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Abstract
The assignment of labels to data instances is a fundamental prerequisite formanymachine learning tasks.Moreover, labeling is
a frequently applied process in visual interactive analysis approaches and visual analytics. However, the strategies for creating
labels usually differ between these two fields. This raises the question whether synergies between the different approaches
can be attained. In this paper, we study the process of labeling data instances with the user in the loop, from both the machine
learning and visual interactive perspective. Based on a review of differences and commonalities, we propose the “visual
interactive labeling” (VIAL) process that unifies both approaches. We describe the six major steps of the process and discuss
their specific challenges. Additionally, we present two heterogeneous usage scenarios from the novel VIAL perspective, one
on metric distance learning and one on object detection in videos. Finally, we discuss general challenges to VIAL and point
out necessary work for the realization of future VIAL approaches.

Keywords Information visualization · Visual analytics · Machine learning · Labeling · Active learning · Classification ·
Regression · Similarity search · Visual interactive labeling · Labeling

1 Introduction

A central topic in data science is the understanding of data
and the discovery of knowledge from data. Research has
addressed this issue from different perspectives. On the one
hand, machine learning (ML) provides a rich tool set for
the automatic indexing, organization, and categorization of
huge amounts of data. On the other hand, visualization (VIS)
aims at the organization and presentation of data as well as
knowledge discovery in a visual interactive way. While both
disciplines have their respective strengths for data analysis,
they have an even stronger potential when they are combined
in visual analytics (VA) approaches [32,84]. Still, the com-
plementary strengths are often not fully exploited.

Building upon approaches investigating combinations of
ML with VIS in general, this work explicitly addresses the
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common goal of labeling tasks. We refer to labeling as the
assignment of labels y to given input instances x (i.e., objects,
elements, or samples). Labels can be used to find functions f
that either map instances to labels, i.e., f (x) = y, or define
relations between instances, i.e., f (x1, x2) = y. Labels in
this context can be of different types, such as categorical
labels [39] in classification tasks, numerical labels [17] in
regression tasks, relevance scores [82] in retrieval tasks, as
well as labels that represent a relation between two instances
(e.g., for learning similarity and distance measures between
objects) [15].

A fundamental difference between ML and VIS
approaches is the way this goal is achieved. ML most often
operates fully automatically, i.e., instances with previously
defined labels are fed into a supervised ML algorithm which
in turn learns the function f from the data. Once trained, the
algorithm can be applied for the labeling of new data. As
such ML methods are predominantly model-centric. In turn,
the VIS perspective emphasizes the knowledge generation
of the user, e.g., by visual interactive labeling interfaces. As
such, the VIS perspective is most often user-centric.

In the presence of unlabeled data, incremental ML
methods provide iterative solutions to learning ML algo-
rithms, and to refine them continuously [47]. Active learning
(AL) [71] is a special type of incremental supervised ML
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where the user is integrated into the learning process to guide
the training. As such, a connecting factor between AL and
VIS is the user-in-the-loop principle. In AL an algorithmic
model proactively asks the user for feedback about unla-
beled data to improve a learning model. Therefore, the user
is queried for labels of instances the learner is unsure about,
which will potentially improve the quality of the model. Typ-
ical outputs of the AL process are datasets enriched with
labels as well as models learned in the process. Compared
to VIS, however, in AL the active role of the user remains
rather marginal. In most cases, AL neither incorporates the
user’s abilities to selectmeaningful instances (e.g., reflecting
visual patterns in data), nor does the AL process foster the
user’s knowledge generation process.

In the VIS community labeling is an important task as
well. Many approaches accept feedback from users for data
instances of interest as input to learn and further support the
users’ information need. Important tasks supported by visual
interactive interfaces are the analysis of model results, the
identification and selection of instances, as well as labeling
per se. Example labeling interfaces accept numerical interest-
ingness scores to train regressionmodels [17] or user-defined
class labels to train classifiers [39]. More complex labeling
techniques allow, for example, the manipulation of spatial
proximity of data instances [12] to make statements about
(similarity) relations between instances. In contrast to ML,
VIS approaches seem to prefer user-centered over model-
based criteria. Potential drawbacks of VIS approaches relate
to (a) the usefulness of purely user-selected instances for
labeling to build accurate, robust, and generalizable algorith-
micmodels, and to (b) the emphasis on knowledge generation
while the enrichment of data with labels is often neglected.

We assume that the model-centered AL and the user-
centered VIS perspectives have complementary and unex-
ploited synergies for labeling tasks. Building upon and
extending notions of “interactive learning” presented in
pioneer approaches combining AL and VIS [39,74], we
investigate the strengths of both and propose an abstracted
and unified process in a visual analytics (VA) context that
we refer to as visual interactive labeling (VIAL). Our line
of approach complies with established process models in
visualization and VA [21,22,41,96], resembling the abstract
data and interaction flow, as well as user-based knowledge
generation [83]. While these models offer a high degree of
abstraction, we extend and substantiate these general process
toward labeling tasks. Processmodels and surveys inALexist
as well [71]. However, these models often fall short in visual
interfaces as well as knowledge generation support [83].

Most related approaches either indicate the combination
of model-based and user-based labeling [39,84] or propose
methodologies or concepts for the interactive propagation
of user feedback for labeling tasks [18,52]. Although these
approaches are inspiring, they are specific toward a data type,

employed technique, application goal, user group, or target
variable y. In contrast, the rationale of our unified VIAL pro-
cess is to abstract from concrete approaches and to propose a
general and conceptual labeling workflow. Furthermore, one
aspect of the labeling process remains largely uncharted—
the three types of output: labeled data, trained models, and
gained knowledge. VIAL, on the contrary, obtains a data-,
model-, and user-centric perspective with three outputs: data,
models, and knowledge.

In this work, we present a conceptual cross-disciplinary
process that combines the AL and the VIS perspective. We
explain the six crucial steps of the VIAL process, point out
their interplay, and describe how AL and VIS can contribute
to the respective step. In addition,wediscuss themajor design
and development challenges in every step from both the AL
and theVIS perspective. Future approachesmay benefit from
the VIAL process in two ways. First, we provide an inte-
grated view of AL and VIS in a VA setting that may inspire
novel innovative approaches that go beyond the borders of
the individual disciplines. Second, the outlined challenges
help to overcome inherent hurdles in the VIAL process and
to make informed design decisions.

We present relatedwork in Sect. 2. In Sect. 3, we introduce
the VIAL process, followed by two usage scenarios in Sect. 4
building upon the VIAL process. We discuss limitations and
potential future work in Sect. 5 and conclude with Sect. 6.

This article is an extension of a previous workshop paper
on the same topic [20] and provides a theoretical frame-
work for our empirical studies in this area [8]. The article
at hand has been fundamentally reshaped in many ways
including a substantial extension of related work, the inte-
gration of usage scenarios to better illustrate the application
of the model, the extension, and more in-depth descriptions
of the model’s steps including research challenges and pos-
sible solutions. Moreover, it includes more details in most
sections of the paper, particularly the discussion, limitations,
and future work.

2 Background and related work

In the ML and VIS literature, we find different and partly
complementary approaches to data labeling. A major con-
tribution of the VIAL process is to join both strategies to
develop a broader and more general perspective. In the fol-
lowing, we describe the labeling process in ML (AL) and
VIS and point out differences.

2.1 Labeling inmachine learning

Labeling of datasets is an important prerequisite for the
training of supervised ML models. Recent developments
have shown that labeled datasets are not only important
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Fig. 1 The abstracted AL process. A data source contains unlabeled
(U ) and labeled (L) data. Data are first preprocessed (e.g., normalized
or segmented, “P/S”). Next, feature extraction “FE” and feature selec-
tion “FS” are applied to obtain a useful data representation for ML.
A learning model “ML” is trained and evaluated iteratively. Candidate

suggestion “CS” strategies query new labels y from the oracle which are
used to iteratively adapt the ML until a stopping criterion is met [57].
Users provide labels but are not involved in CS. In addition, knowledge
generation by users is not part of the model

to enable the objective comparison of ML approaches but
are further necessary to successfully train today’s complex
classifiers, such as deep neural networks (DNNs) [46]. To
reduce the effort of labeling large datasets (of potentiallymil-
lions of instances) different strategies have been developed
(e.g., captcha-based information collection [106], web-based
annotation systems [62], paid micro-tasks on platforms like
mechanical turk [9], and game-based approaches [61,89]).

Pre-labeling In supervised ML the dataset is usually gener-
ated and annotated completely in an offline process before
classifier training starts. To differentiate this type of label-
ing process from other more interactive and online labeling
processes, we refer to this process as pre-labeling. Pre-
labeling is an expensive and time-consuming process that
should—in the best case—be performed by domain experts.
In the absence of a sufficiently large number of experts,
webcrawling represents a relatively inexpensive and promis-
ing alternative. This however may introduce problems such
as inconsistent labelings across several annotators, unreliable
and wrong labels. Thus, special filtering methods need to be
applied to obtain robust labels. A drawback of pre-labeling
is that once annotated labels cannot be refined during the
learning process, e.g., according to the interpretation of the
data by a user.

Incremental learning and active learning An alternative
to pre-labeling is the use of incremental and online learn-
ing methods that enable the continuous refinement of a
previously learned model as new labeled data become avail-
able [47].AL is special type of incrementalML that explicitly
incorporates user knowledge into the learningprocess [71]. In
AL, an algorithmic model proactively asks the user (referred
to as the oracle) for feedback during the learning process

(usually in the form of labels) to iteratively improve the
learned model. Since user interactions are time-consuming
and thus expensive, AL aims at minimizing the amount of
required user interactions by querying only that informa-
tion that will improve the accuracy of the given model in a
best possible way. The general AL workflow is illustrated in
Fig. 1. To find the potentiallymost useful unlabeled instances
for learning, different strategies for candidate selection have
been introduced which are discussed in detail in a number of
surveys on AL [57,71,88,98]. These strategies can be parti-
tioned intofive groups: (1) uncertainty sampling, (2) query by
committee, (3) error reduction schemes, (4) relevance-based
selection, and (5) purely data-centered strategies.

Active learning strategiesUncertainty sampling aims at find-
ing the instances that the learner is most uncertain or unsure
about. Widely used strategies search for those instances
near decision boundaries of margin-based classifiers [99]
(large-margin-based AL) [88]) or for instances with high
entropy of class probabilities [69]. Query by Committee
(QBC) [79] strategies measure the uncertainty of a commit-
tee of classifiers. Instances are considered interesting when
the committee disagrees with respect to their labeling [50].
Error reduction strategies select those instances which may
change the underlying classification model most. Selection
criteria are expected model change [70], risk reduction [59],
or variance reduction [37]. Relevance-based strategies [94]
focus on instances which have the highest probability to be
relevant for a certain class. This strategy fosters the identifica-
tion of positive examples for a class which are, for example,
useful in the context of ranked search results [98]. Data-
driven strategies work independent of the learning model.
Many techniques work with a density-based selection crite-
rionwhich is a promising strategy for initiating anALprocess
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in the case when no labels are available at all (cold start
problem) [1]. In contrast, diversity-based criteria foster the
selection of dissimilar instances for labeling to increase the
information gain for the learner [27].

Benefits and limitations of active learning Incremental learn-
ingmethods likeALare especially useful in caseswhere large
portions of the data are unlabeled, where manual labeling is
expensive, and in cases of online learning where new unla-
beled data need to be processed continuously. One drawback
of AL is that strategies are primarily driven by the learned
model—users are not considered in the identification and
selection of instances, but only in the labeling itself. Hence,
the selection of instances is neither based on expert knowl-
edge, nor humans’ ability to quickly identify patterns such as
clusters and outliers. This leads to two limitations. First, the
integration of the user needs, intentions, and tasks is impeded,
and second, the AL process does hardly support the genera-
tion of user knowledge. The VIAL process is more general
and extends AL toward the user-based candidate selection by
the integration VIS techniques [39,74].

2.2 Labeling in interactive visualization

In VIS, many labeling approaches assign users an active role,
using visual interfaces as the means for candidate identifica-
tion and selection. We asses a strong emphasis on knowledge
generation. However, in contrast to AL, VIS has gained little
attention to the creation of labeled data. We structure related
works in processmodels and techniques for visual interactive
labeling.

Process models for interactive visualization We draw con-
nections to both general as well as task-specific process
models. The VIAL process is derived from general pro-
cess models for VIS [22,96] and VA [21,41], resembling
the abstract data and interaction flow, as well as user-based
knowledge generation [83]. However, abstract frameworks
often do not reflect the characteristics of specific tasks [84]
such as labeling. The VIAL process extends these models for
labeling tasks. In particular, with theVIALprocess the output
of the process is refined considerably. With user knowledge,
labeled data, and trained models, the VIAL process explic-
itly defines three types of output.

Recently, more specific process models have been pro-
posed for different labeling tasks. Höferlin et al. [39]
explicitly focus on interactive classification techniques, facil-
itated with AL strategies. The term “Interactive Learning”
is proposed, resembling the rationale to keep the user in
the loop. We build upon the techniques employed in the
pioneering approaches and represent abstractions in our
conceptual VIAL process. Bernard et al. [17] propose a
process where users play an active role in selecting data

instances and assigning labels. From this work we take
the idea to support data-centered, model-centered, and user-
centered criteria for label suggestion. A similarity modeling
approach for mixed data presents techniques for the inter-
pretation of user feedback and discusses pitfalls for the
design of labeling approaches [18]. Mamani et al. [52] pro-
pose a visualization-assisted methodology for interacting
with instances to transform feature spaces. Finally, previous
work included an empirical user study to compare the per-
formance of either AL or VIS [8]. Overarching insights were
the complementing strengths of both approaches, suggest-
ing the combination of both in a unified process. Although
existing methodological approaches are inspiring, they are
specific toward a data type, application goal, user group, or
target variable. The VIAL process abstracts from concrete
approaches. In addition, VIAL obtains a data-, model-, and
user-centric perspectivewith three outputs: data, models, and
knowledge.

Visual interactive labeling techniques We differentiate VIS
techniques for labeling tasks by the type of the label to be
defined by the user, such as categorical labels, numerical
labels, as well as labels that represent a relation between two
instances. The type of the data to be categorized differs from
video [39], text [38], time-oriented data content [4,81], to
two-dimensional data represented in scatterplots [11,63]. In
many cases that accept categorical labels, classificationmod-
els are learned in parallel or as a downstream task.Categorical
labeling tasks differ in the number of groups to be assigned.
Binary tasks accept yes/no or relevant/irrelevant statements,
while multi-labeled tasks consist of three or more classes.
Numerical labeling tasks form a second type of labels. Users
are enabled to assign fine grained interestingness or relevance
scores, e.g., in the context of relevance feedback [66,82]. As
an alternative, numerical labels can be used to characterize
patient well-being with regression models [17]. Finally, we
shed light on labeling approaches that allow the assignment
of relations between instances, e.g., in the sense of similar-
ity scores. Using the example of similarity scores, related
approaches aim to learn meaningful similarity (or more gen-
erally distance) functions bymetric learning [104] that reflect
the relations expressed by the user [15]. Interaction designs
such as the re-allocation of instances in a 2D manifold are
used to enable users to express complex relations between
instances in the visual space [12,18,52].

3 The visual interactive labeling process

Based on a review of relatedwork inAL andVIS, we propose
the VIAL process. We unify the main building blocks into an
iterative process consisting of six steps shown in Fig. 2. The
VIAL process is special in its focus on exploratory instance
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Fig. 2 The VIAL process. Four algorithmic models (green) and two
primary visual interfaces (red) are assembled to an iterative labeling
process. To resemble the special characteristics of the AL and the
VIS perspective, the VIAL process contains a branch (from “Learn-

ing Model” to “candidate suggestion” and “result visualization,” since
both are complementary). The VIAL process can be applied for data
exploration and labeling tasks. The output of the VIAL process is three-
fold: labeled data, learned models, and gained knowledge

selection and labeling tasks, as well as its emphasis on three
output types, i.e., labeled data, trained learning models, and
gained domain knowledge. All three outputs can be of equal
importance, dependingon the preference in a particular appli-
cation scenario. As such the VIAL process provides a novel
perspective on labeling tasks that can lead to novel innova-
tive labeling approaches, as well as interfaces and tools for
instance selection and labeling.

In the following,we describe each of the six steps in detail.
For each step, we present the particular challenges from the
ML and VIS perspectives together with benefits and chal-
lenges that may emerge when the strengths of AL and VIS
are combined in a unified process. In addition, we shed light
on pioneer approaches that already address some of these
challenges to ease the design of future VIAL solutions. We
want to point out that the VIAL process is extensible toward
more general problems in ML and VIS, such as visualiza-
tion of complex parameter spaces originating, for example,
from deep neural networks, model visualization, progressive
visual analytics, and user-centered design aspects. In section
(Sect. 5), we discuss future directions of VIAL toward these
general aspects.

3.1 Preprocessing and feature extraction

Preprocessing is a fundamental step in almost every data
analysis approach that needs to be handled with care [42].
We refer to preprocessing as the cascade of operations that
needs to be applied to ensure the usability of the input data
by the models applied in later stages of the process. Prepro-
cessing includes, for example, the identification of erroneous
(measurement) data, filtering noise and outliers, and deal-
ing with missing data. We combine the preprocessing step
with the mapping of real-world objects into more abstract
representations (usually referred to as feature extraction).
Existing labeling approaches either directly adopt seman-
tically interpretable attributes of data instances as features

(e.g., the age of a person, the GDP of a country) or apply
complex derived descriptors [19] yielding abstract and often
high-dimensional feature spaces, e.g., histograms of images
or learned basis functions derived from the input signals.
Processing and feature extraction are necessary to map the
raw input data into a common (potentially high-dimensional)
feature space on top of which a model (e.g., a classifier) can
be trained. This abstraction is essential to enable (interactive)
labeling approaches.

Challenges The analysis of raw data is associated with a
series of challenges. In a numerical dataset, a single out-
lying value that is erroneously represented with a multiple of
1.000 can cause serious problems for downstream models if
not detected and cleansed appropriately. In general, many
of these problems are associated with quality considera-
tions [42]. Data preprocessing is required to derive secondary
data, as a means to yield structured and curated data which
aremore appropriate for algorithmicmodels [64]. Using time
series data as an example, taxonomies of dirty data [35]
can foster the awareness for relevant quality challenges.
Accordingly, these taxonomies can be used as a guideline to
achieve cleansed data. Visual interactive approaches for pre-
processing raw data [13] can support this step, e.g., in close
collaboration of designers and domain experts. In a design
study including similarity search for a retrieval system, the
authors report on a cascade of ten preprocessing steps until
data quality was achieved and the users’ information need
was accomplished in a meaningful way [3]. Desirable goals
for effective data preprocessing include achieving meaning-
ful data representations, comparing raw data with model
results, choosing appropriate model parameters, guarantee-
ing data quality, generalizability of preprocessingworkflows,
as well as involving users in the preprocessing step [6].

A challenging design consideration in the feature extrac-
tion process is whether internal feature representations
should be visible to the user. From a VIS perspective trans-
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parent feature spaces can be beneficial for the knowledge
generation process [36,44] (third output in the VIAL pro-
cess). The visualization of semantically interpretable features
may be particularly beneficial for non-experts. Semantically
interpretable features allow for the intuitive exploration of the
feature space, ease the identification of important features for
the learning success,may support knowledge generation, and
may steer the learning into the intended direction [39,40].
The visualization of non-semantic features, however, such
as Fourier or Cosine transform coefficients (of, for example,
images), is difficult to grasp even for experts. One possi-
ble drawback of visible features in a labeling approach is
self-biasing. In a recent collaboration with medical experts,
we observed how visible features attracted the attention of a
physician in an unfavorable manner. As a result, the model to
be learned solely reflected the characteristics of these partic-
ular features rather than the intrinsic structures of the dataset
reflected by all features [17].

Designing and learning useful feature representations
that are representative and discriminative for the underly-
ing data is a challenging task in general [2,55]. In the context
of VIAL, high-dimensional feature representations such as
those obtained from deep neural networks [46] pose spe-
cial challenges and are currently subject to intensive research
[101,105]. The integration of deep learning methods in the
VIAL process will highly depend on future progress made in
the visualization of such techniques as well as on the inter-
play of ML and VIS in general [86].

Due to the iterative nature, cases may exist where not
the model state but also learned feature representations may
change in labeling process. Changing features may, however,
confuse the user, which can be addressed with the VIS per-
spective. VIAL approaches may, for example, provide visual
representations showing the evolution of the features, or sup-
port the interactive adaption of features [44]. Finally, inVIAL
the visualization of the features themselves could further be
used as an indicator for training progress, evaluation, and
success [39]. This requires, however, that the features are
semantically interpretable.

3.2 Learningmodel

The choice of learning models primarily depends on the
data and the labeling task at hand. Classifiers [39] support
labeling tasks with binary or categorical labels. Regression
models [53] can be used to learn numerical target variables.
In addition, the VIAL process includes other types of user-
defined labels, such as similarity relations between two or
more instances (i.e., metric learning) [7,29]. In the VIAL
process the learning model is directly coupled with visual
interfaces facilitating analytic reasoning and model refine-
ment [32,84]. The VIAL process is iterative by nature. Thus,
it requires learningmodels that are instantly re-trainable (ide-

ally in real-time) and that adapt their internal parameters to
changes in the training data. Good candidates for VIAL are
supervised incremental and online learning methods [47].

The trainedmodels represent a primaryoutput of theVIAL
process, building the basis for downstream applications.

Challenges Many learning models (i.e., their internal state)
are difficult to visualize [36,85]. Traditional machine learn-
ing models such as, for example, support vector machines
are defined in high-dimensional spaces with complex (poten-
tially nonlinear) decision boundaries. Neural networks chal-
lenge visualization with their millions of different internal
parameters, their complex connections, and the absence of
an explicitly given decision model [101].

Another important issue is to select a suitable termination
criterion for learning and labeling to avoid unnecessary label-
ing effort. In a recent user experiment, we observed thatmany
participants asked when the labeling will be finished [8].
Visualization of the learning status may be one means to
inform users about the progress and to avoid potential frus-
tration. Examples are linecharts of the accuracy of classifiers,
or the representation of the variety of instances in the dataset
that have already been used for labeling [8,17]. From a mod-
eling perspective various alternative termination criteria can
be used to inform the user in a visual way. Due to the lim-
ited capacity of most classifiers [43,90] the learning progress
converges at some point in time. Termination criteria can be
both intrinsic (e.g., model change) or extrinsic (e.g., classifi-
cation accuracy) [71]. A traditional VA criterion ismeasuring
quality aspects that help analysts to validate model conver-
gence [36]. From a ML perspective, a useful strategy for a
termination criterion is to detect overfitting of the classifier.
Overfitting means that the classifier adapts too much to the
training data and thereby looses its ability to generalize to
new data. Suitable measures help to avoid overfitting [77].

Another challenge is the choice of the learning model
itself. A series of VA approaches addresses this problem,
e.g., by the visual comparison of competitive feature sets
and algorithmic models [44,53]. In addition to the general
problem of algorithm choice, we shed light on the challenge
associated with complex learning functions. In fact, cate-
gorical labels are usually needed for supervised classifiers,
and numerical labels often for regression-based approaches.
However, the design space for learning models increases in
situations where relations between instances r(x1, x2) or dis-
tance (or similarity) functions d(x1, x2) have to be modeled.
An example is metric learning where distance relationships
between instances are learned from the data directly [7].
Research has shown that visualization is able to support this
process [12,29].
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3.3 Result visualization

The visualization of model results corresponds to the
VIS perspective on the labeling process. According to the
VIS principles, result visualization is particularly suited to
amplify knowledge generation [22,83] as one output of the
labeling process. Beneficial examples for the VIAL process
include visual representations of classification results [74],
regression models [53], or results of learned distance func-
tions [12]. We identify three primary benefits for the VIAL
process. First, result visualization can facilitate exploration
tasks supporting hypotheses and insight generation about the
data as well as the knowledge generation process [83]. Sec-
ond, tightly coupled learningmodels and result visualizations
enable user-centered model refinement [68,92]. Third, result
visualization allows users to selectmeaningful candidates for
labeling and thus serves as a complement to model-based AL
heuristics for the suggestion of candidates [39,74].

Challenges We draw the connection to general challenges
in the visual representation of high-dimensional data. Visual
interactive interfaces supporting overview and detailed visu-
alizations are one option to tackle this issue. Dimensionality
reduction [86] and data aggregation techniques [28] help to
condense the data, for the price of individual challenges.
Examples for individual challenges include the applicability,
quality, or uncertainty of algorithms in connection with their
parameters. Using dimensionality reduction as an example,
it cannot be guaranteed that intrinsic structures of the data are
retained after the reduction and that new structural patterns
are introduced that are not present in the original space.

A particular design challenge for labeling approaches
is whether and how predicted labels should be visualized.
A recent user experiment showed that users change their
strategies in selecting instances considerably when addi-
tional information about predicted models are depicted [8].
Showing unlabeled instances with labels predicted by the
model supports the comparison of current situation with tar-
geted label information, i.e., users have a means to improve
the learning model in a visual interactive way. Users can
assess whether the learning model is able to explain the
already labeled portion of the data. However, showing pre-
dicted labels may also cause biases. In contrast, representing
instances without their predicted labels helps to focus on
data-intrinsic properties such as structural information (e.g.,
patterns, clusters, or outliers) [8]. In this connection, visual
data exploration might support instance selection and label-
ing (see Fig. 2).

A central role in VIS is the direct manipulation of learning
models and the analysis of respective outcomes. To facilitate
this goal, VA approaches such as parameter space analysis
support [76], or techniques for the visual comparison [33] of
different model outputs can be leveraged.

Another class of challenges addresses the visualization of
the model state itself, e.g., for the identification of dependen-
cies between hyperparameters defining the model and input
variables. While the standard machine learning process does
not require visualizations of the model state, VIAL can bene-
fit from the awareness of knowledge between the built model,
the data input, and possibly the semantics of a given analysis
scenario. The identification of shortcomings in the training
(e.g., bias toward a class, misleading features, overfitting) is
another beneficial but challenging goal to be addressed with
model visualization. As an example, in practice the visu-
alization of decision trees is one way to support both the
awareness of dependencies between data and model, as well
as the selection of meaningful labeling candidates [92].

3.4 Candidate suggestion

Automated candidate suggestion (as in AL) and the visual-
ization of model results (from VIS, see Sect. 3.3) represent
two complementary alternatives for the identification and
selection of labeling candidates. From an AL perspective,
users are queried in a model-centered way that is assumed to
improve the model accuracy most [71]. In turn, in the VIS
perspective the user is typically assigned an active role in the
candidate selection process, e.g., by leveraging the gained
knowledge about patterns in the data. With the VIAL pro-
cess, we seek to join both perspectives and propose to either
include AL-based strategies as guidance concepts in visual
interfaces, or to leverage visual interactive interfaces for the
analysis, verification and steering of AL strategies.

Pioneer VIAL implementations [17,39,74] provide both
options and give an idea of the potential of combined
candidate suggestion and selection strategies. However,
approaches that actually combine both strategies to form a
generic and unified candidate selection strategy are still miss-
ing. As such, research in hybrid approaches remains an open
topic and a promising direction of future research.

ChallengesAmajor challenge in candidate suggestion stems
from the AL process, i.e., the selection of the most beneficial
candidates for labeling. A rich set of techniques for candidate
suggestion exists with differences in, for example, the query
strategy [71] or the computation costs [73] (capability for
interactive execution [54]). The applicability of individual
AL heuristics depends on the data, the types of labels, and the
MLmodel [71,98], aswell as on the interplay ofmodel-based
and user-based candidate selection. FromaVIALperspective
the suitability of AL strategies for different user, data, and
task characteristics remains an open issue.

One central aspect is the cold start problem in AL when
no labeled instances are available at all. User-based strate-
gies have shown to outperform AL in early phases of the
labeling process; however, questions arise about break-even
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points and the trade-off between both strategies in the course
of the remaining labeling process [8]. In addition to the lat-
ter, pioneer user experiments started comparing AL with
the user-based selection of candidates with respect to differ-
ent factors such as multi-instance labeling, annotation time,
quality measures, and selection strategies [8,45,51,72,74]. It
remains subject to future work to use the gained knowledge
and design hybrid approaches for combined candidate selec-
tion.

Considering the need for very large labeled datasets a
downstream challenge is the efficient inference of gathered
label information to yet unlabeled instances and the exploita-
tion of unlabeled data for the learning. This goal can be
addressed by semi-supervised learning which is a branch
of supervised learning that tries to improve performance
by exploiting information from unlabeled instances [26].
In VIAL, semi-supervised learning could be integrated in
two ways: (1) to learn more robust models by taking unla-
beled instances into account and (2) by inferring labels from
labeled to unlabeled instances. Both aspects help to reduce
the required user interactions in the VIAL process.

3.5 Labeling interface

The goal of the labeling interface is to accept labels y from
the user which can either be assigned to instances x directly
or be used to characterize relations between instances. This
data-centered output of the VIAL process can be used to
enrich datasets, e.g., for the creation of ground truth data.
Every time a user labels an instance in the labeling interface,
the labeling loop can be triggered, possibly leading to an
improved learning model (see Fig. 2). This iterative user-in-
the-loop approach is supported from both theAL and theVIS
perspective and is resembled in the VIAL process. Particu-
larly the VIS perspective requires meaningful visualization
and interaction designs to support labeling in a meaningful
way.

Challenges One challenge is the visual mapping of label-
ing candidates, i.e., the visual representation of instances
in the visual space [22]. In some cases the visual represen-
tation of instances is straightforward, e.g., for handwritten
digits or other image data. However, other data types build
upon complex data characteristics that are more difficult to
visualize. Examples from the literature include visual rep-
resentations of unknown patient histories [17], abstracted
features [44], relations between clusters and metadata [14],
or poses in humanmotion capture data sequences [4]. In fact,
in order to submit qualified feedback, users must be able to
grasp the characteristics of queried instances. In case users
already know individual instances, visual identifiers can be
used, e.g., national flags for countries [18] or images of soc-
cer players [15]. In other cases where users already have

an intrinsic knowledge of the labeling alphabet, e.g., object
classes like cats and dogs, visual identifiers are also suit-
able. A recent VA approach using the example of personal
image collections is PICTuReVis, allowing visual interac-
tive labeling (and classification) of personal image data [91].
In more complex situations where, for example, multimodal
data or unknown instances (e.g., of a new class) have to be
identified and labeled, visual identifiers become insufficient.
More abstract representations and visualizations need to be
designed to support decisions. Special interaction designs
may be required to explore the instances in detail, e.g., in case
of 3D objects or complex data objects with many attributes.

Another challenge relates to rather exploratory situations
where users are not aware of all inherent phenomena of a
dataset. Labeling only small portions of instances users have
knowledge about may remain uncovered areas of the data
space. As a result, learning models may hardly reflect all
characteristics of the dataset. The visualization of uncer-
tainty information of the learning model can be one means
to amplify the users’ ability to select meaningful candidates
from a model perspective. A recent user experiment showed
that visualizing intermediate class distributions predicted by
a classifier supported the participants in the selection of use-
ful instances for model refinement [8].

Finally, the interaction design raises challenges in com-
plex learning situations where labels are less distinct and
exhibit complex semantics. Categorical and numerical labels
can easily be submitted with straightforward text boxes, slid-
ers, or a set of pre-defined labeling options. Although this
works well for many cases, more complex learning situations
may exceed the limits of baseline interaction designs. For
example, applications where models learn relations between
more than two instances require more sophisticated interac-
tion designs.One class of approacheswhere this problemwas
addressed uses 2D layouts where instances can be arranged
spatially (spatialization [29]) to obtain user feedback. These
examples exploit the user feedback to learn similarity rela-
tions of the data for dimensionality reduction, clustering, or
visual interactive similarity search [12,18,30,31,100].

3.6 Feedback interpretation

An often neglected question is how to interpret complex
user feedback and pass it to the learning model [86]. We
assume that the difficulty in interpreting feedback is related
to the complexity of user interaction. For simple labeling
tasks such as selecting a category, feedback interpretation
may be straightforward. Formore complex tasks the situation
becomes more challenging, e.g., when users create topolo-
gies with multiple instances and the feedback interpreter
exploits the relations between multiple instances [12,31].
Similarly, implicit user feedback is more difficult to interpret
where user behavior is observed and conclusions are drawn
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from behavior without explicit queries. In general, meaning-
ful feedback interpretation can facilitate the data-centered
and model-centered outputs of the VIAL process.

Challenges We elaborate challenges in feedback interpre-
tation from two perspectives: the concrete interaction and
the abstract user intent. The first perspective arises in more
complex interaction paradigms that go beyond text boxes
and slider controls used for feedback submission. Two exam-
ple interactions are (1) spatial re-arrangements of instances
in 2D as described in Sect. 3.5 [12] and (2) ranking items
in list-based interfaces [97]. To address this challenge,
we draw the connection to observation-level interaction, a
sensemaking technique based on semantic exploration of
data [31,100]. The technique explicitly addresses the ques-
tion how users can interactively express their reasoning on
observations about instances instead of directly modifying
parameters of analytical models. For user feedback based
on re-arrangements of instances in 2D at least three dif-
ferent mechanisms exist [18], i.e., the absolute positions of
instances, the relative positions (distances), as well as the
vicinity of nearest neighbors. The authors postulate that the
labeling interface should be designed in a way that it informs
users about how their feedback is interpreted by the system.
If the feedback concept is based on ranked items [97], point-
wise, pairwise, or listwise approaches can be used to interpret
the user feedback and improve the learning model [48].

Challenges from the second perspective are related, but
take the discussion deeper into human–computer interac-
tion. Mental models [24] of users communicated through
visual interactive interfaces [49] open large spaces for inter-
pretation and thus may deviate from the measured feedback.
Implicit feedback falls into this category [56], as well as
data from sensor devices such as eye tracking [10] which
may be addressed in future VIAL approaches to capture user
feedback and to derive labels continuously. Another chal-
lenge associated with implicit feedback is the trust of labels
generated from such processes. While user-generated labels
usually form ground truth data for learning tasks, implicit
feedback, however, may require additional uncertainty mod-
eling.

4 Usage scenarios

In Sect. 3, we presented the six phases of the VIAL process
using relevant pioneer approaches as examples [4,8,15,17,38,
39,74,100]. In this section, we discuss two real-world VIAL
approaches in detailwhich represent heterogeneous and com-
plementary examples. This line of approach is inspired by
Sacha et al. [83] using, for example, Jigsaw [75] as an explicit
example.Our rationale is to demonstrate the range of possible
applications, to shed light on solutions that actually address

the described challenges, and to validate our process model
and the interplay between AL and VIS.

To achieve high variability, the selected use cases differ in
at least one aspect in each of the six phases on the VIAL pro-
cess, i.e., (1) semantical vs. non-semantical features, (2) label
types and learning models, (3) visualizations of the model
state, (4) AL model used for candidate suggestion, (5) the
type of visual representation of instances, and (6) feedback
interpretation and propagation. The first approach applies
VIAL for the generation of categorical labels in the context
of object detection in videos. The second approach applies
VIAL for learning similarities between complex objects (soc-
cer players). Both approaches are concrete instances of the
VIAL process and address all the six steps. Note, however,
that not every VIAL step is exploited with the full complex-
ity the general VIAL process allows. The gap that remains
between the concrete examples and the generalVIALprocess
are good indicators for future work.

4.1 Visual interactive labeling for video
classification

4.1.1 Introduction

In visual classification and recognition, classifiers are usu-
ally pre-trained on large amounts of annotated video data
and are then applied to new data (e.g., face detection in
surveillance applications). Pre-training is possible when the
target object is known a priori and when sufficient training
data for this object has been collected and annotated. Pre-
training is, however, not possible for ad hoc queries defined
by the user because in general no pre-defined classifiers and
labeled datasets exist a priori for such queries. Höferlin et al.
present an interactive learning-based approach for the detec-
tion of user-specified objects in a video that allows the user to
actively select instances for labeling and thereby to steer the
learning process [39]. Additionally, the trainedmodel is visu-
alized by VA methods to provide feedback and to increase
the trust of the user in the model. The authors demonstrate
their method for the task of person identification in videos.
An illustration of the approach is depicted in Fig. 3. This
work is an early example which resembles all steps of the
VIAL process to a certain degree. For this reason, we select
this work as a first usage scenario and discuss it from the
perspective of the VIAL process.

4.1.2 The VIAL process

(1) Preprocessing and feature extraction The data employed
byHöferlin et al. are surveillance videos from amulti-camera
tracking dataset. According to the authors no special prepro-
cessing is performed on the videos and they are taken as
they come from the dataset. The authors addressed the learn-
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Fig. 3 A screenshot of the VIAL approach by Höferlin et al. [39]. The
interface is split into several interlinked areas. a The scatterplots for
each strong classifier of the cascade, b detailed view of each strong
classifier including the respective features selected by the classifier, c

selected instances by the user (from the scatterplots), d visualization of
selected instances in the original video frame (context), e visualization
of rectangle features on selected instances, f a 2D view for instance
labeling. Reprint with permission of IEEE

ing of representations by employing rectangle features which
gained great popularity with the strongly influencing work of
Viola and Jones [93] on face detection andwhich are applica-
ble to arbitrary objects. Rectangle features represent image
filters composed of black and white areas. They act as basic
edge and corner filters and thus can be directly interpreted
visually by humans (see Fig. 3b for examples). Thus, they are
well suited for a visualization of the internals of the learning
model which is built on top of them in the course of the VIAL
process.

(2) Learning model The major challenge in model learning
is to identify which combination of filters are most char-
acteristic for a certain type of object. To find a suitable
representation, the learning model selects rectangle features
dynamically and trains a cascade of classifiers from these fea-
tures. Each input instance is fed through the entire cascade.
Only if it passes all classifiers in the cascade with positive
prediction, it is declared as a positive example. Otherwise, it
is rejected. This asymmetric scheme is necessary to account
for the fact that there are by far more negative instances than
positive instances in typical visual detection tasks.

For model learning, the authors employ a slightly modi-
fied version of the boosting algorithm proposed by Viola and
Jones [93]. Adaptions to the training algorithm were nec-
essary to enable fast iterative re-training of the algorithm
(online Adaboost) which is particularly important in VIAL
to provide instant feedback to the user. Therefore, the authors

solved the first challenge related to the learning model (see
Sect. 3.2). The second challenge is the specification of a stop-
ping criterion. In the approach the point in timewhen training
should be terminated is defined by the user. To support the
user in this decision, performance metrics such as true pos-
itive rate (TPR) and false positive rate (FPR) are provided
(see Fig. 3b). Although this is a sound approach, it has the
drawback that the user needs a certain knowledge of the per-
formance metrics and some basic principles of ML. The use
of visually interpretable features, their visualization, and the
possibility to provide relevance feedback on them to guide
the learning process (see below) represent basic concepts of
the VIAL process.

(3) Result visualization Challenges addressed in the context
of result visualization are the visual representation of the
model state, its learned representation, and designing visual
techniques that enable the user to guide the learning pro-
cess. Höferlin et al. design several visualizations to show
the internal workings of the machine learner. First, for each
classifier in the cascade a scatterplot is shown that displays
the decision boundary and the positively and negatively pre-
dicted instances (left and right of the boundary, see Fig. 3a).
From these scatter plots single or even multiple instances
can be selected. The selected items are visualized in Fig. 3c.
Note that this visualization does not provide the true label of
already annotated instances. Adding this information could
further improve the guidance in the selection and exploration
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process. In a second view (Fig. 3b), the selected rectangle
features (image filters) are displayed for each strong clas-
sifier together with their importance. This view helps the
user to inspect which types of image structures (e.g., verti-
cal lines, horizontal lines, corners) the classifier relies on and
whether these patterns also reflect what the user expects to be
important structures for the searched for objects (inclusion
of domain knowledge). To further verify what the classi-
fiers learn, the user can overlay the rectangular features over
selected instances, see Fig. 3e, and provide relevance feed-
back to the learner.

(4) Candidate suggestion The major VIAL challenge that
Höferlin et al. address in candidate suggestion step is the
automated selection of the most important instances to be
labeled. For this purpose [39] implement an AL strategy
based on uncertainty as an alternative to user-driven can-
didate selection. The authors compute the uncertainty of
the learner for each instance and present the most uncertain
instances to the user for annotation [34,95]. This process is
initiated only on demand by the user and is thus an optional
step.

In the concrete example the selected instances are directly
shown to the user (see Fig. 3f). An interesting extension fol-
lowing the idea ofVIALwould be to highlight these instances
also in the result visualization, i.e., in the scatterplots of
each classifier. Furthermore, visualizing the most uncertain
instances in the (projected) feature space or relative to the
decision boundary would allow the identification of ambigu-
ous features which may lead to wrong decisions. The usage
scenario, complemented with the latter described aspects,
indicates the full scope of the VIAL process. VIAL aims at
a stronger integration of AL and VIS, for example, by the
combination of AL-based and user-based strategies for can-
didate selection. This has hardly been investigated so far and
is a challenging topic for future research [8].

(5) Labeling interfaceTheprimaryVIALchallenge addressed
in the context of the labeling interface is the visual mapping
of candidate instances and their arrangement. The authors
visualize the instances for labeling in 2D in a similarity-
preserving way (see Fig. 3f) to support the exploration of
the space. Similar objects are grouped into clusters and can
be labeled simultaneously which saves time. Thumbnails are
used for the visual mapping, which is natural as the instances
represent images. For each thumbnail the predicted class is
shown as well as the true class if instances have already
been labeled. To provide contextual information, selected
instances are further shown in the context of the video frame
they stem from, see Fig. 3d.

The interface enables the quick tagging of instances. The
approach could be extended with an encoding of uncertain
instances where the true label is different from the predicted

one. Such items are particularly interesting as they may
indicate that the learning model is not able to capture the
complexity of the data (e.g., too simple decision boundary,
underfitting). An important problem emphasized in theVIAL
process and solved by the particular labeling interface is the
cold start problem, i.e., the initialization of the learner when
no labeled instances exist at all. In the concrete example, the
user is simply asked to query positive and negative instances
(used to build an initial model).

(6) Feedback interpretation The last step to complete the
VIAL loop is feedback interpretation. In the approach, feed-
back interpretation is rather straightforward as (1) user
feedback is explicit and (2) feedback consists of pre-defined
mutually exclusive categories (i.e., person or no person).
Thus, the provided label is simply passed to the machine
learner as provided by the user. We want to note, however,
that even in this simple example there is a certain room for
interpretation and a certain fuzziness. Should, for example,
an instance which shows a person only partially (e.g., one
half or less) be considered a positive instance? And where to
draw the border between positive and negative instance, i.e.,
how much of a person must be at least visible to consider
an instance positive? There are in most labeling tasks such
ambiguities which need to be treated in some way. VIAL
provides a means to make such ambiguities explicit to the
user and to raise awareness toward such issues.

4.1.3 Application example

Höferlin et al. demonstrate the capabilities of their system on
the task of person identification in videos. The VIAL process
starts with completely unlabeled videos. In an initial step the
user annotates persons in the videos (positive examples) by
drawing rectangles. Next, negative examples are generated
in the same way. After an initial training on these examples
interactive labeling is performed to improve the result. It
shows that after a few cycles a similar performance level can
be reached than with pure AL (uncertainty sampling) but,
however,withmuch less training examples. This indicates the
potential of combining user interaction and active learning
in the VIAL process.

The approach generates all three outputs of the VIAL pro-
cess. Labeled data are obtained in the form of positively
and negatively labeled image regions. The learned model is
achieved together with a representation that can be reused
for the detection of the target object. The gained knowl-
edge of the user is twofold. First the user gains insights into
the inner workings of the machine learner. Second, the user
gets knowledge about the application domain, its challenges
(difficult cases), ambiguities (e.g., patterns which are eas-
ily confused with the target object), and misleading image
structures which leads to a better understanding of the task.
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Fig. 4 Visual interactively labeling the similarity between pairs of soc-
cer players [15]. An active learning model suggests other players to
be labeled next. The learned similarity function can be validated in a
retrieval component.Most recently, the user has defined a 100% similar-
ity between the two goal keepers Gianluigi “Gigi” Buffon and Manuel

Neuer. At the bottom previously labeled players can be seen including
their similarity scores (bars in green-to-gray). The retrieval algorithm
was applied with Lionel Messi; according to the user-defined similar-
ity function most similar soccer players are Cristiano Ronaldo, Wayne
Rooney, and Arjen Robben

4.2 Visual interactive labeling for similarity
modeling

4.2.1 Introduction

The second usage scenario describes a similarity learning
approach applied for soccer players [15] (see Fig. 4). Experts
as well as non-experts can create a personal similarity func-
tion for soccer players in a visual interactive way. In general,
such similarity functions can subsequently be used for down-
stream algorithms to address retrieval, clustering, or other
ML tasks. In this approach, soccer players are character-
ized by a series of attributes gathered from Wikipedia; all
attributes are semantically interpretable. A visual interactive
interface allows the definition of similarity relations between
pairs of soccer players. A similarity modeling component
interprets the user feedback and builds a model that can be
applied on the entire dataset. A retrieval interface supports
the visual validation of (intermediate) similarity models for
soccer players. Overall, the approach resembles all six steps
of the VIAL process.

4.2.2 The VIAL process

(1) Preprocessing and feature extraction The dataset of
the approach consists of (European) soccer players repre-
sented by a set of attributes (name, position on the field,
goals, national games, size, etc.). The feature vector used in
the approach consists of primary attributes extracted from

Wikipedia (DBpedia) and secondary attributes derived from
primary attributes. As such, all features are semantically
interpretable, even by non-experts. The approach addresses
the challenge to deal with mixed data, i.e., the features can
either be numerical, categorical, or binary. Challenges in the
data preprocessing process were the acquisition of data, as
well as dealingwithmissing values. The authors’ design fore-
sees an explicit visualization of existing features (attributes)
in order to facilitate the visual comparison of player charac-
teristics in detail, see Fig. 4 (left). This design decision comes
with the cost of self-biasing caused by a focus on individual
attributes (see Sect. 3.1). Simple representations make the
approach applicable even for non-experts, e.g., a straightfor-
ward glyph design depicts the position of players on a soccer
field.

(2) LearningmodelThe function to be learned is f (x1, x2) =
y where y is a numerical value between 0 (dissimilar) and
1 (very similar), and x are the players. A two-step approach
first correlates every feature of the dataset against the user
labels, and then, pairwise distances for all pairs of players
in the dataset can be calculated. Every attribute is correlated
individually with different correlation measures for numeri-
cal, categorical, and binary features. Individual treatment of
features is fast (allows rebuilding themodel in real-time), and
results are easily interpretable, i.e., a weight is calculated for
every feature.However, the approachdoes not address depen-
dencies of attributes between each other. Different distance
measures for numerical, categorical, and binary features are
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applied, until a global similarity value is calculated, succes-
sively. Differing weights of features indicate model changes
and build the basis for an intrinsic and comprehensible termi-
nation criterion. The model-centered output of the approach
is an algorithmic measure that reflects user-defined similar-
ity.

(3) Result visualization In line with the VIAL principles, the
approach provides visual interfaces for bothmodel visualiza-
tion andmodel result validation. A straightforward list-based
interface with barcharts depicts the weights of individual fea-
tures, see Fig. 4 (halfway right). In thisway, users can analyze
the fitness of every feature to the given similarity feedback. A
retrieval interface applies the similarity function and repre-
sents its results visually, see Fig. 4 (right). Similarity scores
for every retrieved player give an indication for the similarity
relations of retrieval results with respect to a queried player.
As such, users have a means to interact with the data, explore
the dataset, and gain knowledge, for example, about previ-
ously unknown players. The visual retrieval result can also be
used for the selection (and labeling) of new pairs of players.
With the retrieval component, the authors omit the challenge
to represent the data of the high-dimensional feature space
in an abstract way. One drawback of the strategy is a missing
overview of the similarity relations of the entire dataset.

(4) Candidate suggestion The approach combines the selec-
tion of candidates with AL and VIS, as recommended by
VIAL process. The AL strategy builds upon a data-centered
criterion, i.e., it exploits structure of the data [73]: suggested
candidates have highest distances in the vector space to all
labeled instances. A set of players is suggested and depicted
in the list-based AL interface. VIS principles are imple-
mented in three different ways. First, a textual search allows
querying players known to the users. Second, the history can
be used to re-select (an re-label) players, see Fig. 4 (bottom
left). Third, players retrieved with the retrieval component of
the tool can be selected for labeling.

(5) Labeling interface According to the VIAL process, the
approach builds upon a highly iterative labeling strategy. The
labeling interface visualizes two players, a slider control in
between allows the assignment of a similarity score, seeFig. 4
(left). A tabular interface depicts details about attributes (fea-
tures) of everyplayer as ameans to grasp the characteristics of
queried instances. The glyph with the position on the soccer
field allows direct comparison of this (probably important)
attribute. Images of soccer players serve as visual identifiers
of the players. At least experienced users are able to lookup
known players without difficulties.

(6) Feedback interpretationWith the slider control users can
explicitly define the similarity score between two players.

However, the complexity of the approach is the similarity
relation in itself ( f (x1, x2) = y). The authors address this
problem with correlation measures used to relate every fea-
ture to the given similarity feedback. Features with high
weights match the similarity characteristics of the set of
labeled players. Pairs of players in combinationwith assigned
similarity scores define the data-centered output of the
approach.

4.2.3 Application example

In Fig. 4 the approach can be seen in practice. The history of
labeled pairs of players at the bottom reveals that 7 pairs have
been labeled yet. Most recently, two of the best goal keep-
ers in the world were labeled with a 100% similarity (green
bar in the labeling interface). The weights of the similarity
model (list-based bar visualization center-right) indicate that
the notion of similarity of the user ismainly based on national
goals, the (vertical) position on the field, as well as the num-
bers of league games and goals per year. According to the
learned similarity function, the soccer player most similar to
the queried player Lionel Messi is Cristiano Ronaldo.

5 Discussion and future work

In this work, we carved out the benefits of joint approaches
using AL and VIS for labeling data instances. While we
focused on the conceptual baseline, the quantification of
success of the VIAL process remains future work. When
describing the six core steps of the VIAL process, we went
for a broad overview of techniques, but also for challenges
and existing solutions. In addition, we presented explicit and
holistic reflections of two application examples in the context
of VIAL. Futurework includes implementations of theVIAL
process in application examples with the aim for a broad
range of real-world settings. In this connection, collabora-
tions with experts seem to be a promising approach, allowing
the application of principles from user-centered design and
design studies. Another line of future work involves points
of reference such as deep learning or progressive visual ana-
lytics to be included in the VIAL process more explicitly.
Finally, future work includes evaluations of the challenges
described in the six steps.

5.1 Deep learning

Deep learning has gained a lot of attention recently. We dis-
cuss possible connection points to the VIAL process. Neural
networks in general are suited for VIAL approaches as they
can be trained and refined iteratively. However, a number of
limitationsmay hamper the use of deep networks in theVIAL
process.
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First, training and refinement usually takes considerable
time which makes real-time training hardly feasible today.
The capability of algorithms for interactive execution [54]
is a challenge for many ML approaches in general, so it
is for the VIAL process. Second, large numbers of labeled
data are necessary for initial training which strongly con-
flicts with the cold start problem that is present in many
situations. This requirement does not meet the scope of the
VIAL process; rather, deep learning may be a well-suited
downstream process when training data are available as a
result of the VIAL process. In addition, a solution for the lat-
ter problem may be transfer learning where existing models
trained for similar tasks are fine-tuned incrementally instead
of training from scratch from the given data [5,58,102]. This
approach saves training time considerably and could be a
first step toward the integration of deep learning into VIAL.
Transfer learning requires that a compatible model already
exists, such as the model-based output of the VIAL process.
Third, a big and still open challenge in the context of VIAL
is how to visualize the representations learned by the net-
work and themodel itself. Basic visualization techniques for
representations learned from images have been introduced
recently [65,101,103,105]. However, the challenge remains
of how to visualize thousands of such learned representa-
tions and their hierarchical relations. For more abstract and
complex data (e.g., multimodal data) which have complex
relations and are difficult to interpret visualization becomes
significantly more challenging [60]. We thus conclude that
an integration of deep learning into VIAL is at the current
state of research hardly feasible; however, research that tries
to mitigate current limitations is currently ongoing.

5.2 Visualization of active learning
models/strategies

Recent experiments have shown that candidate suggestion by
a machine learner and candidate selection by the user may
differ significantly and that user-based selection can outper-
formAL [8].One strength ofVIAL is the combination of both
strategies. This combination opens up a novel design space
for combined selection and suggestion strategies. From the
perspective of AL the major novelty lies in the visualization
of active learning strategies. Such a visualization should, on
the one hand, enable to validate a given strategies against
the intuition of the user. On the other hand, it makes the
learning process more transparent for the user and fosters a
deeper understanding of the model and its actual “needs” (in
terms of labeled instances). Furthermore, it bears a poten-
tial to improve existing or develop novel AL strategies by
learning from the user and his or her selection strategies.

The type of AL strategy strongly influences the visu-
alization approach. Purely data-driven approaches such as
density-based selection [99] can be visualized more easily

because density is a concept well perceivable by humans. For
relevance-based approaches [94], visual identifiers or glyphs
(in case ofmore abstract data) may be goodmeasures to visu-
alize suggested instances and to let the user verify their actual
relevance for a given category. For strategies that are driven
bymodel-specificproperties, such as error reduction schemes
[59] and uncertainty sampling [69] but also for query by com-
mittee [79] the visualization becomesmore complex, because
internals of the models need to be visualized to explain to the
user why a certain instance is at the current point of learn-
ing the most important one for the learner. The development
of visualization techniques for this purpose is a challenging
direction for future work.

5.3 Progressive visual analytics

The VIAL process intrinsically relies on the smooth combi-
nation of iterative user input and computationalmodels.With
the growing complexity of the computational components,
this approach needs to balance a critical trade-off though.
On the one hand, the user expects a fluent interaction with
immediate feedback from the labeling system and the under-
lying computational models. Delays as small as seconds can
substantially interfere with and interrupt the user’s work-
flow [25]. Thus, fast and fluent responses from the system are
crucial. On the other hand, however, increasing complexity of
models often comes with increasing computational require-
ments, that is, longer run times. The user would thus need to
wait for results longer.

To deal with this trade-off, researchers have suggested to
work on progressive visual analytics solutions [80]. The basic
idea is, instead of waiting for the final results of computa-
tional components, to quickly compute intermediate results,
offer these to the user, and refine them over time [23,54,87].
An interesting strategy, for instance, might be to train a clas-
sifier first on a subset of the original input data only (to keep
response times short). Once trained, data from the remaining
set can be used to refine the model. Restricting the amount
of data used for a single training pass could lead to a reduc-
tion in disturbing delays and therefore to a smoother user
experience. Such approaches will be crucial for successful
implementations of the VIAL process, specifically if the
underlying models come with a high computational com-
plexity.

5.4 User-centered design and evaluation strategies

The current state of pioneer VIAL approaches demon-
strates the applicability of VIAL for various combinations of
datasets, application fields, label types, and learning models.
Most existing approaches have an emphasis on techniques,
as well as on data and control workflows, proving the appli-
cability of VIAL. One aspect with remaining potentials is
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designing VIAL approaches for specific user groups. Fol-
lowing the design study principle [78], future approaches
may emphasizemethodology for the characterization of users
and their application problem, an iterative design phase, and
a careful reflection of lessons learned in the design process.
Similarly, more general principles from user-centered design
can be borrowed to facilitate both usefulness and usability.

Similarly, the evaluation of VIAL approaches is still in an
early state. We observe that several existing works already
validate learning models, as well as the model conversion
process [15–18,67]. However, many other types of evalua-
tion are possible. One strategy for future work may be the
validation of all six steps proposed in the VIAL process. This
principle helps to validate that individual modules provided
in the interactive and iterative workflowwork together seam-
lessly. Another promising direction for evaluation strategies
is the assessment of strategies for candidate selection either
performed by AL, by users, or by both. A recent experi-
mental study identified that the strategies for the selection
of candidates even differs for various users [8]. This opens
new evaluation strategies for the assessment of various user-
based strategies, as well as in the corporation of analytical
guidance.

6 Conclusion

We presented the VIAL process that adopts and extends the
process model from AL and VIS and therefore combines
the strengths of model-centered active learning with user-
centered visual interactive labeling. In the same way, the
VIAL process mitigates the missing knowledge generation
in AL as well as shortcomings in data creation observed in
VIS. Based on a review of the AL process as well as pio-
neer VIS approaches for labeling, we identified six core steps
assembled to the VIAL process. For every step, we described
both the AL and the VIS perspective, discussed respective
challenges, and outlined possible solutions. In two inspir-
ing examples, we indicated the applicability of the VIAL
process also for other application domains. Finally, we dis-
cussed four core aspects in the broader sphere of VIAL and
indicated connecting points referred to as future work.

In summary, VIAL provides a novel perspective on label-
ing by bringing together two complementing approaches
with a common goal. The VIAL process opens up a space
for the design future labeling approaches that has not been
explored so far. In particular, the combined candidate selec-
tion and suggestion—which is the point where AL and VIS
meet—represents a challenging direction of research which
bears the potential for significant improvements in existing
labeling strategies. VIAL may lead to faster model conver-
gence and more generalizable models in shorter time. In this
connection, we amplified the potentials of combining the

strengths of both humans and algorithmic models in a uni-
fied process, and outlined possible future work addressing
this direction.
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