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Abstract
This paper presents a coverage-based image caption generation model. The attention-based encoder–decoder framework has
enhanced state-of-the-art image caption generation by learning where to attend of the visual field. However, there exists a
problem that in some cases it ignores past attention information, which tends to lead to over-recognition and under-recognition.
To solve this problem, a coverage mechanism is incorporated into attention-based image caption generation. A sequential
updated coverage vector is applied to preserve the attention historical information. At each time step, the attention model takes
the coverage vector as auxiliary input to focus more on unattended features. Besides, to maintain the semantics of an image,
we propose semantic embedding as global guidance to coverage and attention model. With semantic embedding, the attention
and coverage mechanisms consider more about features relevant to the semantics of an image. Experiments conducted on
the three benchmark datasets, namely Flickr8k, Flickr30k and MSCOCO, demonstrate the effectiveness of our proposed
approach. In addition to solve the over-recognition and under-recognition problems, it behaves better on long descriptions.

Keywords Coverage model · Semantic embedding · Image caption generation · Attention-based model

1 Introduction

Automatically generating captions of images in sentence-
level language has been a popular topic in computer vision
recently. The challenge of the problem consists in not only
recognition of objects in an image, but also understanding
their activities, properties and relationships. Furthermore, the
semantic information has to be expressed in grammatically
and semantically reasonable natural language. It combines
computer vision with natural language processing which
are two major fields of artificial intelligence. While this
task seems straightforward for humans with just a glance,
it remains a challenging problem for machines over a long
period of time.

The effective andwidely used framework in image caption
generation is attention-based encoder–decoder architecture
[1–6]. The encoder–decoder framework plays an important
role in many applications, vary from the most popular neural
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machine translation [7] and speech recognition [8] to interac-
tive animation generation [9]. Attention mechanism has long
be used in computer vision [10–12], and its integration into
encoder–decoder framework has achievedmany state-of-the-
art results [1,13,14]. In image caption generation, the encoder
phase uses a convolutional neural network (CNN) [15–17] to
extract features from an image. The attention model attends
to a subset of the features each step, and the decoder phase
generates a corresponding word. By dynamically attending
to different features of the encoder, the attention mechanism
models the alignments between the objects and their corre-
sponding descriptions.

The attention process is to decide which features con-
tribute to the next generated word. However, after each
attention step, which features having been attended is not
recorded. As a consequence, the generation task might
result in problemsof over-recognition andunder-recognition,
which, respectively, means some features are unnecessar-
ily recognized for multiple times and some features are
mistakenly unrecognized but important to the semantics of
an image. Figure 1 shows an example of over-recognition
and under-recognition. In Fig. 1a, the words “climbing a
rock” are generated twice. In Fig. 1b, the proposed coverage
model alleviates the problem and recognizes the “red shirt.”
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Fig. 1 Example captions of a over-recognition and under-recognition
and b coverage model. The white region indicates the object recognized
by the model, and the underline indicates the corresponding word

Besides, the attention process is a kind of combination of
the source features. Obviously, combining all the features at
each step is a complicated task. The search space increases
exponentially with the number of features. To solve the prob-
lems stated above, a mechanism should be proposed to keep
track of the attention process.

Inspired by Tu et al. [18], we incorporate into the cover-
age model, in which a sequentially updated coverage vector
records the attention history. The attention model takes the
coverage vector as input and focuses more on features that
have not been covered. Nonetheless, the image features are
assembled together without relevant information of temporal
relationships. Besides, there is a large amount of redundant
information in an image. Only features related to the topic
of an image are supposed to be covered. Therefore, we pro-
pose semantic embedding as auxiliary guidance to coverage
and attention model. The semantic embedding captures the
semantics of an image. It leads the two mechanisms to con-
centrate more on features relevant to the subject of an image
and to follow the theme of the description.

In this paper, a coverage model with semantic embedding
is incorporated into attention-based image caption genera-
tion. Basically, a dynamically updated coverage vector is
appended to the intermediate representations of encoder–
decoder architecture to keep track of the attention history. To
make sure that the coverage and attention mechanisms focus
on sensible objects and ignore redundant ones, a semantic
embedding is learned as extra input to both coverage and
attention models. The extracted semantic information could
provide global guidance for attention and coverage. In the
following of this paper, we refer to the proposed model as
Cov-Sem.

This paper concentrates on image caption generation with
coverage and attention-based encoder–decoder architecture.
The main contributions of our work are summarized as fol-
lows:

1. A coverage model is incorporated into attention-based
encoder–decoder architecture to dynamically keep track

of attention history. This design makes the attention
mechanism ignore objects which have been recognized
and focus more on uncoverd regions.

2. A semantic embedding is proposed as auxiliary input
to coverage and attention model to guide their learn-
ing. Semantic embedding recognizes the image at global
scale. Associated with already generated words, it pro-
vides precise understanding of the entire image.

The rest of this paper is organized as follows. In Sect. 1,
related work in image caption generation is presented. In
Sect. 2, the details of the Cov-Sem are described. In Sect. 3,
the experiment results and examples are analyzed and finally
in Sect. 4, we conclude this paper with future research direc-
tions.

2 Related work

Generating natural language descriptions for images has
long been studied. Generally, the literature on image cap-
tion generation can be divided into three categories. The first
are template-based methods [19,20], in which the objects,
attributes and activities of an image are first detected and then
filled in a pre-defined sentence template. These approaches
are interpretable and can easily work with various object
recognition components. However, they excessively rely
on hand-designed templates and limit the expressiveness,
flexibility and fluency of sentences. The second follow
retrieval-based strategies [21,22], also known as transfer-
based methods. They search similar images that have cap-
tions and combine these captions to generate a new one.
These sort of methods require great amount of training
images as retrieving library. Accordingly, they cannot gener-
alize to images not contained in training set, i.e., lack of the
ability of generalization. Moreover, if the library of images
is very large, then for each image to inference, the searching
time will be the main constraint to prevent these methods
from utilization.

Inspired by recent progress of deep neural networks in
image recognition [15–17] and machine translation [7,23],
neural networks-based image caption generation has gained
more interest recently. Many of these methods apply CNN
for image feature extraction and RNN for caption genera-
tion. Kiros et al. [24] first introduce neural networks into
caption generation, in whose method only image features
are extracted by convolutional networks while the language
description phrases are generated by log-bilinearmodel.Mao
et al. [25] replace the language model with a RNN and
employe a multimodal network to connect the RNN with
a CNN. Donahue et al. [3] and Vinyals et al. [2] apply end-
to-end neural networks to generate image descriptions. The
incorporation of long short-term memory (LSTM) networks
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[26,27] makes the model to learn long-term dependencies.
Different from approaches above, Karpathy and Li [28] pro-
pose to project an image and its corresponding description
into a joint embedding space and measure the similarity
score between them. In addition to ensure the relationship
between the semantics of the entire sentence and visual con-
tent, Pan et al. [29] add coherence loss to jointly learning
the visual-semantic embedding and contextual relationship
of the captions. Jia et al. [30] rely on canonical-correlation
analysis (CCA) to build semantic representation of images
as global guidance of LSTM. Zhou et al. [31] build dynamic
semantic information of images based on previous generated
word.

In addition to the above three main categories, deep
reinforcement learning is first applied for image caption
generation by Ren et al. [32], in which the caption gener-
ation is regarded as a decision-making process. It also maps
the images and sentences into a joint embedding space as
the ranking losses. All the previous methods distilled static
image features. Xu et al. [1] incorporate attentionmechanism
into image caption generation. The attention mechanism
encodes image features every time step according to already
generated words and learned the latent alignments between
image regions and words. With regard to over-recognition
and under-recognition problems in attention mechanism for
image caption generation, in this paper the coverage model
proposed in Tu et al. [18] is introduced to keep track of
attention history. Furthermore, a semantic embedding is pro-
posed to provide global semantic information of an image.
Experiment results on three benchmark datasets show the
effectiveness of our proposed method, especially on descrip-
tions with long length.

3 Coveragemodel with semantic embedding

3.1 Attention-based encoder–decoder architecture

Our work is built on attention-based encoder–decoder archi-
tecture. In this subsection, a brief introduction is given to this
architecture.

3.1.1 Encoder: CNN for image features

The encoder takes a single raw image as input and extracts
a variety of image features denoted as annotation vectors.
Specifically, the commonly used convolutional neural net-
work is applied here to extract image features. At each
convolutional layer, the network extracts many channels of
features and each channel is a 2-D matrix, so that convolu-
tional neural networks possess the ability to preserve the 2-D
topology architecture of images. As Zeiler and Fergus [33]

mentioned, each channel in the convolutional layers corre-
sponds to a patch of the image. The higher the layer, the more
invariant of features. Therefore, the L annotation vectors pro-
ducedby the encoder aremachine-level representations of the
image. Each vector is flattened to D dimensions as shown
below.

a = {a1, . . . , aL}, ai ∈ R
D, i = 1, . . . , L (1)

Image caption generation task needs to recognize several
related objects and their attributes more than just categories
of an image. In order to maintain adequate information,
the image features are extracted from a lower convolutional
layer.

3.1.2 Decoder: attention-based LSTM

Caption generation is a sequential learning problem, on
which the LSTM network is an expert with the advantage of
modeling long-term dependencies. The major components
of LSTM are memory cells, along which the network states
propagate over time, and multiplicative gates that control
the input, output of the network and the update of the cell
state. The LSTM architecture applied here is built on Gers
et al. [34]. An LSTM memory block is presented in Fig. 2.
The memory cell and gates in an LSTM block are defined as
follows:

it = σ(Wi Eyt−1 +Uiht−1 + Zizt + bi ) (2)

f t = σ(W f Eyt−1 +U f ht−1 + Z f zt + b f ) (3)

c̃t = tanh(WcEyt−1 +Ucht−1 + Zczt + bc) (4)

ct = f t � ct−1 + it � c̃t (5)

ot = σ(WoEyt−1 +Uoht−1 + Zozt + bo) (6)

ht = ot tanh(ct ) (7)

where it , f t , c̃t , ct , ot and ht are the input gate, forget gate,
input to memory cell, memory cell, output gate and hidden
state of the LSTM block at time t, respectively. The vector zt
is the context vector, generated by attention model. yt−1 is
one-hot representation of words generated at time t-1, and E
is word embedding matrix. � represents element-wise mul-
tiplication. The nonlinearities used here are sigmoid σ(·) and
hyperbolic tangent tanh(·).

In addition to the LSTM network, another component of
the decoder phase is attention model. It captures the relativ-
ity between the visual features and each word of generated
captions. We use the soft attention model in Xu et al. [1].
Thus, the context vector at time step t is the weighted sum
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Fig. 2 An LSTM memory block

of annotation vectors as following:

zt =
L

∑

i=1

αt,iai (8)

The weight αt,i is a measurement of the relative importance
of feature ai at time t. The attention model is right for the
computation ofαt,i . It has two steps. For the first step, amulti-
layer perceptron (MLP) is applied to produce un-normalized
weights based on hidden states of LSTMnetwork at last step.

et,i = fatt(ai ,ht−1) (9)

Here, fatt is an MLPmodel. Since there is a diversity of deep
neural networks, in principle, any architecture is suitable for
the attentionmodel.As it is not the emphasis,we use theMLP
for simplification. The second step normalizes the weights to
sum to one.

αt,i = exp(et,i )
∑L

k=1 exp(et,k)
(10)

In fact, the attention model is predictive to automatically
decide which features of the image are contributable to next
generatedwords at each time step. It focuses onwhat it thinks
is important. Therefore, it accomplishes a sort of dynamic
recognition of the original image. In summary, the attention
model firstly computes the attention weights for annotation
vectors and generates the context vector at this step. Then, the
LSTM model takes the context vector and previously gener-
ated word as input, the hidden state at last step as recurrent,
and generates a new word. This process continues until the
model encounters a stopping sign, such as period.A complete
sentence is generated to describe the content of the image.

Fig. 3 Architecture ofCov-Semmodel. The rectangles in blue represent
coverage bedding in LSTM is unclear model and semantic embedding,
respectively

3.2 Coveragemodel with semantic embedding

Our Cov-Sem model is attention-based encoder–decoder
framework with coverage and semantic embedding, as illus-
trated in Fig. 3. The attention model and LSTM layer are
simplified to rectangulars. There are two additional blocks
besides the attention-based architecture. The details of the
coverage and semantic embedding blocks will be presented
in the following subsections.

3.2.1 Coverage model

The coverage model employed here is inspired by Tu et
al. [18], in which the model is used for keep track of transla-
tion process. Image caption generation is similar to machine
translation to a great extent, both translating one kind of rep-
resentation to a natural language. Therefore, the coverage
model in machine translation is incorporated into the image
caption generation task.

The attentionmodel in image caption generation is to build
the correspondence of pathes of an image and the generated
words. One patch should not be considered again after it has
been attended. However, attention model lacks the mecha-
nism to indicate which part of the image has been focused
on.AsEq. 9 shows, the attentionmodel only considers LSTM
hidden state of last time step. The historical state is not con-
tained in the attention model. As a result, some parts of
the image may be attended more than once or may not be
attended. Therefore, it is important to introduce coverage
model. As the coverage model is to keep track of the atten-
tion history, a coverage vector is appended to the annotations,
each dimension corresponds to one annotation vector. The
value of the vector indicates the degree of each annotation
being attended. The coverage vector is initialized to zero and
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updated after every step of the attentive recognition of the
annotation vectors. Then, the coverage vector is fed to the
attention model to facilitate where to attend in the next time
step.

In each step, the coverage vector updates according to
history coverage information and current attention results.
Evidently, the coveragemodel is sequential. In addition, since
the image has a variety of features, some important and some
of no use. Therefore, it is hard to artificially design the cov-
erage model to decide which features need to be covered
to what extent. Deep neural networks are overwhelming in
many complicate feature engineering applications. Conse-
quently, we use the LSTM network to model coverage for
its long-term dependency ability. For each annotation vector,
there is a scalar representing the coverage of this annotation.
Thus, the output of the coverage model is a L-dimensional
vector. For simplicity, we omit the gates and memory cells
representations and abbreviate the model as follows:

Ct, j = LSTM(Ct−1, j , αt, j , a j ), j = 1, . . . , L (11)

where Ct, j is a scalar representing the coverage information
of the annotation a j at time t.

3.2.2 Neural network-based semantic embedding

The coverage model is used for machine translation initially.
Every word in a sentence should be translated, i.e., the cov-
erage vector should cover all the words. However, for image
caption generation, not all the features contribute to the cap-
tion. There exists large amount of redundancy in an image.
In addition, the attention model only captures local relation-
ships between image patches and generated words. So it is
not enough to capture the useful information of an image
with just adding a coverage model. In this subsection, we
propose semantic embedding as global guidance for atten-
tion and coverage model. Different from Jia et al. [30] which
projected the image and sentence into a common semantic
space, the semantic embedding used in this paper adopts a
generative process to produce global semantic information
dynamically based on currently generated words.

Given an image, there are different descriptions from dif-
ferent viewpoints. So theglobal semantic is not unique.Based
on this consideration, we take into account the already gener-
atedwords as input to semantic embedding. Using contextual
information, the semantic guidance could avoid ambigu-
ity. Extracting the semantic information of an image based
on the image features and previously generated words is a
complicated task. The semantics should be adjusted with
the generation process and return to guide the generation.
The embedding consists of two modules, image features
embedding and contextual embedding. Convolutional neu-
ral networks are end-to-end learning architectures without

Fig. 4 Architecture of semantic embedding model

hand-designing features and used in many visual recognition
and image semantic parsing tasks. Thus, a CNN with fully
connected output is used as the image features embedding.
Its architecture is shown in Fig. 4. Concretely, the semantic
embedding model has the following form:

gt = fg(WgaCNN(a) + Wghht−1 + bg) (12)

where gt is the semantic information at time t and a =
{a1, . . . , aL} represents all the annotation vectors. Wga and
Wgh are embedding matrices which project image features
and contextual information into semantic space, respectively.
fg is a fully connected network that produces final semantic
information.

With the semantic embedding as guidance, the attention
and coverage model are redefined as follows:

et,i = fatt(ai ,ht−1,Ct−1,i , gt ) (13)

Ct, j = LSTM(Ct−1, j , αt, j , a j , gt ) (14)

The detail of coverage model with semantic embedding is
shown in Fig. 5. At each time step, the coverage model learns
coverage information automatically from attention weight
vector and previous coverage statewith the guiding of seman-
tic embedding. Finally, the output of LSTM network is the
probability of generated words. It is computed with softmax
as following:

p(yt |a, yt−1) = softmax(Eyt−1 + Lhht ) (15)

where Lh is projection matrix. Note that the previously gen-
erated word is projected to compute output probability. This
is because the neighboring words have strong correlation,
and the previous word is helpful for generating next word.

3.3 Training and inference

We take end-to-end training for the Cov-Sem model, which
learns the attention model parameters together with cover-
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Fig. 5 Detail of coverage model with semantic embedding

age model and semantic embedding. In training the attention
model, a problem is realized that the attention weight vec-
tor at each time step differed little from each other for a
particular image. This indicates that the attention strength
each time step was not strong enough. To make the attention
weights more diversity, a penalty regularization is added to
the loss function. A measure on the dissimilarity between
two vectors is the cosine of their angle. For computational
simplicity, the inner product of two weight vectors of dif-
ferent time step is chosen as the approximation for cosine
similarity. Concretely, the model is trained by minimizing
the negative log-likelihood of reference sentences.

J (θ) = −
N

∑

n=1

logp(yn|a; θ) + λ

C
∑

t1=1

C
∑

t2=t1+1

t1
T
t2 (16)

where θ represents model parameters, N is batch size,
p(yn|a; θ) is the output probability defined in Eq. 15, λ is the
penalty coefficient for attention model, and C is the number
of time steps, i.e., the length of sentences.

In summary, the process of generating a caption for an
image is listed as follows:

1. Extract annotation vectors a from the image.
2. Compute global semantic embedding gt according to

Eq. 12.
3. Compute coverage information Ct, j according to Eq. 14.
4. Compute attention weights αt,i according to Eqs. 13 and

10. And then compute context vector zt according to Eq.
8.

5 . Feed the context vector zt , previous hidden state ht−1

and previous word yt−1 to the LSTM network to select
the word with maximum output probability according to
Eq. 15.

The process continues until the end sign, such as period, is
produced. To select an appropriate description for an image,
beam search is applied following previous work. It iteratively
consider the k best sentences at time t as candidates to infer-

ence sentence at next time step and the best k of them are
kept. In our work, the k is set to 6 by trial and error.

4 Experiments

We describe our experimental settings and quantitative
results to validate the effectiveness of our proposed model
in this section.

4.1 Datasets and evaluationmetrics

For evaluation, we experiment on three popular datasets
Flickr8k, Flickr30k, which have 8,192 and 31,783 images,
respectively, andMicrosoft COCO,which has 82,783 images
for training set. All the three datasets are easily available
publicly. Each image in Flickr8k and Flickr30k datasets
is annotated artificially with 5 sentences in English. For
Microsoft COCO dataset, some images have more than 5
captions. They are kept in training set. And in validation set
and test set, images with more than 5 captions are discarded
for ease of computing evaluation scores. Besides, the splits of
datasets for training, validation and test setmatter a lot. There
is a widely recognized splits for Flickr8k dataset [35]. For
Flickr30k, we adopt the publicly available splits in Karpathy
and Li [28]. As for Microsoft COCO dataset, since the cap-
tions for test set are not available, the strategy in Xu et al. [1]
is applied to split the validation set into small validation set
and test set.

Not only is a tricky problem to generate sentences for
images, but also evaluating the accuracy of a description
remains difficult. It concerns the semantics and syntax rather
than merely matches the results with groundtruth word by
word. Therefore, several evaluation metrics are applied in
this paper. The most widely used metric in language gen-
eration literature is BLEU score [36], which measures the
n-gram precision between generated and reference sentences
with n ranging from 1 to 4. In addition to BLEU, we adopt
METEOR [37] as it is highly correlated with human judge-
ments. Furthermore, the newly proposed approach CIDEr
[38] captures human consensus and is a state-of-the-art eval-
uation metric for image caption evaluation. Last but not the
least, the classical ROUGE-L [39] measurement is added as
complementary.

4.2 Training details

A few problems existed when conducting the experiments.
Firstly, image recognition is a research area independent
from image caption generation. It requires large amounts of
images to distinguish various scenes. However, the datasets
of image caption generation contain limited number of
images, not enough to train a high qualified model. We use
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Table 1 BLEU, METEOR, CIDEr and ROUGE-L scores for image caption generation of different models

Dataset Model BLEU METEOR CIDEr ROUGE-L

BLEU-1 BLEU-2 BLEU-3 BLEU-4

Flickr8k Google NIC [2] 63.0 41.0 27.0 – – – –

Soft attention [1] 67.1 46.1 31.3 22.0 20.2 49.2 49.8

Cov-Sem 68.5 46.2 32.1 20.8 20.7 50.2 50.1

Cov-Sem-FT 69.0 47.1 32.4 21.9 20.3 50.7 50.2

Flickr30k Google NIC [2] 66.3 42.3 27.7 18.3 – – –

Soft attention [1] 68.1 46.0 31.9 22.1 18.9 42.0 48.4

Sem-Attention [4] 64.7 46.0 32.4 23.0 18.9 – –

Cov-Sem 68.3 46.1 31.8 21.9 19.1 42.3 49.0

Cov-Sem-FT 68.9 46.8 31.9 22.0 19.1 42.8 48.7

MSCOCO Google NIC [2] 66.6 46.1 32.9 27.7 23.7 – –

Soft attention [1] 71.8 52.5 38.5 28.3 23.9 84.5 54.8

Sem-Attention [4] 70.9 53.7 40.2 30.4 24.3 – –

Cov-Sem 72.0 52.6 38.6 28.5 23.7 84.6 55.6

Cov-Sem-FT 72.9 53.8 39.6 29.5 24.4 88.3 56.0

The bold numbers refer to best results across different methods

the pretrained Oxford VGGnet to extract image features. The
images are centered with mean values of ImageNet 2012
dataset and then the outputs of conv5_4 layer of the VGGnet
are saved as annotation vectors a = {a1, . . . , aL}. Sec-
ondly, the vocabularies of Flickr30k and MSCOCO datasets
contain amultitudeof uncommonuncommonwords andnon-
alphabetic characters, which lead the vocabulary size tomore
than 20,000. This makes the model very complex and many
parameters are redundant. As a result, we limit the vocabu-
lary size to 10,000, making the model easier to train. Thirdly,
we observed that the negative log-likelihood of validation
set diverged from the BLEU score in later training epochs.
Since BLEU score is main evaluation metric, it was used as
early stopping criterion. However, at each validation point,
to generate captions of validation set consumed a lot of time,
especially for Microsoft COCO dataset. To reduce training
time, the BLEU score was computed when the negative log-
likelihood decreased to an appropriate value. In this case, on
Microsoft COCO dataset, our Cov-Sem model took about
one day and a half to train on an NVIDIA GTX1080 GPU.

OurCov-Semmodel is trained usingAdamalgorithmwith
α =0.0002, β1 =0.9 and β2 =0.999 [40]. To alleviate overfit-
ting, we adopted dropout [41] and early stopping as well
as weight decay with value 1e−4. For Flickr8k dataset, the
dimension of word embedding is set to 240, the dimension
of hidden state of decoder network is 1100, and the dimen-
sion of hidden state of coverage model is 480. For Flickr30k
dataset, the parameters are set to 320, 1700, 700, and for
MSCOCO dataset, they are set to 400, 1800, 900. Besides,
the parameters of global semantic embedding are shared by
three datasets, with hidden dimension set to 1500 and output
dimension set to 200.

4.3 Generation results

In addition to directly training the model, a convolutional
layer is added before the annotation vectors input into
decoder network to fine-tune the network. The fine-tuned
model is named as Cov-Sem-FT. In Table 1, we report out
evaluation results on the three datasets. We retrained soft
attention model from scratch and got comparative results. As
for Google NIC model, we use the results reported in Xu et
al. [6]. The results show that our proposed Cov-Sem method
outperforms the soft attention model for most criteria. The
fine-tuned model improves the performance by 1 percent-
age point on MSCOCO dataset. A further analysis on the
generated sentences indicates that although some sentences
do not correctly describe the content of the corresponding
images, they are grammatically right. This states clearly that
the decoder phase is adept at generating sentences. We spec-
ulate the low accuracy is due to the fact that the encoder
phase is trained for object recognition. It fails to recognize
the activities or relationships of objects.

To better understand the characteristics of the Cov-Sem
model, we give several examples in Figs. 6 and 7. Three
over-recognition pairs are aligned in Fig. 6. For each pair,
the first case is generated by soft attention model and the
second case by Cov-Semmodel. For visually convenient, we
visualize the attention weights of over-recognized region for
each image. Similarly, Fig. 7 shows three examples of under-
recognition pairs. And for each pair, the attention weights of
under-recognized region are visualized in the second case.As
we can see, the Cov-Semmodel can attend to not only salient
objects but also regions to infer the attributes of objects.
The over-recognized features are accurately eliminated by
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Fig. 6 Example captions of over-recognition. The white region indicates the object over-recognized by the attention model, and the underline
indicates the corresponding word. In each pair, sentence (a) is the over-recognized case and sentence (b) is generated by Cov-Sem model

Fig. 7 Example captions of under-recognition. The white region indicates the object under-recognized by the attention model, and the underline
indicates the corresponding word. In each pair, sentence (a) is the under-recognized case and sentence (b) is generated by Cov-Sem model

Fig. 8 Examples of generation mistakes

the Cov-Sem model, and the under-recognized features are
extracted as well.

Nonetheless, mistakes exist in the Cov-Sem model, as
illustrated in Fig. 8. For the first case, the number of players
is mistakenly recognized. Counting the number of objects
is a higher level artificial intelligence than objects recog-
nition, especially in scenes with complicated background.
In the second case, we can see that the model takes the
red region as the color of the shirt. One object possesses
diverse attributes depending on the situation. Learning how
to discriminate the attributes remains a difficult problem in
computer vision.

4.4 Effects on length of sentences

In addition to the evaluation accuracy of descriptions, in this
subsection,we investigate the influence of coveragemodel on
the length of sentences. Since there are 5 reference sentences
per image, we compute the average length of the 5 sentences
as partitioning criterion. Taking the Flickr8k dataset as an
example, theminimum of average length of sentences in test-
ing set is 6.4 and the maximum 20.8. Then, the images are
partitioned into 4 groups, with the interval of sentence length
in each group being [6,10), [10,14), [14,18) and [18,21). For
each group,we select the descriptions generated by soft atten-
tion model and Cov-Sem model, respectively, and evaluate
the accuracy with the metrics BLEU, METEOR, CIDEr and
ROUGE-L.

Evaluation results are reported in Table 2.We note that the
maximum sentence length generated by Cov-Sem model is
closer to that of reference sentences. And the average length
of generate sentences of Cov-Sem is slightly greater than
that of soft attention model. Furthermore, the scores of three
metrics on long sentences are higher for Cov-Sem model
than for soft attention model to a certain degree. Especially
when sentence length is more than 18, all the scores of Cov-
Sem model are higher than that of soft attention model. As
an example, we consider the image in Fig. 9. The sentence
generated by soft attention model is as following:

A child is playing in the water.
Our proposed coverage model describes it into:
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Table 2 Effects on sentence length of Flickr8k

Sentence length Soft attention Cov-Sem

Max length 13 14

Min length 7 7

Mean length 10.2 10.8

[6,10)

BLEU-1 65.8 63.3

BLEU-2 44.5 42.8

BLEU-3 30.8 28.7

BLEU-4 21.2 19.2

METEOR 18.1 17.1

CIDEr 34.7 32.2

ROUGE-L 52.3 51.6

[10,14)

BLEU-1 63.9 65.8

BLEU-2 43.9 44.6

BLEU-3 30.2 30.4

BLEU-4 20.6 19.8

METEOR 24.0 22.8

CIDEr 64.6 63.4

ROUGE-L 50.4 50.7

[14,18)

BLEU-1 67.1 69.8

BLEU-2 46.3 47.8

BLEU-3 32.3 32.8

BLEU-4 22.2 21.9

METEOR 20.2 20.8

CIDEr 51.8 48.1

ROUGE-L 45.0 46.3

[18,21)

BLEU-1 68.3 68.8

BLEU-2 47.2 48.5

BLEU-3 33.5 34.7

BLEU-4 22.7 24.8

METEOR 16.1 16.6

CIDEr 19.6 25.2

ROUGE-L 43.3 43.6

The bold numbers refer to best results across different methods

A little girl in a white shirt is standing in shallow water.
As the example shows, the sentence generated by Cov-

Sem model covers some primary attributes of the objects in
the image, such as “yellow shirt” and “shallow water.” This
provides an excellent evidence that the Cov-Sem model can
alleviate under-recognition and generate more informative
descriptions for images.

Fig. 9 Example of informative descriptions

5 Conclusion

In this paper, we introduce a coverage model with semantic
embedding to attention-based encoder–decoder framework
for image caption generation. The coverage model allevi-
ates the over-recognition and under-recognition problems
in attention mechanism when aligning words with image
regions. The semantic embedding provides global guidance
for coverage and attention model. The proposed method
is evaluated on three benchmark datasets and shows the
effectiveness of the coverage mechanism. Especially on
complicated descriptions, Cov-Sem model shows excellent
performance. Our work is complementary to attention-based
model and can be applied not only to image caption genera-
tion, but also to speech recognition and other attention-based
applications. Yet similar to the existing language genera-
tion approaches, the coverage model is lack of mechanisms
to learning the relationships between objects in an image.
Though objects recognition has gain great success in deep
learning, there is few studies on interactions between objects.
A potential direction is to concentrate on relation extraction
task and generate its corresponding descriptions for images.
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