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Abstract
Over the last few decades, human action recognition has become one of the most challenging tasks in the field of computer
vision. Effortless and accurate extraction of 3D skeleton information has been recently achieved bymeans of economical depth
sensors and state-of-the-art deep learning approaches. In this study, we introduce a novel bag-of-poses framework for action
recognition using 3D skeleton data. Our assumption is that any action can be represented by a set of predefined spatiotemporal
poses. The pose descriptor is composed of three parts. The first part is concatenation of the normalized coordinate of the
skeleton joints. The second part is consisted of temporal displacement of the joints constructed with predefined temporal
offset, and the third part is temporal displacement with the previous frame in the sequence. In order to generate the key poses,
we apply K-means clustering over all the training pose descriptors of the dataset. SVM classifier is trained with the generated
key poses to classify an action pose. Accordingly, every action in the dataset is encoded with key pose histograms. ELM
classifier is used for action recognition due to its fast, accurate and reliable performance compared to the other classifiers.
The proposed framework is validated with five publicly available benchmark 3D action datasets and achieved state-of-the-art
results on three of the datasets and competitive results on the other two datasets compared to the other methods.

Keywords Skeleton-based · 3D action recognition · Bag-of-words · Key poses · Extreme learning machine and RGB-D

1 Introduction

Vision-based action recognition has been extensively studied
bymany researchers due to its broad applicability on different
areas ranging from surveillance, smart home, human com-
puter interaction, robot vision, augmented reality to video
summarizing and indexing [2,42,56]. In spite of the enor-
mous efforts, action recognition still remains as a dynamic
research field due to the major challenges which yet to be
overcome. Among the challenges being faced, variability in
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view point, speed, acceleration and body size of the subjects,
intra-class variation and inter-class resemblance of actions
are the most important ones. Moreover, temporal and spatial
segmentation of an action in videos, semantic parsing of the
actions and sub-actions as well as obtaining enough training
data are other challenges which need to be addressed in order
to have generic solutions for a robust action recognition [45].
A conventional approach for action recognition task extracts
handcrafted features of different modalities (such as RGB,
skeleton joint position or depth map [43]) followed by classi-
fication of the videos based on the calculated feature vectors
[42]. An action is described in three levels: low, mid and
high levels [14,51]. In most of the early works, posture has
been used as a high-level descriptor of human pose and their
concatenation along the joint trajectories for action recog-
nition. However, difficulties in body part detection, reliable
pose recovery and high computational cost had been forced
researchers to find an alternative track [14]. (We refer the
readers to [11] for more details about these methods).

One major disadvantage of the methods that use low-level
and mid-level features is their inability to represent com-
plex activities due to their limitations in presenting semantic
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information [46]. One possible solution came with intro-
duction of high-level semantic features [14], where action
description carried out with a sequence of semantic lexicon
encapsulating spatiotemporal body pose information. Subse-
quently, the Microsoft Kinect sensor provided cost-efficient
high-level marker-less real-time pose extraction from RGB-
D images [19,48] which had been a challenging problem
for a long time. Lately, with the resurgence of deep learn-
ing methods, reliable and precise pose recovery from RGB
images was obtained which were not limited to depth sen-
sors anymore [4,10].Considerable progress has been recently
achieved in accurate marker-less pose detection awarding
advantages such as its resistance to variation in view point,
scale and appearance of a subject for action description com-
pared to the low- and mid-level features. These privileges
have been attracted many researchers to focus on these kinds
of inputs and use them extensively for feature extraction tasks
[14]. The main challenge to use this information for action
recognition is their heterogeneous numeric representation of
semantically similar actions.

There have also been a lot of efforts to preserve tempo-
ral information. To cope with the evolution of variability in
motion patterns, applying temporal pyramid [67] and pro-
ducing histograms for distinctive segments of actions have
gained more popularity. Meanwhile, some methods were
used to add temporal features such as speed to describe each
pose by keeping temporal information [14,57]. Although in
traditional generative methods, it has been shown that the
temporal structure is essential for understanding dynamics
of the actions, it has not been counted as a critical aspect
of deep networks such as ConvNet frameworks. The pri-
mary focus of these methods is on appearance and short-term
motion (limited number of frames) rather than comprising
long-term temporal structure of actions in videos. Neverthe-
less, temporal ordering is one of the main characteristics of
many actions.

Recurrent neural networks (RNN) and long short-term
memory (LSTM) networks have achieved remarkable suc-
cess in text and sound recognition for modeling temporal
dependencies in sequences [27]. This has been inspired
researchers to use variation of RNN [13,53] and LSTM net-
works [28,31,73] with skeleton information. Computational
complexity of these networks makes it unsuitable for real-
time and online tasks [18,35]. However, better results have
been recently gained for modeling action dynamics using
long short-term memory than HMMs and temporal pyramid
[28]. Intuitively, it is expected that a video representation
incorporating temporal ordering has a better discriminative
characteristics, though obtaining an all-embracing represen-
tation still remains as a significant challenge.

From the above-mentioned studies, it can be realized
that the suggested methods (specially bag-of-words-based
methods) still fail to completely model concept of time and

relationship between the poses [14,57,67]. In this study,
we propose a pose-based action recognition framework to
address this problem. Simplicity, interpretability and high
processing performance in recognition tasks are the major
advantages of our proposed methodology.

The main idea is to describe an action with a sequence of
predefined poses and encode it by histogram of those poses.
Figure 1 illustrates overall data flow of the proposed method.
We describe poses of a sequence by defining a simple and
efficient semi-temporal feature. This feature enables us to
distinguish between the two actions with the same skele-
ton configuration and different temporal orders of their key
poses. Our proposed descriptor created more discriminative
key poses by using training poses for action representation.
Embedded temporal information in the key poses helped
us to overcome limitations of the bag-of-words methods
by encoding actions with histogram of the key poses. The
length of feature vector that describes the actions is fixed
and independent of the total number of frames. Finally, we
use discriminative extreme learning machine [21] for clas-
sifying the actions. We tested the proposed methodology on
the five publicly available benchmark datasets including 3D
skeleton data. The experiments showed that our method is
capable of producing state-of-the-art results on three of the
datasets only by using skeleton information, while competi-
tive results on the fourth and fifth datasets.

This paper is organized as follows: In Sect. 2, there is
a brief explanation of available approaches in the literature
followed by details of our approach in Sect. 3. The experi-
mental evaluation and results on the five public datasets are
presented in Sect. 4, and finally, we conclude and summarize
the paper in Sect. 5.

2 Related work

In this section, we briefly explain pose-based methods that
only employ articulated 3D skeleton data for action recogni-
tion. It should be noticed that ourmain focus is on daily living
activities performed by a single person (not interactive).

The 3D skeleton data represent relations between the
joints and overall configurations of human poses. This infor-
mation can be extracted from different modalities such
as motion capture systems (MoCap), stereo, range sensors
[1,18]. As a pioneering study on human action recognition,
Johansson [25] showed that availability of the joint posi-
tion sequence is sufficient to recognize human actions. Yao
et al. [64] showed that in indoor action recognition scenar-
ios, using pose-based features resulted in a better recognition
performance compared to appearance-based features.

In general, all pose-based action recognition approaches
are consisted of two major steps: First, human poses in
each frame are described by the features extracted from
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Fig. 1 Workflow of the proposed method

raw 3D skeleton data, and second, the final feature vector
is calculated for the whole action sequence to be used in
classification or reasoning. Han et al. [18] named these two
steps as “information modality” and “representation encod-
ing,” respectively. According to this taxonomy, various 3D
pose-based features which are used for describing actions
are categorized into four groups based on displacement
[3,9,59,60], orientation [62], raw joint positions [3,5,53,73]
and multi-modal [14,30,38,54,66]. The encoding methods
are categorized into three main groups. Concatenation-based
approach is the most straightforward encoding method car-
ried out by simply concatenation of the extracted features
into a one-dimensional final feature vector [15,59]. The gen-
erated feature vector is too long and is therefore practically
difficult for classifier to handle the high-dimensional space.
Statistical encoding is a common and efficient method for
integrating the features which is performed by applying sta-
tistical analytics on constituent feature vectors without using
any feature quantization operation [22]. A lack of order in
feature elements and absence of temporal relation can be con-
sidered as the most important drawbacks of these methods.
Bag-of-words encoding methods apply coding operator and
dictionary learning for mapping a high-dimensional feature
vector into a single code word in a dictionary. In a study con-
ducted by Han et al. [18], they extracted different features
from skeleton data and applied these three encoding meth-
ods to the obtained feature vectors. Their results indicated
that the bag-of-words encoding methods gave a better per-
formance compared to the other methods on four benchmark
datasets that they examined.

In terms of dictionary learning, the encoding methods are
generally divided into two main categories: clustering and
sparse coding-basedmethods [18]. Losing temporal informa-
tion among the features is a major shortage of these methods.
There are studies [26,57,66] in the literature conducted to
overcome this deficit and improve reliability of the encod-
ing methods. In order to extract spatial/temporal structure
of the poses in each action class, [57,66] used data min-
ing techniques. They grouped skeleton joints in training data
by k-means clustering and used cluster centers as the code
words which encodes the spatial information of the action.
For encoding temporal structure of each action class, they
employed mining techniques (such as Contrast Mining in
[57]) to extract sub-sequences occurring frequently among
sequences of each group. This method benefits from a pose
recovery technique that helps to improve pose detection from
images. However, applying datamining on both of the encod-
ing steps leads to a high computational cost. Instead of costly
process of mining poses, our method uses classification in
order to create the pose sequence of each action whichmakes
it more efficient.

Temporal pyramid method is one of the alternatives for
representing temporal information in bag-of-words methods
[14,26,32]. Most of the studies that have used this method
for temporal localization of poses ignore dynamics of action
(e.g., segmenting the sequence into equal chunks). As a
result, they became incapable of describing the same action
performed by different speeds. To reduce the effect of unfit
segmentation, Liu et al. [32] proposed a descriptor using a
motion energy for clipping the sequences. Rather than using
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skeletons’ energy values for encoding time, our proposed
descriptor models temporal dependency of geometrical fea-
tures by associating each pose wordwith previous poses with
a randomly selected displacement offset. For each poseword,
it also keeps the displacement information regarding the pre-
vious pose in the sequence.

Selecting representative features in the training step in
successful studies carried out by expensive computational
methods such as data mining or other feature selection
mechanisms [14]. Providing spatial/temporal information
using these mechanisms for the bag-of-words methods
is accompanied by a higher level of complexity. The
most similar bag-of-words method with our study is [34].
In this study, for calculating temporal displacement pose
descriptors at frame t with a randomly preselected differ-
ential time offset �t , for each element i , they obtained
�θ i = (xit − xit−�t , y

i
t − yit−�t , z

i
t − zit−�t ). Accordingly,

feature vector was constructed by concatenating the calcu-
lated �θ i for each element (i ∈ 1, . . . ,m). K-means was
applied on extracted pose descriptors on the training data,
and encoding was performed by finding the closest cluster
center to the obtained pose word. Before feeding the descrip-
tors into a Naive Bayes voting-based classifier, each part of
the motion was separately encoded followed by generating a
histogram specific to each part. The main difference between
their method and ours appears in pose encoding phase which
was conducted in low-level and high-level pose encodings,
respectively. Each word in our method describes a real pose,
while in [34], a word is a directed vector describing each
local part. Our descriptor is effective as it produces low-
dimensional feature vectors which are independent of the
number of the skeleton elements and only depends on the
number of the key poses. Lu et al. [34] ignored spatial infor-
mation,while ourmethod uses spatial information alongwith
the temporal pose information.

Nowadays, due to the extensive progress in the image
processing and deep learning-based classification methods
such as convolutional neural networks (CNN), researchers
have been encouraged to employ these methods for skeleton-
based action recognition. However, there are still many
challenges that need to be resolved. These methods are
designed to accept images as input and cannot capture the
dynamic information in skeleton sequences. Therefore, an
encoding method including spatiotemporal information of
a sequence in two-dimensional image space is required.
Some of the studies in the literature suggest converting
skeleton pose sequences into an image containing dynamic
information and asking the network to classify synthesized
images. For example, in [20], Hou et al. proposed a new
encoding method called “Skeleton Optical Spectra” (SOS)
which transforms skeleton sequences into texture images.
The generated textures were used as an input for a CNN
network to extract separable features, and classification

was performed using the average output of the CNN net-
work.

The proposed approach is a pose-based method which uti-
lizes bag-of-words (bag-of-poses) method for encoding. Our
method is distinguished from other existing methods owing
to use simple features extracted from raw joint positions of
the skeleton data which achieves higher computational effi-
ciency. These features are directly extracted from raw joint
positions without transforming them to another space such
as Lie Groups [54,55]. The temporal information is embed-
ded into the bag-of-words dictionary without using complex
data mining methods [58]. This is performed by generating
spatial/temporal poses as words of the dictionary. There-
fore, the generated histograms inherently contain temporal
information and using multiple histograms is not required
for handling time information.

3 Proposedmethod

As the input, the proposed framework accepts a sequence of
high-dimensional vectors of skeleton joints for each action
with T frame and J joints for each skeleton:

S = {Pt | ∀ t ∈ (1, . . . , T )} (1)

where Pt = {
pit | ∀ i ∈ (1, . . . , J )

}
is the set of skeleton

joints at t th frame and pit = (xit , y
i
t , z

i
t ) is the i th joint of the

skeleton p in t th frame.
The coordinate system of the framework (x, y, z) is

defined based on the location of the camera as shown in
Fig. 2. The center of the coordinate system matches with
the center of the camera. Inspired by the conventional bag-
of-words methods, our proposed method describes an action
as a sequence of pose-words (key pose). Encouraged readers
can refer to [41] which has compiled a comprehensive survey
summarizing bag-of-wordsmethods applied on action recog-
nition problems. The overall flow of our framework is shown
in Fig. 1. A preprocessing step precedes feature extraction
process to make the input skeleton information invariable to
subject position, scale and camera view.

3.1 Preprocessing and feature extraction

The preprocessing step makes the input skeleton data:
Transform invariant: In each frame, we transform the ori-

gin of the coordinate system from real-world coordinates to
hip center of the person. This transformation makes the posi-
tion of the skeleton joints invariable to the location of the
subject.

Scale invariant: In general, people performing an action
have diverse ranges of body sizes. In order to have robust
action models, the generated action features of different sub-

123



Improving bag-of-poses with semi-temporal pose descriptors for skeleton-based action... 595

Fig. 2 a Assumed settings in
the proposed method with the
Kinect placed in the origin of the
coordinate system b rotation of
the skeleton toward the origin
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jects should preserve consistency among the representations.
Different methods have been proposed in the literature for
maintaining the scale invariability which among them, we
use a method similar to [55]. First, we choose a random pose
as a reference and afterwardswe rescale the remaining poses’
limb sizes to the size of the corresponding body parts in the
reference pose which preserves original angles between the
pose parts.

Rotation invariant: To make skeleton joints invariant to
the camera view, a specific rotation is performedwith respect
to the specified view point of the camera. As shown in Fig.
2b, this transformation ensures that the projection of the vec-
tor passing from left hip to right hip on ground plane stays
parallel with x axis in the real world coordinates.

Given a normalized pose, the next step generates a pose
descriptor. Lillo et al. [30] classified features of the pose
descriptors in two categories:

i. Geometric descriptor: These descriptors represent the
spatial configuration of the skeleton joints in each frame.
They use calculated angle between the skeletal vectors
or computed distance between the joints using different
metrics.

ii. Motion descriptor: Although the geometric descriptors
are capable of defining spatial configurations of skeleton
joints, they are unable to encode dynamic information of

the poses. In order to codify motion dynamics in repre-
sentation of posemotion descriptors, information such as
velocity, speed, derivation and optic flow is used in the
calculations. Motion descriptors also avoid the ambigu-
ity between the two poses, while they embody different
action characteristics with similar spatial configurations
(Fig. 3).

While the proposed descriptor intrinsically contains geo-
metric information, it also tries to keep the track of dynamic
of actions by taking into account temporal dependency
between the consecutive frames. The final pose representa-
tion is composed of different combinations of the descriptor
types. One popular combination strategy is to concatenate all
of the extracted features. Due to an increase in dimensions of
the descriptor, cost of the classification also proportionally
scales up. In order to keep the dimensionality manageable,
most frequently dimensionality reduction procedure such as
PCA or LDA has been used. Although dimensionality reduc-
tion brings efficiency to processing of the descriptors, it is
computationally expensive and sometimes does not culmi-
nate the accuracy [16]. An alternative strategy called feature
engineering rather than blind concatenation of features tries
to single out the most representative ones in the feature set.
Feature engineering is usually done either manually (hand-
crafted) or automatically (learning based), e.g., supervised
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sparse dictionary learning, neural network, genetic program-
ming, CNN or random decision forests [71]. Since feature
selection mechanisms are computationally expensive, they
cannot be a suitable option for a real-time application [18].
Unlike feature selection-basedmethods, our features are sim-
ilar to the one in [9] and give an efficient pose description.

As illustrated in Fig. 1, for describing spatial configuration
of the skeleton in each frame, we define the feature vector
for t th frame as

ft = {&(xit , y
i
t , z

i
t ) | ∀ i ∈ (1 · · · J )}

which concatenates normalized coordinate of the skeleton
joints. (J is number of joints of the skeleton.) As mentioned
before, in order to model the temporal dependency between
the poses in different frames and make the descriptors to
embody information of similar action configurations with
composite temporal dependencies, we define another vector
� ft that models temporal dependency by taking into account
a randomly selected frame offset (t ′):

� ft =
{
ft 1 ≤ t < t ′
ft− ft−t ′+1

‖ ft− ft−t ′+1‖ t ′ ≤ t ≤ T
(2)

If the current pose occurs before the offset, the calculated
vector contains regular joint features. Otherwise, it calculates
the distance between the current pose and all of the dependent
poses in the range of the temporal offset. We also calculate
� f ′

t as another feature vector comprising displacement of
the current pose with the previous pose in the sequence.

� f ′
t =

{
ft t = 1

ft − ft−1 2 ≤ t ≤ T
(3)

The final feature vector of t th pose is composed of Xt =
[ ft ,� ft ,� f ′

t ]which is concatenation of spatiotemporal fea-
tures and its dimension D = 3 ∗ J ∗ 3 is linearly dependent
on the number of the skeleton joints.

3.2 Key poses selection

Similar to the bag-of-words methods, our framework repre-
sents a sequence of an activity with a set of initially learned
key poses (words in the dictionary). The dictionary of the key
poses therefore needs to be learned, and subsequently, high-
dimensional pose features are encoded into a single word.
Conventionally, there are two ways to learn the dictionaries:

i. The first way is to divide the feature space into subregions
and then express each region with its representative (the
code word). K-means algorithm has been widely used for
this purpose [16,26,57].

ii. The second way is to determine distributions of the fea-
tures using a generative model. Gaussian mixture model
(GMM) is themost popularmethod used for this purpose.
TheK-means algorithm generates thewords from feature
vectors based on hard assignments (i.e., uses Euclidean
distance to find the closest center), while GMMperforms
soft assignment instead (i.e., it uses probability distribu-
tion of the features for codewords assignment rather than
mean value) [41].

The accuracy of classification is directly related to quality
of the trained dictionary and feature encoding. In case of
K-means algorithm, as dimensionality of the feature vectors
increases, Euclidean distance performs poorly and starts to
generate unreliable encodings. Therefore, to improve dic-
tionary learning and encoding, we perform it in two steps
(Fig. 1) [16]. To generate pose words for the dictionary (Key
poses), the K-means algorithm is applied on the pose feature
vectors of all the training frames:

Poses =
{

⋃

m

⋃

t

Xt (m)|

∀ m ∈ (1, 2, . . . , M) and ∀ t ∈ (1, 2, . . . , T )} (4)

whereM is the number of trials in the training set and T is the
number of frames. Consequently, the feature space is divided
into a K clusters and their corresponding cluster centers. The
obtained cluster centers are considered as the key poses and
passed to the next step of the framework.

3.3 Pose classification and encoding

To resolve problem of the Euclidian distance in the encod-
ing phase, we train a set of SVM classifiers using the key
poses of dictionary and carry out assignments using the clas-
sification. For implementing, we use LIBSVM [6] library in
which one-against-one method is used for classification of
the key poses. We train S = K∗(K−1)

2 binary SVMs for clas-
sification of K poses. For assignment of the feature vectors
to the key poses, we use learned binary SVMs with “max
wins” voting strategy. Using hyperplanes for classification
of the pose words yields in a better assignment results than
K-means [16].

3.4 Action representation using key pose
histograms

In this step, we use the trained SVM classifier to convert each
action’s feature vector into a sequence of the key poses. The
sequence of the produced poses has a variable length due to
variety of the frame number in the videos. For classification
of the variable length sequences, methods such as Hidden
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MarkovModel, BayesianNetwork andDynamicTimeWarp-
ing are used [42]. For classification of the activities, we can
use discriminative classifiers such as SVM, KNN and ANN.
Normalizing the length of the feature vectors to a fixed length
is usually done in two ways: sampling video frames to the
desired size and then extracting the feature vectors. The other
method quantifies values of the feature vectors and use the
histogram of quantized values to describe the entire action
[45]. We describe each activity with a fixed length feature
vector, and we then calculate histogram of the sequence con-
taining constituent key poses. Prior to these calculations,
the length of histograms is determined with the number of
extracted key poses.

3.5 Action classification

There are several popular classifiers such as KNN, SVM,
ANN and random forest for classification of the fixed length
feature vectors. In this work, we use extreme learning
machine (ELM) classifier [21] in order to classify actions.
ELM is a single-layer feed-forward neural network classifier
which has been successfully applied in various applications
and has shown high learning speed and viable accuracy. For
the first time,Minhas et al. [36] used this classifier inmotion-
based features to detect human actions and they obtained
promising results.Moreover, thismethod is not limited to low
class number and small-scale classifications and can be used
in large-scale realistic tasks. Varol and Salah [52] used ELM
for action recognition of realistic video clips and achieved
acceptable results by considering heavy computational cost
of deep neural network methods. In recent years, this method
also has been used to detect human actions with skeleton data
[9,65].

4 Experimental evaluation and results

We evaluated our method on five challenging benchmark
datasets. We assume that there is only one person perform-
ing the assigned actions. This explains that why we observe a
drop in performance when interactive actions are evaluated.

UTKinect action dataset: This dataset [62] was collected
by Xia et al. at the University of Texas at Austin in 2012.
The data were captured by Kinect v1 in 30 fps and included
10 actions. Each action was performed by 10 subjects (9
men and 1 woman) for 2 times. In total, 200 sequences exist
in the dataset. The dataset included RGB, depth and skele-
ton where the sequences were manually clipped. Similarly,
skeleton data in each frame were represented by Euclidean
position of 20 joints relative to the origin. Variability of sub-
jects’ position and orientation toward the camera, variation
of performance among different patients and noticeable dif-
ference in speed and duration of the actions are the main

challenges of this dataset. Human–object occlusions and out
of field-of-view body parts make the sensor unable to recover
all of the body parts and add them up to the challenges being
faced in this dataset.

CAD-60dataset:Daily activities rarely occur in controlled
laboratory environment. This has motivated researchers at
the Cornell University to create CAD-60 dataset [49] for
actions occurring in the real environments. Four subjects per-
formed 12 different actions in 5 different environmentswhere
depth, RGB and skeleton data for each instance are captured
by Kinect v1 sensor in 30 fps. Each action is performed at
least one time by each subject. In total, dataset includes 60
sequences with an average length of 45 s for each action.
Skeleton data for each frame are presented with Euclidean
position of 15 joints by taking sensor coordinates as the
reference point. Insufficient training data and variable back-
ground are the main challenges of this dataset. The actions
are performed with different laterality as one of the subjects
is left-handed. In order to compensate the effect of laterality,
some of the proposed methods [40,47,49] also added a mir-
rored version of these instances to the training data to achieve
invariance toward handedness of the subjects.

UTD-MHAD dataset: UTD-MHAD [7] is a multimodal
dataset which was released by the University of Texas for
the multimodal activity recognition. The data were captured
by Kinect v2 at 30 fps and a wearable inertial sensor. Four
data modalities including RGB, depth, skeleton and iner-
tial signal were registered in temporal synchronized mode
using these sensors. The dataset includes 27 action. These
actions were performed by 8 subjects (4 men and 4 women)
in an environment with a fixed background. Every subject
performed each action for 4 times. The skeleton data for
each frame were presented by Euclidean position of 20 joints
with respect to the sensor coordinates. In another taxonomy,
this dataset categorized actions in four sub-categories: sport
actions (e.g., bowling, tennis serve and baseball swing), hand
gestures (e.g., drawing x, triangle and circle), daily activities
(knocking the door, standing and sitting) and training exer-
cises (e.g., arm curl, lunge and squat).

MSR action 3D dataset: MSR action 3D dataset [29] is
the first public RGB-D action dataset which was created by
Microsoft Research Redmond. The dataset was recorded by
Kinect v1 in 15 fps and included 20 actions involving dif-
ferent body parts. Each action was performed by 10 subjects
for 2–3 times. In total, 567 sequences exist in the dataset
with the lengths varying between 13 and 67 frames. Each
sequence included an actionwhichwasmanually segmented.
The dataset also included depth and skeleton data of each
action. Skeleton in each frame was represented by Euclidean
position of 20 joints relative to the origin which was the sen-
sor coordinate. In all instances, subjects performed actions
in a fixed position facing toward the camera with a controlled
background.
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Table 1 Summary of the
datasets

Dataset name Actions Subjects Sequences Joints Year

UTKinect [62] 10 10 199 20 2012

CAD-60 [49] 12 4 60 15 2011

UTD-MHAD [7] 27 8 861 20 2015

MSR action 3D [29] 20 10 557 20 2010

MSRC-12 [15] 12 30 594 (6244 instance) 20 2012

Table 2 Investigating
parameters of our approach

Dataset name Investigated intervals and steps

Temporal offset Key poses numbers Neuron numbers

UTKinect [62] 4:1:20 100:10:200 500:100:3500

CAD-60 [49] 10:10:150 100:10:250 500:100:3500

UTD-MHAD [7] 4:1:20 150:10:280 500:100:3600

MSR action 3D [29] 4:1:20 150:10:250 500:100:3500

MSRC-12 [15] 4:1:11 100:10:200 500:100:3100

MSRC-12 dataset: MSRC-12 dataset [15] is a bigger
dataset compared to the previous ones which makes it
more suitable to evaluate scalability of our approach. This
dataset contains only skeleton information and was collected
by Microsoft Research to evaluate the effects of differ-
ent instruction modalities on recognition of actions. It was
recorded in 30 frames per second and stored position of
20 skeleton joints at each frame. 30 subjects performed 12
actionswhichwere divided into two groups of 6 actions each.
In total, there were 594 action sequences in the dataset each
containing one action performed by one subject with 5 differ-
ent instructions recorded in succession. (In total, there were
6244 action instances in the dataset.) For segmentation of the
sequences, we use labeling information in [22].

A summary of general characteristics of the five datasets
used in our experiments for evaluating the proposed method
is shown in Table 1.

Experimental settings: In our experiments, 3D coordinates
of the skeleton joints are converted from world coordinates
into subject coordinates by taking hip center joint as the coor-
dinate system’s origin in each frame. The obtained results
in each dataset are compared to the methods that use only
skeleton data for recognition tasks. Three input parameters
of our framework are individually tuned for each dataset. The
first parameter is the temporal offset ( t ′) which is used for
constructing temporal difference (� ft ) in the feature vector.
The second parameter is the number of clusters in k-means
clustering method which is used to extract key poses from
all of the training poses. In other words, it represents the
number of key poses. The last parameter that needs to be
tuned is the number of neurons in the hidden layer of the
ELM. We start with big steps and wider range of parame-
ters and narrow down the intervals to find the optimal values.
As shown in Table 2, we empirically determine the optimal
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Fig. 4 Evaluating the key pose parameter

intervals and the best fit of the step size which ensure the best
overall performance of the recognition framework. We per-
form a random initialization of the cluster centers in k-means
method to calculate the key poses. The proposed method is
therefore repeated 20 times on each dataset, and the best
result is reported and is compared with the state-of-the-art
approaches.

We also illustrate detailed process of parameter investiga-
tion in Figs. 4, 5 and 6. Due to different protocols of each
dataset, we depict the tuning process for 3 of the evaluated
datasets. It can be seen that a lower number of the key poses
fails in representing the poses in the dataset, while a larger
number of poses increases the noise and drops the accuracy.
There is an optimum spot in each dataset for the key pose
number which gives the best performance.
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Fig. 6 Evaluating the neuron parameter

From Fig. 5, it can be clearly seen that the accuracy drops
significantlywhen the offset value increases. A small number
of neurons have negative effect on accuracy of UTD-MHAD
dataset, whereas it improves linearly as the number of neu-
rons grows. For the other datasets, accuracy fluctuations are
not significant.

In the seminal work based on the UTKinect action dataset
[62], the authors used leave-one-sequence-out (LOSeqO)
protocol for their evaluations. In this protocol, they randomly
selected one sequence at a time from the entire dataset as the
test instance and used the remaining sequences as the training
data. This process was repeated in certain times, and average
of the obtained resultswas used as the final performance [68].
In our experiments, we follow cross-subject protocol in [54].
Subjects 1, 3, 5, 7 and 9 are selected for training and subjects
2, 4, 6, 8 and 10 for testing. This evaluation protocol is more
realistic since the test subjects’ actions are kept out of the
training set. We use Table 2 to find the optimized parameters
for UTKinect action dataset. We obtained the best perfor-

Table 3 Comparison with the state-of-the-art results on UTKinect
action dataset

Feature
engineering

Method Accuracy (%)

Handcrafted HOJ3D [62]
(LOSeqO)

90.9

Lie group [54] 97.8

Spatiotemporal
SHs [65]

93.0

Pairwise joints
[32]

94.4

Our method 98.9

Learned
representations

RDF-based [37] 92.0

Max-margin
multitask [63]
(LOOCV)

98.8

LMNN [35]
(LOOCV)

98.0

RNN-LSTM Multilayer
LSTM [69]

95.9

ST-LSTM [31] 95.0

TS-LSTM [28] 96.9

WWalk 1.0
sit down 1.0
stand up 1.0

pick up 1.0
carry 1.0

throw 1.0
push 0.1 0.9

pull 1.0
wave 1.0

clap hands 1.0
W

alk
sit down

stand up

pick up

carry
throw

push
pull

wave 
clap hands

Fig. 7 Confusion matrix of UTKinect dataset

mance by setting temporal offset to 6, key pose number to
160 and number of neurons to 3100. The results and compar-
isons with the state-of-the-art methods are shown in Table 3.
As far as we know, the best performance achieved among all
the skeleton-based approaches usingUTKinect action dataset
is obtained by our method, as shown in Table 3. Based on
the confusion matrix (Fig. 7), 10% of the test samples of
“push” action are misclassified as “throw” action. Similarity
between poses of the two actions and noise in skeleton joint
positions are potentially the main causes of the recognition
failure. Our method successfully recognizes nine out of ten
actions with 100% accuracy.

Sung et al. [49] presented two types of protocol called
“new person” and “have seen” for evaluating CAD-60
dataset. They used precision/recall measures to evaluate their
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Table 4 Comparison with the
state-of-the-art results on
CAD-60 dataset

Feature engineering Method Precision (%) Recall (%)

Handcrafted MEMM [49] 67.9 55.5

3D posture [16] 77.3 76.7

Pose kinetic energy [47] 93.8 94.5

Decision-level fusion [74]a 96.4 84.6

Our method 98.5 99.0

Learned representations M-L codebooks of key pose [72] 97.4 95.8

Self-organizing neural int [40] 91.9 90.2

RF-key pose [39] (Random+Still) 81.8 80.0

aNotice that in this method, both depth and skeleton information are used

proposed method. In our experiment, we adopt “new person”
protocol for evaluations. This protocolwas defined as a leave-
one-subject-out cross-validation. One subject was therefore
used for testing, while the other three subjects were kept for
training. In CAD-60 dataset, one of the four subjects was
left-handed (subject number 3). We use mirroring operations
before constructing the feature vector in order to convert lat-
erality of the actions and tomake it similar to the right-handed
actions. Zhu et al. [74] achieved state-of-the-art results on
CAD-60 dataset. In their approach, subject number 2 was
considered for testing and the other three subjects (1, 3 and
4) for training.We adopt the same setting in our experiments.
Length of the actions in this dataset was longer than the previ-
ous one. Using Table 2, we tried different parameter intervals
and step sizes. By examining all the possible scenarios for
the parameters in these intervals, we obtained the best per-
formance with value of 50 for temporal offset, 210 for key
pose number and 3100 for number of neurons on CAD-60
dataset. Performance of our method and comparisons with
the successful approaches in the literature using CAD-60 are
shown in Table 4. It can be noticed from Table 4 that our pro-
posed method achieved competitive performance compared
to the handcrafted skeleton-basedmethods. Except subject 3,
all of the actions in different environments 3 are recognized
with 100% success. As it is clear from the confusion matrix
(Fig. 8), recognizing “talking on coach” action instead of
“relaxing on coach” is the only failure occurred in subject
three’s instances. Insufficient training samples are the main
reason for this failure. Since there is only one test instance
available for “relaxing on coach” related to the subject 3, the
calculated precision turns out to be undefined value of 0/0.
To compute average precision of the actions in “living room”
environment, we consider this value as zero.

The common practice in UTD-MHAD dataset [7] was to
perform cross-subject evaluation protocol which was sug-
gested by its providers. In this protocol, half of the subjects
(1, 3, 5 and 7) were taken for training and the other half (sub-
jects 2, 4, 6 and 8) for testing. In our experiments, we use
the same setting for evaluating our proposedmethod. Similar
to the previous datasets, we investigate the optimal param-

ttalking on the phone 1 0 0 0 0
drinking water 0 1 0 0 0

talking on couch 0 0 1 0 0
relaxing on couch 0 0 1 0 0

random 0 0 0 0 1
talking on the phone

drinking water

talking on couch

relaxing on couch

random

Fig. 8 Confusion matrix of “living room” actions related to subject 3

eters through the values indicated in Table 2. We obtained
the best performance with value of 9 for temporal offset,
250 for key pose number and 3100 for number of neurons
on UTD-MHAD dataset. (The evaluation of these param-
eters are shown in Figs. 4, 5 and 6.) To the best of our
knowledge, the best performance among all the skeleton-
based approaches on UTD-MHAD dataset is obtained by
our method as shown in Table 5. Analysis of the confusion
matrix in our method on this dataset (Fig. 9) showed that
actions sharing commonposes lead to inaccurate recognition.
For instance, “throw” action is classified with 75% accuracy,
while in 20% of samples, it is misclassified as “draw x.” In
a similar situation, “jog” is misclassified in 25% of times as
“walk” action. Nevertheless, 18 actions out of 27 are recog-
nized with a 100% accuracy. Existence of distinctive poses
leads the framework to distinguish these actions with a per-
fect accuracy.

There are two settings which have been used in the previ-
ous studies to evaluate MSR action 3D [29] dataset. The first
one was proposed in the seminal paper [29] of MSR action
3D dataset where all of the actions were divided into three
sub-categories (AS1, AS2 and AS3) shown in Table 6. Every
sub-categorywas consisted of 8 action classeswhose training
and classifications were independently performed on each
category. In sub-categories AS1 and AS2, actions with sim-
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Table 5 Comparison with the state-of-the-art results on UTD-MHAD

Feature engineering Method Accuracy (%)

Handcrafted Kinect and inertial [7]a 79.1

Kinect and inertial fusion [8]a 91.5

ELC-KSVD [70] 76.1

Cov3DJ [22] 85.5

Our method 95.3

CNN SOS_ based CNN [20] 86.9

JTM_ CNN [61] 85.8

aNotice that in this method, in addition to skeleton, depth information
is also used

ilar motions were grouped together. These categories were
used for evaluating distinctive ability of algorithms for rec-
ognizing actions with similar structure. Sub-category AS3
contained actions were consisted of complex body dynamics
and were used for evaluation of diversity of a method. The
overall performance of a system is obtained by averaging the
performance of sub-categories.

The second experimental protocol which was suggested
in [60] kept all of the 20 actions in a single set for training
and testing without splitting the dataset. This makes the clas-
sification even harder compared to the first setting. In our
experiments, we use both of the settings. For the first pro-
tocol, we use cross-subject cross-validation similar to [54].
We consider half of the subjects (1, 3, 5, 7 and 9) for training
and the other half (2, 4, 6, 8 and 10) for testing. By examin-
ing all of the possible scenarios for the parameters indicated

Table 6 Three action subsets of MSR action 3D

AS1 AS2 AS3

Horizontal arm wave High arm wave High throw

Hammer Hand catch Forward kick

Forward punch Draw x Side kick

High throw Draw tick Jogging

Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve

Tennis serve Forward kick Golf swing

Pickup and throw Side boxing Pickup and throw

in Table 2, we obtained the best performance by setting the
temporal offset to 4, number of key poses to 100 and num-
ber of neurons to 3100 on MSR action 3D dataset. For the
second protocol, we detect value of the temporal offset as 5,
number of key poses as 160 and number of neurons as 1300.
The evaluation of these parameters is illustrated in Figs. 4, 5
and 6, respectively. The performance of our method onMSR
action 3D dataset with the two protocols and their compar-
isonswith skeleton-based state-of-the-art methods are shown
in Table 7. (Results of the second protocol are under the
column indicated with all.) Depending on the feature type,
the methods are categorized into handcrafted or automatic
types.

Our proposed method achieved acceptable performance
among the handcrafted methods when features are calcu-
lated only in Euclidean space without transformation into

swipt_le� 1.00
swipt_right 1.00

wave 0.06 0.94
clap 0.81 0.19

throw 0.06 0.75 0.19
arm_cross 0.13 0.81 0.06

basketball_shoot 0.94 0.06
draw_x 1.00

draw_circle_CW 1.00
draw_circle_CCW 0.94 0.06

draw_triangle 1.00
bowling 1.00

boxing 1.00
baseball_swing 1.00

tennis_swing 0.06 0.94
arm_curl 1.00

tennis_serve 1.00
push 1.00

knock 1.00
catch 0.06 0.06 0.88

pickup_throw 1.00
jog 0.75 0.25

walk 1.00
sit2stand 1.00
stand2sit 1.00

lunge 1.00
squat 1.00
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wave
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arm_cross
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draw_circle_CCW
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Fig. 9 Confusion matrix of UTD-MHAD dataset
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Table 7 Comparison with the
state-of-the-art results on MSR
action 3D

Feature engineering Method Accuracy (%)

AS1 AS2 AS3 Average All

Handcrafted Pose-based [57] – – – 90.2 –

HOJ3D [62] – – – 78.9 –

Lie group [54] 95.3 83.9 98.2 92.5 89.4

Spatiotemporal SHs [65] 89.7 91.7 92.5 90.9 –

Pairwise joints [32] – – – 93.8 –

RRV [17] – – – – 93.4

Trajectory let [44] 96.4 97.5 100 97.9 –

Our method 94.3 94.6 97.7 95.4 91.9

Learned representations LMNN [35] – – – 97.1 –

Moving pose lets [50] 89.8 93.5 97.0 93.5 93.6

Max-margin multitask [69] – – – 95.6 90.5

RNN or LSTM HBRNN-L [13] 93.3 94.6 95.5 94.5 –

ST-LSTM [31] – – – 94.8 –

TS-LSTM [28] 95.2 96.4 100 97.2 –

another space such as [54,65]. The approaches such as [35]
that employed data mining techniques to select distinctive
features achieved superior results. However, performance
improvement in action recognition in these methods coin-
cided with an increase in computational cost particularly
in the training phase. As shown in Table 7, our meth-
ods generated relatively better results compared to [13,50,
65] on AS3 which contain actions with complex struc-
tures.

In the first protocol, compared to the other two sub-
categories, actions in sub-categoryAS1 aremore challenging
for our framework and resulted in a less accuracy in perfor-
mance due to complexity of the actions. It can be clearly seen
from the confusion matrix (Fig. 10) that “pickup&throw”
action is correctly classified in 79% of the test samples.
However, this action misclassified in 21% of the samples as
“bend.” In AS2 sub-category, the highest misclassification
rate happens in “hand catch” action, where it is misclassified
in 8% of the samples as “draw x” and in 8% as “draw tick.”
In the final sub-category AS3, the highest misclassification
rate belongs to “high throw” action, where it is misclassified
in 27% of the samples as “tennis swing.” Lack of producing
distinctive key poses for each action class is the main reason
for recognition failure. For example, in case of “high throw”
action, our approach generates the same key poses with dif-
ferent temporal orders compared to the other two confusing
actions. Even though the generated poses are comprised time
information, during complex action encoding procedure, the
framework loses the temporal order of poses in the sequence
for some of the actions. The confusion matrix of the second
protocol shown in Fig. 11 indicates that the highest classi-
fication error occurs during “hand catch” action with 58%
correct recognition including 17% as “high throw” and the

rest as “horizontal arm wave,” “high arm wave” and “side
boxing” with 8% each. This can be attributed to the simi-
lar poses available in the sequence of actions. Except these
actions, “forward punch” and “high throw” actions have the
highest error rates and are correctly classified with 73%.
However, our method is capable of correctly recognizing 10
actions out of 20 with 100% accuracy by using this proto-
col.

Studies conductedonMSRC-12dataset used twocommon
cross-subject experimental protocols in their evaluations.
Leave-one-out protocol that has been used in [22] took action
instances of 29 subjects for training and the remaining one
subject for testing. This process was replicated for all of the
subjects in the dataset and the final result was reported as
average accuracy of all the performances. Second protocol
[17,44] used half of the instances (instances of odd numbered
subjects) for training and the other half for testing. We use
the second protocol in our evaluations. Optimal parameters
are detected and set according to Table 2. The results of our
evaluations and comparisons with skeleton-based state-of-
the-art methods are reported in Table 8. As shown in Table 8,
our method achieves competitive performance compared to
handcrafted methods and surpasses representation learning
methods which is expected to perform better as the num-
ber of instances increases. The conducted evaluations also
indicate that our method is scalable and performs reliably as
the number of instances grows. (MSRC-12 size is almost 7
times UTD-MHAD dataset.) The second protocol is taken
into account in order to evaluate our method on this dataset.
Considering Table 2 and by examining all the possible val-
ues of the inputs through this dataset, the best performance
is achieved with temporal offset of 9, number of key poses
of 150 and number of neurons of 600. Figure 12 shows that
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Horizontal arm wave 1 High arm wave 0.83 0.08 0.08 High throw 0.73 0.27

Hammer 1 Hand catch 0.83 0.08 0.08 Forward kick 1

Forward punch 0.82 0.1 0.09 Draw x 0.85 0.15 Side kick 1

High throw 0.82 0.09 0.1 Draw �ck 1 Jogging 1

Hand clap 1 Draw circle 1 Tennis swing 1

Bend 1 Two hand wave 1 Tennis serve 1

Tennis serve 1 Forward kick 1 Golf swing 1

Pickup & throw 0.21 0.79 Side boxing 1 Pickup & throw 1

Accuracy = 93.33 Accuracy= 94.64 Accuracy = 97.4
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Fig. 10 Confusion matrices of MSR action 3D dataset

high arm wave 0.92 0.08
horizontal arm wave 0.17 0.83

hammer 0.83 0.08 0.08
hand catch 0.08 0.08 0.58 0.17 0.08

forward punch 0.73 0.27
high throw 0.73 0.27

draw x 1.00
draw �ck 1.00

drawcircle 0.13 0.87
hand clap 1.00

two hand wave 1.00
side-boxing 0.93 0.07

bend 1.00
forward kick 1.00

side kick 1.00
jogging 0.93 0.07

tennis swing 1.00
tennis serve 1.00

golf swing 1.00
pickup&throw 0.14 0.86
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Fig. 11 Confusion matrix of MSR action 3D dataset (All)

due to the existence of similar poses in the actions, the high-
est recognition error of our method belongs to “beat both”
and “had enough” actions with 81 and 86% accuracy, respec-
tively.

Based on our experiments, small-sized codebook does not
generate sufficient diverse code words to discriminate all of
the actions and the one with a large size is highly prone to
be affected by noise. Most of the key pose-based methods
usually use HMM to define an action and model temporal-
ity and accordingly, the number of the generated key-poses
is limited. One of the main privileges of our method to the
key pose-based methods is that rather than generating action
sequence using the key-poses, we find available key poses
using a dictionary populated with sufficient key poses where
the absence of a key-pose is still a valuable information.How-
ever, the higher number of key poses may increase the noise
in recognition. Tuning the number of the key poses is an
important task having a great impact on robustness of the
recognition in our method.

5 Conclusion and future work

In this study, we proposed a novel bag-of-poses frame-
work for 3D action recognition based on a set of predefined
spatiotemporal poses. Most of the studies available in the
literature regarding pose-based action recognition have used
generative or bag-of-poses approaches. The main disadvan-
tages of the generative methods are their exceeding needs for
training data and challenging parameter tuning which is usu-
ally performed manually. Accordingly, the main drawback
of the bag-of-poses approaches is not to consider the con-
cept of time among the poses through encoding an action.
As a solution, our main objective is to improve the bag-of-
poses approach by embedding temporal information using
the key pose descriptors. The proposed descriptor enables us
to distinguish between the two poses with the same skele-
ton configurations and different temporal order in an action
sequence. The pose descriptor is extracted from Euclidean
coordinates of the skeleton joints without transforming the

123



604 S. Agahian et al.

Table 8 Comparison with the
state-of-the-art results on
MSRC-12

Feature engineering Method Accuracy (%)
Cross-subject LoSubO

Handcrafted Cov3DJ [22] 91.7 93.6

RRV [17] 93.8 94.7

Hierarchical model [24] – 94.6

ASM [23] – 97.6

ELC-KSVD [70] 90.2 –

Position offset + NBNN [34] – 90.2

Trajectory let [44] 94.9 95.1

Our method 94.2 –

Learned representations DF selected features [38] – 94.03(5-fold)

CNN ConvNets [12] 84.4 –

JTM_CNN [61] 93.1 –

SOS_based CNN [20] 94.2 –

Enhanced skeleton visualization [33] 96.6 –

G1  li� outstretched arms 0.92 0.01 0.01 0.05 0.01
G2   Duck 1.00

G3  Push right 0.99
G4  Goggles 0.96 0.02 0.01

G5 Wind it up 0.01 0.99
G6  Shoot 0.01 0.98

G7  Bow 0.01 0.03 0.95
G8 Throw 0.02 0.02 0.93 0.03

G9  Had enough 0.13 0.86 0.01
G10  Change weapon 0.95 0.04

G11  Beat both 0.02 0.04 0.02 0.10 0.81
G12   Kick 0.01 0.01 0.02 0.95

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

Fig. 12 Confusion matrix of MSRC-12

coordinates into another space. The suggested framework is
validated with five publicly available benchmark 3D action
datasets and produced state-of-the-art results on the three
datasets, while competitive results on the fourth and fifth
datasets. In our method, the major aspect that needs to be
improved is to recognize interactive actions between the sub-
jects. This is mainly because the framework does not benefit
from the context information and interaction with the objects
in the environment. As a future study, we will investigate this
subject to improve the results by utilizing both depth and con-
textual information.
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