
The Visual Computer (2019) 35:281–288
https://doi.org/10.1007/s00371-018-1497-7

ORIG INAL ART ICLE

Effective NCmachining simulation with OptiX ray tracing engine

Marc Jachym1 · Sylvain Lavernhe1 · Charly Euzenat1 · Christophe Tournier1

Published online: 21 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
The manufacturing of high-added-value products in multi-axis machining requires advanced simulation in order to validate
the process. Whereas CAM software editors provide simulation software that allows the detection of global interferences or
local gouging, research works have shown that it is possible to consider multi-scale simulations of the surface, with a realistic
description of both the tools and the machining path. However, computing capacity remains a problem for interactive and
realistic simulations in 5-axis continuous machining. In this context, using general-purpose computing on graphics processing
units as well as NVIDIA OptiX ray tracing engine makes it possible to develop a robust simulation application. Thus, the
aim of this paper is to evaluate the use of NVIDIA OptiX ray tracing engine compared to a fully integrated CUDA software,
in terms of computing time and development effort. Experimental investigations are carried out on different hardware such
as Xeon CPU, Quadro4000, Tesla K40 and Titan Z GPUs. Results show that the development of such an application with
the OptiX development kit is very simple and that the performances in roughing simulations are very promising. Developed
software as well as dataset can be downloaded from http://webserv.lurpa.ens-cachan.fr/simsurf.

Keywords Machining simulation · Ray tracing · GPU computing · CUDA architecture · OptiX

1 Introduction

In molds and die industry, simulation of machining pro-
cess is mandatory to validate the tool path generated with
the CAM software before launching the production of parts
with very high added value. Indeed, machining operations
including roughing, reworks and finishing are particularly
time-demanding, especially for large size parts as for exam-
ple in the automotive industry. Thus, the occurrence of
defects in the final stages of the process has a dramatic impact
on manufacturing companies. CAM software editors there-
fore provide cutting simulation applications that allow to
validate the paths from a macroscopic point of view, i.e.,
to test the presence of collisions. However, these simulations
do not incorporate any features of the actual process likely
to deteriorate the surface finishing during machining opera-
tions. Finally, these simulations do not provide the accuracy
required within a reasonable time or the possibility for the
user to select an area in which he would have a greater
precision. On the other hand, high-performance simulation

B Christophe Tournier
christophe.tournier@ens-paris-saclay.fr

1 LURPA, ENS Paris-Saclay, Univ. Paris-Sud, Université
Paris-Saclay, 94235 Cachan, France

software prototypes are developed in laboratories in order to
offset the preceding shortcomings, but they require signifi-
cant computer resources.Manymethods have been published
in the literature to perform machining simulations. Some of
them are based on partitioning the space whether by lines [6],
by voxels [5] or by planes [11], and other are based onmeshes
[3]. Previous works have shown that it is possible to simu-
late the resulting geometry of the surface with Z- or N-buffer
methods applied to a realistic description of both the tools and
the machining path in a few minutes [7]. Simulation results
are very close to experimental results, but the simulated sur-
faces have an area of some few square millimeters with
micrometer resolution. Therefore, to overcome the limits in
terms of computing capacity, some works deal with the use
of GPGPU (general-purpose computing on graphics process-
ing units) and especially NVIDIAGPU (graphics processing
units) and CUDA (Compute Unified Device Architecture)
technology in the field of manufacturing simulation [4,9]. In
this context we have developed a software called SIMSURF1
in order to simulate very quickly a selected machined area
at different scales chosen by the user [1]. This tool, which
is very fast, is based on the Z-buffer method and relies on
GPU/CUDA technology or many CPU cores [10]. However,
the development of such applications requires an extended

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-018-1497-7&domain=pdf
http://orcid.org/0000-0002-6701-4648
http://orcid.org/0000-0003-4153-0836
http://webserv.lurpa.ens-cachan.fr/simsurf


282 M. Jachym et al.

and deep knowledge of these architectures. Low-level CUDA
library has to be used and every aspect of the multi-GPU core
architecture on which CUDA is based on has to be managed,
from the distribution of the parallel calculations on the cores
to the memory exchanges between the CPU and the GPU.

This is why the use of an application framework such
as NVIDIA OptiX ray tracing engine would facilitate the
development of high-performance ray tracing applications
[2]. Thus, the proposed SIMSURF2 approach aims at taking
advantage of the OptiX ray tracing engine in order to facil-
itate the writing of a machining simulation software based
on the GPU parallel calculation platform. For this purpose,
OptiX provides integrated features such as the possibility of
modifying the acceleration structure for each tool posture,
i.e., position and orientation in the 3D space, without recal-
culating it completely.With OptiX and the specialized subset
OptiX Prime, which is dedicated to the high-speed calcula-
tion of intersections between rays and triangles, gains are
expected regarding the software development speed as well
as regarding the optimization in the use of the CUDA archi-
tecture which, in turn, could accelerate the whole machining
simulation process. We propose in this article to compare the
performances of the OptiX ray tracing engine with the devel-
opments previously achieved in SIMSURF1 and updated
here as an implementation for NVIDIA Tesla K40 and Titan
Z GPU. The rest of the paper is organized as follows: the
computation algorithm and the low-level approach used in
SIMSURF1 are summarized in Sect. 2, OptiX Ray Tracing
Engine and its associated features are described in Sects. 3
and 4 is dedicated to the experimental investigations and
benchmarking of both approaches.

2 Computation algorithm and CUDA
architecture

The computation algorithm relies on the Z-buffer method
which consists in partitioning the space around the surface
to be machined in a set of lines, which are equally distributed
in the x− y plane and oriented along the z-axis. The machin-
ing simulation is carried out by computing the intersections
between the lines and the tool along the tool path. The geom-
etry of the tool is modeled by a triangular mesh including
cutting edges, which allows to simulate the effect of the rota-
tion of the tool on the surface topography. The tool path is
either a 3-axis tool path with a fixed tool axis orientation or a
5-axis tool path with variable tool axis orientations. In order
to simulate the material removal, all the intersections with
a given line are compared and the lowest is registered. The
complete simulation requires the computation of the inter-
sections between the N lines (∼1.e6) and the T triangles
(∼1.e4) of the tool mesh at every tool posture P (∼1.e6) on
the tool path. Thus, simulations with 1.e16 potential intersec-

Table 1 Test case description

Case Tool Triangles Postures CAM
geom. T P (s)

1. Blade roughing Torus 25,904 47,837 25

2. Mask roughing Torus 25,904 345,848 380

3. Wave roughing Torus 25,904 8.e6 3670

4. Blade finishing Sphere 12,482 53,667 245

5. Wave finishing Sphere 12,482 1.e6 370

6. Mask finishing Sphere 12,482 3,015,072 450

7. Aero finishing Sphere 12,482 27,425,026 2520

Fig. 1 CUDA architecture

tions to compute are commonly encountered without taking
into account the use of bounding boxes. For instance, in the
case Blade Roughing described in Table 1, the computation
time is about 11 h without any parallelization on the Xeon
CPU described in Sect. 4.

The developed algorithm can run on both CPU and GPU
hardware. The implementation of the SIMSURF1 algorithm
on CPU is based on the use of the OpenMP API and “for”
loops as well as Streaming SIMD Extensions (SSE) instruc-
tions. The optimization of the code executed on GPUs is
more difficult and it requires to divide the computation into
threads and then blocks to take advantage of CUDA’s mas-
sively parallel architecture. Indeed, the strength of the CUDA
programming model lies in its capability to achieve high per-
formance through its massively parallel architecture (Fig. 1).
In order to achieve high throughput, the algorithm must be
divided into a set of tasks with minimal dependencies. Tasks
aremapped into lightweight threads,which are scheduled and
executed concurrently on the GPU. The 32 threads within a
same warp are always executed simultaneously; maximum
performance is therefore achieved if all the 32 threads exe-
cute the same instruction at each cycle.Warps are themselves
grouped into virtual entities called blocks; the set of all blocks

123



Effective NC machining simulation with OptiX… 283

forms the grid, representing the parallelization of the algo-
rithm. Threads from the same block can be synchronized and
are able to communicate efficiently using a fast on-chipmem-
ory, called shared memory, whereas threads from different
blocks are executed independently and can only commu-
nicate through global (GDDR) memory of the GPU. The
number of threads executed simultaneously can be twoorders
of magnitude larger than on a classical CPU architecture. As
a consequence, task decomposition should be fine-grained
opposed to the traditional coarse-grained approach for CPU
parallelization. The basic algorithm consists in determining
whether there is an intersection between a line and a triangle
associated with a tool posture. The intersection algorithm is
based on triangle rasterization [12]. If this algorithm requires
more operations and memory than the one developed in [8],
this disadvantage is compensated by an extremely fast inclu-
sion test of the intersection in each triangle. Given these three
variables on which the algorithm iterates during the sequen-
tial computation, there are numerous possible combinations
to affect threads and browse the set of lines, triangles and
positions. Only one possibility is used hereafter which is the
most appropriate formacro scale simulations [1]. Each thread
is assigned to a position of the tool and applies the Z-buffer
algorithm for every triangle of the tool mesh for this posi-
tion. The pseudo-code of both algorithms executed on the
host (CPU) and on the device (GPU) is provided hereafter.
The granularity of tasks is high: if the number of triangles to
be processed is large, each thread will run for a long time.
If the computation time between threads is heterogeneous,
some threads of a warp may no longer be active, and there-
fore, the parallelism is lost. A thread may affect the cutting
height of several lines, so a line can be updated by multiple
threads and global memory access conflicts appear. Atomic
operations proposed by CUDA are then used to allow con-
current update of the height of the lines.

3 OptiX ray tracing engine

NVIDIA OptiX is an engine for ray tracing 3D rendering. It
allows the developer to concentrate on the objects in a scene
whose geometry is defined by the algorithms for the ray–
object intersections and on the behavior of the light when
it encounters some material. Those elements are the entry
points to the ray- tracing parallel calculation engine that exe-
cutes on the CUDA architecture. The OptiX engine is based
on acceleration structures, which are hierarchies of bound-
ing boxes, to determine which of the scene areas are empty
and do not need any calculation. OptiX Prime is an OptiX’s
subset which is dedicated to the high-speed calculation of
intersections between rays and triangle meshes. There is no
notion of material properties in OptiX Prime, and thus, it
has nothing to do with optic rules and 3D object rendering.

Algorithm 1 SIMSURF1 pseudo-code for the CPU host
1: Lines ← load Z-buffer description from file
2: path ← load tool path from file
3: toolMesh ← load tool description from mesh file

4: nbThreads ← query GPU configuration

5: allocate GPU memory for Z-buffer
6: allocate GPU memory for toolMesh
7: allocate GPU memory for toolpath

8: matrix transformation ← Compute matrix transformation
from tool path file

9: move piece, toolMesh, matrix decriptions fromCPUmemory
to GPU memory

10: while every block of tool positions not done do
11: allocate nbThreads to GPU CUDA kernels for the current

block
12: launch the parallelized threads (GPU CUDA kernels)
13: end while

14: move Z-buffer results from GPU memory to CPU memory
15: create the STL file resulting from the intersections

Algorithm 2 SIMSURF1 pseudo-code for the GPU paral-
lelized CUDA kernels
1: for every triangle do
2: apply transformation matrix to the triangle
3: compute the 2D bounding box circumscribed to the triangle

in the xy plane

4: for each line in the bounding box do
5: perform the actual intersection between lines and triangles
6: atomicMin ← Z-buffer height updating by using

atomic operation
7: end for
8: end for

Rather, it provides a hopefully optimized way to use a hid-
den acceleration structure suited to triangle meshes and to
perform a high-speed ray–triangle intersection on the under-
lying CUDA architecture. By hidden, we mean hidden to the
software developer who is freed from researching methods
for reducing the number of possible intersections that the
GPU will have to calculate.
Within SIMSURF1, the software programmer has to devise
by himself clever methods to determine empty areas in the
scene in order to avoid that the GPU would have to cal-
culate every possible intersection between any ray and any
triangle. Within SIMSURF2, the programmer has to choose
between different possibilities regarding acceleration struc-
tures and traversal methods, whether he has to manage
static vs dynamic scenes or whether his objects are defined
with geometric formulas or meshes. OptiX Prime simpli-
fies this greatly because the best possible choices, regarding
NVIDIA experience in acceleration structures and traversal
algorithms, have been made for a static scene based on tri-
angle meshes (Fig. 2). The calculation of the acceleration

123



284 M. Jachym et al.

Fig. 2 OptiX engine process
overview

structures is the slowest stage of the process and, with pre-
vious OptiX Prime versions, an acceleration structure has
to be built at every step of the loop even if the geometry
of the tool is not changed but is simply moved along the
planned path. This problem has been addressed with OptiX
Prime 3.9 which offers a new possibility called instancing.
From a model object, in the sense of object-oriented pro-
gramming,which associates a trianglemesh and its dedicated
acceleration structure, instancing composes complex scenes
using existing triangle models. Then OptiX Prime is able
to create a global acceleration structure for the whole scene
without duplicating the elementary models’ description. The
programmer has to create a memory structure to associate
each instance of a model object in the scene with a trans-
formation descriptor, i.e., a translation, a rotation and/or a
scaling matrix. The fact that the basic model description is
not duplicated inmemory allows to processmuch bigger path
buffers.

The surface simulation of a 5-axis machining operation
requires to move and rotate the tool. Regardless of the
machine architecture, the OptiX framework allows to define
a transformation matrix for each time step. The initial tool

axis orientation is defined by
[
0 0 1

]T
. Every line of the tool

path file is made of three coordinates x, y, z for the tool’s
translation plus three coordinates i, j, k for the tool’s rota-
tion. All values are related to the global coordinate system.
The rigid body transformation matrix is defined in order to
move the initial tool mesh at the required location under a
given orientation. For a given axis of rotation u and angle ϕ

(Fig. 3), the rotation of a vector x is given by:

v = cos(ϕ)x + (1 − cos(ϕ))(x.u).u + sin(ϕ)(u × x) (1)

Applying this equation foru =
[
j −i 0

]T
andϕ defined by

cos(ϕ) = k and sin(ϕ) = −√
i2 + j2 lead to the following

transformation matrix:

tool axis

x

y

z

j
i

k

u

ϕ

Fig. 3 Tool orientation parameters

⎛

⎜⎜⎜
⎜⎜⎜
⎝

j2+k(1− j2)
i2+ j2

−i j(1−k)
i2+ j2

i x

−i j(1−k)
i2+ j2

−i2+k(1+i2)
i2+ j2

j y

−i − j k z

0 0 0 1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

The algorithm sketching OptiX Prime usage is provided
hereafter in pseudo-code format and describes the part-tool
intersectionmain program. In order tomanage largeNCfiles,
tool paths are split into blocks that fit in the GPU memory. It
is important to note that the development and implementation
of the SIMSURF2 algorithm in OptiX took about one month
versus 6 months for the development of SIMSURF1.

4 Experimental investigations

The objective is to compare the computation time obtained
with SIMSURF1 and SIMSURF2 for different NC simula-
tions with different hardware. Several test cases (Table 1)
have been investigated in 3- or 5-axis milling in roughing
and finishing with variations in the number of tool postures
on the tool path and triangles in the mesh. The Z-buffer is
computed with a grid of 1024 × 1024 lines covering the

123



Effective NC machining simulation with OptiX… 285

Table 2 32-bit computation times (ms) on test cases for a 1024 × 1024 Z-buffer

Case Xeon CPU Quadro 4000 GPU Tesla K40 GPU Titan Z GPU

Sim1 Sim2 SU Sim1 Sim2 SU Sim1 Sim2 SU Sim1 Sim2 SU

1. Blade roughing 8353 8440 1.01 2606 2215 0.85 1166 812 0.69 1102 938 0.85

2. Mask roughing 39,304 20,538 0.52 7607 5564 0.73 2986 1272 0.42 2398 1198 0.5

3. Wave roughing 690,700 201,900 0.29 161,392 72,754 0.45 21,880 7190 0.33 28,651 12,225 0.43

4. Blade finishing 10,606 101,311 9.55 3516 30,204 8.59 1703 4925 2.89 1441 3233 2.24

5. Wave finishing 59,523 167,491 2.81 15,037 57,767 3.84 2960 6150 2.08 3727 10, 998 2.95

6. Mask finishing 168,520 461,582 2.74 43,212 125,002 2.89 11,314 24,671 2.18 8984 13,374 1.49

7. Aero finishing 45,022 107,261 2.38 7847 15,156 1.93 3698 6815 1.84 3273 4510 1.38

Algorithm 3 Optix Prime pseudo-code
1: Create-OptiX-Context (GPU-context)
2: toolMesh ← Create tool mesh from STL file
3: toolModel ← Create OptiX Prime tool model
4: toolModel.Create_acceleration_structure()
5: path ← Create transformations buffer from tool path rotations

file

6: boundingBox ← Compute the bounding box of the whole
scene

7: raysBuffer ← Create vertical rays for the bounding box
according to the chosen entensity

8: closestHitsBuffer ← Create the general hits buffer

9: for each block do

10: block_number ← current-pos

NB_POS_PER_BLOCK

11: toolInstances ← Create a container for the models
of all tool positions

12: transformations ← Create tool position container

13: for every path position in current block do
14: transformations[currentPos] ← transform matrix
15: toolInstances[currentPosition] ← toolModel
16: end for
17: global_scene ← Create the model of the whole scene with

the association of toolInstances & transfor-
mations

18: global_scene.Create_global_acceleration_structure()
19: hitBuffer ← Init buffer for current block
20: Do perform the actual ray tracing on the global-scene from

the raysBuffer

21: closestHitsBuffer ← Update with block’s hitBuffer
22: Release the memory used by the global-scene
23: end for
24: Create the STL resulting file from the closestHitsBuffer

X − Y trajectory range. Results are given in Table 2, Fig. 11
and Fig. 12.

– 3-axis roughing cases with filleted endmill and growing
number of tool postures and air paths

Fig. 4 Blade roughing simulation result

Fig. 5 Ski mask mold roughing simulation result

Fig. 6 Wave surface roughing simulation result

123



286 M. Jachym et al.

Fig. 7 Blade 5-axis finishing simulation result

Fig. 8 Wave surface finishing simulation result

Fig. 9 Ski mask mold 3-axis finishing simulation result

– Blade roughing (Fig. 4)
– Mask roughing (Fig. 5)
– Wave roughing (Fig. 6)

– 5-axis finishing caseswith ball endmill andgrowingnum-
ber of tool postures

– Blade finishing (Fig. 7)
– Wave finishing (Fig. 8)

– 3-axis finishing caseswith ball endmill andgrowingnum-
ber of tool postures

Fig. 10 Aeronautic part finishing simulation result

Fig. 11 Computation time on test cases for XeonCPU andQuadro4000
GPU with a 1024 × 1024 Z-buffer

Fig. 12 Computation time on test cases for K40 GPU and TitanZ GPU
with a 1024 × 1024 Z-buffer

– Mask finishing (Fig. 9)
– Aero finishing (Fig. 10).

NC simulations have been carried out with the following
hardware configurations:

123



Effective NC machining simulation with OptiX… 287

Table 3 32-bit computation times (ms) on test cases for a 10,000 × 10,000 Z-buffer

Case Xeon CPU Quadro 4000 GPU Tesla K40 GPU Titan Z GPU

Sim1 Sim2 SU Sim1 Sim2 SU Sim1 Sim2 SU Sim1 Sim2 SU

8. Aero finishing 206,284 3,349,908 16.3 57,674 522,275 9.06 30,961 163,565 5.3 28,190 130,312 4.6

– Xeon CPU: Intel Xeon Processor E5-1620V3, 3.5 Ghz,
31 Gflops DP, 4 cores, 8 threads, 10Mo SmartCache

– Quadro 4000 GPU: 950 MHz, 486 SP, SP89.6 GB/s
Memory bandwidth, 2 GB (GDDR5), 256 CUDA Cores

– Tesla K40 GPU (one GK110 GPU): 745 MHz, 4.29
TflopsSP, 288GB/sMemorybandwidth, 12GB(GDDR5),
2880 CUDA cores

– GeForce GTX Titan Z (two GK110 GPU): 705 MHz,
4.06 Tflops SP, 288 GB/s Memory bandwidth, 2×6 GB
(GDDR5), 2 × 2880 CUDA cores.

One can notice that the implementation of SIMSURF1 does
not take advantage of the two GPUs of the GeForce GTX
Titan Z, only one GPU is used in this case. It explains the
closeness of the following results with both GPU. The oper-
ating System is XUbuntu 14.04 64 bits which is based on the
Linuxkernel 3.5, and the programming language isC++com-
piled with gcc (4.8.4). Regarding software configurations,
SIMSURF1 relies on CUDA version 7.0 and SIMSURF2 on
CUDA 7.5 and OptiX Prime 3.9.

The three roughing cases are those for which SIMSURF2
is themost efficient, regardless of the hardware used,which is
a very satisfactory result. In addition, the higher the number
of tool positions, the greater the gains in computation time
compared to SIMSURF1. The reason is that OptiX uses an
acceleration structure that minimizes the number of intersec-
tions to be calculated. Roughing paths contain a large number
of tool positions that are not involved in the generation of the
final shape. Thus, only a reduced number of positions in each
Z-level of the path is evaluated in the intersection calculation.
Since the construction of the acceleration structure is time-
consuming, the more the “air” tool positions in the roughing
path, the greater the gains, as shown by the experimental
results. The gain obtained between the worst roughing simu-
lation with SIMSURF1 (Xeon CPU) and the best simulation
with SIMSURF2 (K40 GPU) is around 100 (Figs. 11, 12).

For 5-axis finishing simulation including translations and
rotations of the tool, i.e., Blade finishing andWave finishing,
SIMSURF1 is faster than SIMSURF2 whatever the hard-
ware. The performance difference is greater with the Xeon
CPU andQ4000GPU thanwith other hardware. It seems that
the generation within OptiX of the scene including rotations
of the instances of the tool takes a lot of computing resources.
The increase in the number of positions to be processed leads
to a proportional increase in computing time, except for the

TitanZGPU forwhich the SIMSURF2method ismore penal-
ized.

Regarding 3-axis finishing simulations, i.e., Mask finish-
ing andAero finishing.1, the results between SIMSURF1 and
SIMSURF2 are similar for all devices. In the case of Mask
finishing, the speedup, i.e., the ratio between SIMSURF2 and
SIMSURF1 computation times is ranging from2.89 (Q4000)
to 1.49 (Titan Z). In this case, the ratio between the machined
surface area and the tool dimension is low. This implies that
a lot of intersections will be computed between triangles and
lines. In the case of Aero finishing, SIMSURF1 is still faster,
but the speedup is lower whatever the device. In this case,
the number of intersections between lines and triangles per
tool posture is low, around 7, and SIMSURF1 takes advan-
tage of a simple bounding box for each tool posture, whereas
OptiX generates an acceleration structure for the 27 million
tool postures before launching the intersections computa-
tion. However, asmentioned above, the threads’ computation
times are heterogeneous and then the parallelization is lost
in SIMSURF1 [1], leading to comparable performances.

At last, for Aero finishing.2 the size of the Z-buffer is
increased to 10, 000×10, 000 (Table 3), leading to numerous
intersections per triangle and a large acceleration structure
for SIMSURF2, which again loses the advantage over SIM-
SURF1.

5 Conclusion

A comparison of two ray tracing GPU and CPU implemen-
tations for NC simulations has been proposed in this paper.
The first approach is based on the direct use of CUDAwhich
requires rather steep learning curve and expertise to achieve
high performances. The second one is based on the OptiX
ray tracing engine which provides simpler application pro-
gramming interfaces to compute the rendering of machining
scenes. Experimental investigations have been conducted on
4 different hardware. They have shown that the approach
based on OptiX is the most straightforward to implement
and the most competitive in 3-axis roughing simulations for
all hardware. However, 5-axis configurations remain a prob-
lem for OptiX due to the transformation matrix applied for
every posture of the tool (position and rotation). In 3-axis
cases, computation times between SIMSURF1 and SIM-
SUR2 are much closer, especially on GPU hardware, which
can be considered as a positive outcome regarding the soft-
ware development simplicity of SIMSURF2.

123



288 M. Jachym et al.

Acknowledgements Wegratefully acknowledge the support ofNVIDIA
Corporation with the donation of the Tesla K40 GPU used for this
research as well as the support of the Farman Institute (CNRS FR3311).

References

1. Abecassis, F., Lavernhe, S., Tournier, C., Boucard, P.-A.: Perfor-
mance evaluation of CUDA programming for 5-axis machining
multi-scale simulation. Comput. Ind. 71, 1–9 (2015)

2. CUDA,C.: ProgrammingGuide,NVIDIA, (2012) http://developer.
nvidia.com/cuda/

3. He, W., Bin, H.: Simulation model for CNC machining of sculp-
tured surface allowing different levels of detail. Int. J. Adv. Manuf.
Technol. 33(11–12), 1173–1179 (2007)

4. Inui, M., Umezu, N., Shinozuka, Y.: A comparison of two methods
for geometric milling simulation accelerated by GPU. Trans. Inst.
Syst. Control Inf. Eng. 6(3), 95–102 (2013)

5. Jang, D., Kim, K., Jung, J.: Voxel-based virtual multi-axis machin-
ing. Int. J. Adv. Manuf. Technol. 16(10), 709–713 (2000)

6. Jerard, R.B., Hussaini, S.Z., Drysdale, R.L.: Approximate methods
for simulation andverification of numerically controlledmachining
programs. Vis. Comput. 5(6), 329–348 (1989)

7. Lavernhe, S., Quinsat, Y., Lartigue, C., Brown, C.: Realistic sim-
ulation of surface defects in 5-axis milling using the measured
geometry of the tool. Int. J. Adv. Manuf. Technol. 74(1–4), 393–
401 (2014)

8. Moller, T., Trumbore, B.: Fast, minimum storage ray-triangle inter-
section. J. Graph. Tools 2(1), 2128 (1997)

9. Morell-Gimenez, V., Jimeno-Morenilla, A., Garcia-Rodrguez, J.:
Efficient toolpath computation using multi-core GPUs. Comput.
Ind. 64(1), 50–56 (2013)

10. Parker, S., Bigler, J., Dietrich, A., et al: OptiX: a general purpose
ray tracing engine. ACM Transactions on Graphics, Proceedings
of ACM SIGGRAPH, 2010, 29(4), Article 66, 13 pages, (2010)

11. Quinsat, Y., Sabourin, L., Lartigue, C.: Surface topography in ball
end milling process: description of a 3D surface roughness param-
eter. J. Mater. Process. Technol. 195(1–3), 135–143 (2008)

12. Zhang, W.; Majdandzic, I.: Fast triangle rasterization using irregu-
lar Z-buffer on CUDA, Chalmers University of Technology, p. 78
(2010)

Marc Jachym is a IT specialist
and software developer at Auto-
mated Production Research Lab-
oratory (LURPA), Ecole normale
supérieure Paris-Saclay, France.
He manages the computing capa-
bilities of the laboratory and assists
the researchers with their soft-
ware development needs. Previ-
ously he worked mainly as a soft-
ware developer, for various pri-
vate companies in fields ranging
from electric power dispatch sys-
tem to electronic publishing. He
is also an experienced system
administrator.

Sylvain Lavernhe After obtain-
ing his Ph.D. thesis in 2006 on
the tool path generation for high-
speed and multi-axis machining,
Sylvain Lavernhe is an associate
professor at LURPA, Ecole nor-
male supérieure Paris-Saclay, since
2007. His work focuses on mas-
tering the digital chain for machin-
ing and additive manufacturing
processes. It consists in improv-
ing and combining the following
activities to improve productivity
and quality of the manufactured
parts: path calculation, feedrate

interpolation, control and machine geometry.

Charly Euzenat is a Ph.D. stu-
dent of the Automated Produc-
tion Research Laboratory (LURPA).
He studied at the French Ecole
normale supérieure Paris-Saclay
and holds a master’s degree in
mechanical engineering. He has
collaborated with industrial part-
ners on simulating the hydroform-
ing of titanium exhaust systems
for jet engines. His main fields of
interest include tool path genera-
tion and process simulation. His
research focuses on meshless sim-
ulation methods applied to abra-
sion.

Prof. Christophe Tournier obtained
his Ph.D. degree in 2001. He
joined the Department of Mechan-
ical Engineering of the Ecole nor-
male supérieure Paris-Saclay in
2003. He is the Head of the Auto-
mated Production Research Lab-
oratory (LURPA) since 2014. His
research topics include CAD/
CAM, five-axis machining and
polishing, CNC design and
machine behavior. His current
projects are oriented on the devel-
opment of the digital pipeline
between CAD and an Open CNC

for machining and additive manufacturing.

123

http://developer.nvidia.com/cuda/
http://developer.nvidia.com/cuda/

	Effective NC machining simulation with OptiX ray tracing engine
	Abstract
	1 Introduction
	2 Computation algorithm and CUDA architecture
	3 OptiX ray tracing engine
	4 Experimental investigations
	5 Conclusion
	Acknowledgements
	References




