)

By the variable splitting technique [20,28–31], we introduce
four auxiliary variables d, v, w, z and consider the following
constrained optimization problem:

min
u,p,d,v,w,z

α1‖d‖1 + α0‖v‖1 + β‖w‖1 + ID′(z),

s.t. d = ∇u − p, v = ε(p), w = Wu,

z = Ku, z ∈ D′ �
{
z : ‖z − f ‖22 ≤ m2

}
.

(15)

To deal with the above constrained problem, we convert it
into an unconstrained one by adding the quadratic penalty
functions. This yields

min
u,p,d,v,w,z

α1‖d‖1 + α0‖v‖1 + β‖w‖1 + ID′(z)

+ γ1

2
‖d − (∇u − p)‖22 + γ2

2
‖v − ε(p)‖22

+ γ3

2
‖w − Wu‖22 + γ

2
‖z − Ku‖22,

(16)

with γ1, γ2, γ3, γ > 0 being four penalty parameters. This
formulation of the problem is very advantageous because
the optimization problem (16) can be solved by employing
an efficient alternating minimization method. This results in
the following iterative framework:

(
uk+1, pk+1, dk+1, vk+1, wk+1, zk+1

)

= arg min
u,p,d,v,w,z

α1‖d‖1 + α0‖v‖1 + β‖w‖1 + ID′(z)

+ γ1

2
‖d − (∇u − p) − d̃k‖22

+ γ2

2
‖v − ε(p) − ṽk‖22

+ γ3

2
‖w − Wu − w̃k‖22 + γ

2
‖z − Ku − z̃k‖22,

(17)

with the updates for d̃k+1, ṽk+1, w̃k+1 and z̃k+1:

d̃k+1 = d̃k + γ1

((
∇uk+1 − pk+1

)
− dk+1

)
, (18)

ṽk+1 = ṽk + γ2

(
ε
(
pk+1

)
− vk+1

)
, (19)

w̃k+1 = w̃k + γ3

(
Wuk+1 − wk+1

)
, (20)

z̃k+1 = z̃k + γ
(
Kuk+1 − zk+1

)
. (21)
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More precisely, to implement the algorithm (17), we can per-
form this minimization efficiently by iteratively minimizing
with respect to u, p, d, v, w and z, respectively, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1 = argmin
u

γ1
2 ‖(∇u − pk) − dk + d̃k‖22

+ γ3
2 ‖Wu − wk + w̃k‖22 + γ

2 ‖Ku − zk + z̃k‖22,
pk+1 = argmin

p

γ1
2 ‖(p − ∇uk+1) + dk − d̃k‖22

+ γ2
2 ‖ε(p) − vk + ṽk‖22,

dk+1 = argmin
d

α1‖d‖1 + γ1
2 ‖d−∇uk+1+ pk+1 − d̃k‖22,

vk+1 = argmin
v

α0‖v‖1 + γ2
2 ‖v − ε(pk+1) − ṽk‖22,

wk+1 = argmin
w

β‖w‖1 + γ3
2 ‖w − Wuk+1 − w̃k‖22,

zk+1 = argmin
z

ID′(z) + γ
2 ‖z − Kuk+1 − z̃k‖22.

(22)

In the first step, for solving the subproblem with respect to u,
theKarush–Kuhn–Tucker (KKT) necessary conditions assert
that

(γ KT K + γ1∇T∇ + γ3W
TW )uk+1 = γ KT (zk − z̃k)

+ γ1∇T (dk + pk − d̃k) + γ3W
T (wk − w̃k),

which means that

uk+1 =
(
γ KT K − γ1Δ + γ3 I

)−1[
γ KT (zk − z̃k)

+γ1∇T (dk+ pk − d̃k)+γ3W
T (wk − w̃k)

]
, (23)

where AT denotes the adjoint of A,∇T∇ = −Δ and
WTW = I . Notice that, under the periodic boundary condi-
tion, KT K and ∇T∇ are all block circulant, so that they can
be diagonalized by fast Fourier transform (FFT).Hence,uk+1

is calculated by FFT and inverse FFT efficiently. Alterna-
tively, (23) can be solved by discrete cosine transform (DCT)
under the Neumann boundary condition with mirror exten-
sion and assuming that K is symmetric (see [32]). In our
simulation results, we apply the periodic boundary condition
and FFTs.

Next, for the p-subproblem, by differentiating the second
equation of (22) of both hand sides with respect to p, we
have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ1

[(
pk+1
1 − ∇1uk+1

)
+ dk1 − d̃k1

]
+ γ2

[
∇T
1

(
∇1 p

k+1
1 − vk1

+ ṽk1

) + 1
2∇T

2

(
∇2 p

k+1
1 + ∇1 p

k+1
2 − 2vk3 + 2ṽk3

)]
= 0,

γ1

[(
pk+1
2 − ∇2uk+1

)
+ dk2 − d̃k2

]
+ γ2

[
∇T
2

(
∇2 p

k+1
2 − vk2

+ ṽk2

) + 1
2∇T

1

(
∇1 p

k+1
2 + ∇2 p

k+1
1 − 2vk3 + 2ṽk3

)]
= 0,

(24)

which we can rewrite as in the following formulation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
γ2∇T

1 ∇1 + γ2
2 ∇T

2 ∇2 + γ1 I
)
pk+1
1 + γ2

2 ∇T
2 ∇1 p

k+1
2

= γ1∇1uk+1 + γ1

(
d̃k1 − dk1

)
+ γ2∇T

1 (vk1 − ṽk1)

+ γ2∇T
2

(
vk3 − ṽk3

)
,

γ2
2 ∇T

1 ∇2 p
k+1
1 + ( γ2

2 ∇T
1 ∇1 + γ2∇T

2 ∇2 + γ1 I
)
pk+1
2

= γ1∇2uk+1 + γ1

(
d̃k2 − dk2

)
+ γ2∇T

2

(
vk2 − ṽk2

)
+ γ2∇T

1

(
vk3 − ṽk3

)
.

(25)

As can be seen from (25), in essence, it is a system of
linear equations in two unknowns pk+1

1 and pk+1
2 . This

observation leads to that the coefficient matrix associated
with (pk+1

1 , pk+1
2 ) can be diagonalized blockwise under the

Fourier transform.
Before going further, let us introduce some necessary

notations used in what follows. In the sequel, for notational
convenience, we denote the expressions by

a1 = γ2∇T
1 ∇1 + γ2

2
∇T
2 ∇2 + γ1 I , a2 = γ2

2
∇T
1 ∇2,

a3 = γ2

2
∇T
1 ∇1 + γ2∇T

2 ∇2 + γ1 I ,

b1 = γ1∇1u
k+1 + γ1(d̃

k
1 − dk1 ) + γ2∇T

1 (vk1 − ṽk1)

+γ2∇T
2 (vk3 − ṽk3),

b2 = γ1∇2u
k+1 + γ1(d̃

k
2 − dk2 ) + γ2∇T

2 (vk2 − ṽk2)

+γ2∇T
1 (vk3 − ṽk3).

This convention, together with (25), yields that

{
a1 p

k+1
1 + aT2 pk+1

2 = b1,

a2 p
k+1
1 + a3 p

k+1
2 = b2.

(26)

It is noteworthy that linear operators a1, a2 and a3 are all
block-circulant matrices under the periodic boundary con-
dition, and which further can be diagonalized by FFT. As a
consequence, this together with the Cramer’s rule, two vari-
ables pk+1

1 and pk+1
2 in the system (26) can be efficiently

computed in the Fourier domain.
As for the d, v and w subproblems shown in (22), the

generalized shrinkage formula, similarly as in [33], can be
adopted preferentially. Namely,

dk+1 = shrink
((∇uk+1 − pk+1) + d̃k,

α1

γ1

)
, (27)

vk+1 = shrink
(
ε(pk+1) + ṽk,

α0

γ2

)
, (28)

wk+1 = shrink
(
Wuk+1 + w̃k,

β

γ3

)
, (29)

with shrink(t, δ) = sign(t) · max(|t | − δ, 0).
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At last, we are now in the position to solve the z-
subproblem. It can be written as

zk+1 = argmin
z

λk+1

2
‖z − f ‖22 + γ

2
‖z − (Kuk+1 + z̃k)‖22,

(30)

which indicates that

zk+1 = (λk+1 f + γ (Kuk+1 + z̃k))/(λk+1 + γ ), (31)

where the regularization parameter λk+1 is updated by the
discrepancy principle in the (k + 1)th iteration. Obviously,
the solutions of λk+1 and zk+1 are related together. More
precisely, if ‖(Kuk+1 + z̃k) − f ‖22 ≤ m2 (�) holds, we set
λk+1 = 0 and zk+1 = Kuk+1 + z̃k . On the contrary, by the
discrepancy principle, we should solve the following equa-
tion:

‖zk+1 − f ‖22 = m2. (32)

To this end, the relationship (31), together with (32), leads to
that

λk+1 = (γ ‖ f − (Kuk+1 + z̃k)‖2/m) − γ. (33)

In conclusion, putting all of these elements together, this
results in the following algorithmic framework: alternating
minimization method, devoted for solving (7).

Algorithm. TGV and wavelet frame-based alternating min-
imization method

Input: f , K ,m2.
1: Initialize: u0, p0, d0, v0, w0, z0, d̃0, ṽ0, w̃0, z̃0; Choose
α0, α1, β, γ, γ1, γ2, γ3.
2: while ‖uk+1 − uk‖2/‖uk‖2 > tol, do
3: Compute uk+1 by (23);
4: Compute pk+1 by (26);
5: Compute dk+1 by (27);
6: Compute vk+1 by (28);
7: Compute wk+1 by (29);
8: if (�) holds, then
9: λk+1 = 0 and zk+1 = Kuk+1 + z̃k ;
10: else
11: Compute λk+1 and zk+1 by (33) and (31);
12: end if
13: Update d̃k+1, ṽk+1, w̃k+1, z̃k+1 by (18)-(21);
14: end while
15: Output: u = uk+1 and λ = λk+1.

4 Convergence analysis

In this section, as far as the convergence property of the above
iterative algorithm is concerned, we will present the main
theorem in what follows. Here, we only give the basic proof
frameworks and do not repeat the lengthy proving process.
Similar to the classical alternating directionmethod of multi-
plier (ADMM) developed in [34–36], we have the following
theorem.

Theorem 2 For given γ1, γ2, γ3, γ > 0, the sequence
{uk, pk, dk, vk, wk, zk, λk} generated by the proposed algo-
rithm from any initial point converges to a solution of (16).

Proof It follows from (17) that the (u, p)-subproblem and
d, v, w, z subproblems are decoupled each other. Thus,
six variables can be grouped into two blocks (u, p) and
(d, v, w, z). Therefore, our method can be regarded as an
application of ADMM. Concerning the convergence proof of
the proposed approach, let us first construct the Lagrangian
functional as follows:

L (u, p, d, v, w, z; d̃, ṽ, w̃, z̃) = α1‖d‖1 + α0‖v‖1
+β‖w‖1 + ID′(z) + γ1

2
‖d − (∇u − p) − d̃‖22

+γ2

2
‖v − ε(p) − ṽ‖22 + γ3

2
‖w − Wu − w̃‖22

+γ

2
‖z − Ku − z̃‖22, (34)

and denote three variables by X = (u, p),Y = (d, v, w, z)
and Z = (d̃, ṽ, w̃, z̃). Recurring to the standard arguments
on ADMM stated above, for given γ1, γ2, γ3, γ > 0, then
the sequence generated by the resulting iterative framework
(22) converges to the saddle point of (34), and the proof is
completed. ��

5 Experimental results

In this section, we illustrate the effectiveness of the pro-
posed hybrid model with different wavelet frames on five
256 × 256 test images: Lena, Cameraman, Boat, Peppers
and Butterfly. We also compare the recovered results with
four closely related TGV, wavelet frame, TV+wavelet (TVW
for short) and deep learning-based methods, by measuring
the reconstruction quality, staircase effect suppression and
edge-preserving ability. For fair comparisons, under the dis-
crepancy principle, these regularized models are all solved
by adopting the regularization parameter update algorithms.

An important remark is that all images are processed by
our scheme with the parameters γ1 = 0.5, γ2 = 1, γ3 = 1
and γ = 10(BSNR/10−1) for reconstructing the reasonable
results, with BSNR = 10 log10(‖ f ‖22/‖n‖22). The other
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Fig. 1 Recovered results by using three different models on Lena image. a Original image, b noisy image, c wavelet frame, d TGV model, e our
hybrid scheme

Fig. 2 Locally enlarged images recovered by using three different models on Lena image. a Original image, b noisy image, c wavelet frame,
d TGV model, e our hybrid scheme
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Table 1 Comparison of the recovered results using three different mod-
els on Lena image

Model Niter Time (s) PSNR FOM FSIM

Wavelet 135 7.2556 32.2548 0.9547 0.9435

TGV 102 3.4387 32.8025 0.9573 0.9462

Ours 62 4.7228 32.9915 0.9608 0.9490

parameters are firmly fixed toα0 = 3, α1 = 1.5 and β = 0.5.
Additionally, as is suggested in [5,6], the parameter τ can
be selected as τ = −τ0 × BSNR + 1.09, with τ0 = 0.03
for image denoising and τ0 = 0.006 for image deblurring,
respectively. All experiments are implemented using MAT-
LAB R2011b on a PC with Intel(R) Core(TM) i5 CPU and
4GB of RAM under Windows 7.

The stopping criterion for all the tested algorithms is set to
‖uk+1 − uk‖2/‖uk‖2 < 10−4 or the number of iterations is
larger than 1000. The quality of the recovered image is quan-
titatively measured by peak signal-to-noise ratio (PSNR),
which is defined as

PSNR = 10 log10
(2552 · n1n2

‖u − ũ‖22
)
, (35)

Table 2 Comparison of the recovered results using three different mod-
els on Cameraman image

Model Niter Time (s) PSNR FOM FSIM

Wavelet 176 11.0205 26.4859 0.9242 0.8535

TVW 106 8.5136 26.6902 0.9215 0.8633

Ours 95 8.0146 26.8980 0.9271 0.8709

where u and ũ denote the original image and the restored
data, respectively. Also, the optimal λ is chosen in achieving
the best restoration with respect to the PSNR value. Fur-
thermore, the Pratt’s figure of merit (FOM) criterion [37]
is employed to evaluate the edge-preserving ability of dif-
ferent models. Meanwhile, we also compare their recovered
results by adapting the feature similarity (FSIM) index [38]
for image quality assessment. Generally speaking, the larger
PSNR, FOM and FSIM values normally indicate that the
restoration is of higher quality.

Example 1 First, we validate the ability of the proposed
hybrid regularizers strategy for image denoising and com-
pare it with two successfulmethods: thewavelet frame-based
model and the TGV model. Here, the wavelet frame is a
4-scale redundant Haar frame. The original image Lena is
shown in Fig. 1a. Figure 1b (PSNR = 28.1281dB) stands
for its noisy version corrupted by white random Gaussian

Fig. 3 Recovered results by using three differentmodels onCameraman image. aOriginal image, b degraded image, cwavelet frame, dTV+wavelet
frame, e our hybrid scheme
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Fig. 4 Recovered results by using three different models on Boat image. a Original image, b degraded image, c wavelet frame, d TV+wavelet
frame, e our hybrid scheme

noise with standard variance 10. Figure 1c, d denotes the
denoised versions by the wavelet frame model and the TGV
model, respectively. And we display in Fig. 1e the perfor-
mance of our novel scheme. The local enlarged images and
recovered results by three different models are separately
listed in Fig. 2 and Table 1. As might be expected, it fol-
lows from Fig. 1 and Table 1 that our proposed hybrid model
provides the best restoration, visually and quantitatively, in
terms of suppressing noise and preserving details over some
existing sophisticated numerical methods.

Example 2 Wetake another standard test imageCameraman
(Fig. 3a) as an example for image deconvolution. Its degraded
version shown in Fig. 3b (PSNR = 23.0625dB) is blurred
by Gaussian convolution with a 5×5 window and a standard
deviation of 3, and noisy by white Gaussian noise with vari-
ance σ 2 = 15. In this case, the wavelet frame is selected as
the 4-scale Daubechies-4 wavelet. The deconvolution results
by the wavelet frame model, the TV+wavelet model and our
method are displayed in Fig. 3c–e and Table 2, respectively.

Example 3 In Fig. 4, we compare the denoised and deblurred
results for image Boat , by using the wavelet frame model,
the TV+wavelet model and our proposed strategy. We use
2-scale Coiflet filter for our wavelet frame to deal with the
contaminated image (Fig. 4b, PSNR = 24.1873dB), blurred
by motion blur with parameters “len = 6” and “theta = 30,”

Table 3 Comparison of the recovered results using three different mod-
els on Boat image

Model Niter Time (s) PSNR FOM FSIM

Wavelet 141 13.3706 26.7031 0.8515 0.8740

TVW 84 8.4937 26.7960 0.8598 0.8776

Ours 71 8.2835 26.9562 0.8675 0.8833

and noisy by white Gaussian noise with variance σ 2 = 15.
Subsequently, provided Fig. 4 andTable 3 indicate the decon-
volution results by using three different models in more
detail.

Example 4 Subsequently, to further evaluate the performance
of the addressed hybrid regularizers approach to image
deblurring, we use 4-scale symmetric framelet [39] for our
model and deal with the contaminated Peppers image.
Figure 5b (PSNR = 22.3220dB) denotes the degenerated
version blurred by a 6× 6 averaging filer and noisy by white
Gaussian noise with variance σ 2 = 20. Furthermore, the
restored results by the TGV model, the TV+wavelet model
and our proposed algorithm are presented in Table 4 and
Fig. 5 at great length.
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Fig. 5 Recovered results by using three different models on Peppers image. a Original image, b degraded image, c TGV model, d TV+wavelet
frame, e our hybrid scheme

Table 4 Comparison of the recovered results using three different mod-
els on Peppers image

Model Niter Time (s) PSNR FOM FSIM

TGV 107 3.8577 27.4869 0.8748 0.8968

TVW 98 9.3326 27.4637 0.8753 0.8956

Ours 85 8.5753 27.8108 0.8796 0.9086

Example 5 At last, with the aim of further illustrating the
performance, we compare our reconstructions with the TGV
and another popular and powerful deep learning-basedmeth-
ods [40,41]. It is worth pointing out that the Daubechies
wavelet D6 is chosen for wavelet frame in the implemen-
tation of our algorithm. As suggested in [40], the MLP
approach is carried out with the Gaussian window width of

2 and a stride size of 3. Five degraded images are all cor-
rupted by additive Gaussian noise with standard variance
15. Recovered results and measurable comparisons obtained
using three different strategies are intuitively depicted and
listed in Table 5 and Fig. 6, respectively.

Observing the restorations in Figs. 3, 4, 5 and 6 gives that
the oscillation and staircasing artifacts are frequently pro-
ducedby the canonicalwavelet frameandTV-basedmethods.
However, the images recovered by our novel model are more
visually natural and veritable. Other comparisons outlined in
Tables 2, 3, 4 and 5, especially in achieving higher PSNR,
FOM and FSIM values than those of the wavelet frame,
TGV, TV+wavelet and deep learning-based efficient meth-
ods, concertedly illustrate the outstanding performance of the

Table 5 Comparison of the
recovered results using three
different models on five test
images

Images PSNR FOM FSIM

MLP TGV Ours MLP TGV Ours MLP TGV Ours

Lean 30.8147 30.7395 30.8548 0.9058 0.9266 0.9285 0.9109 0.9252 0.9275

Cameraman 29.5733 30.2686 30.3747 0.9669 0.9743 0.9779 0.8775 0.9132 0.9143

Boat 28.1143 29.2238 29.3062 0.9180 0.9486 0.9506 0.8816 0.9131 0.9167

Peppers 30.7085 30.9296 31.1083 0.9312 0.9509 0.9531 0.9233 0.9358 0.9373

Butterfly 29.9890 29.8311 29.9965 0.9778 0.9821 0.9832 0.9370 0.9333 0.9381

123



1892 X. Liu

Fig. 6 Recovered results by using three different models on five test images: Lena, Cameraman, Boat, Peppers and Butterfly. a1–a5 Degraded
image, b1–b5 MLP, c1–c5 TGV model, d1–d5 our hybrid scheme
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proposed approach to image deblurring, with respect to both
restoration accuracy and edge-preserving ability.

6 Conclusions

In this article, by incorporating the advantages of two recently
developed wavelet frame-based and TGVmethods, we intro-
duce a novel hybrid regularizers model for image denoising
and deblurring. Associated with the alternating minimiza-
tion method, the proposed framework is calculated by an
efficient adaptive parameter estimation algorithm, where
the parameter λ is changing automatically during the itera-
tions. Convergence of the algorithm is also briefly described.
Finally, in comparison with some state-of-the-art techniques,
experimental results distinctly illustrate the unexampled
superiority of our developed strategy in solving the image
restoration problem, in terms of reconstruction quality, stair-
casing effect reduction and details preservation.
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