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Abstract
Subsurface scattering involves the complicated behavior of light beneath the surfaces of translucent objects that includes
scattering and absorption inside the object’s volume. Physically accurate numerical representation of subsurface scattering
requires a large number of parameters because of the complex nature of this phenomenon. The large amount of data restricts
the use of the data on memory-limited devices such as video game consoles and mobile phones. To address this problem, this
paper proposes an efficient data compression method for heterogeneous subsurface scattering. The key insight of this study
is that heterogeneous materials often comprise a limited number of base materials, and the size of the subsurface scattering
data can be significantly reduced by parameterizing only a few base materials. In the proposed compression method, we
represent the scattering property of a base material using a function referred to as the base scattering profile. A small subset
of the base materials is assigned to each surface position, and the local scattering property near the position is described using
a linear combination of the base scattering profiles in the log scale. The proposed method reduces the data by a factor of
approximately 30 compared to a state-of-the-art method, without significant loss of visual quality in the rendered graphics. In
addition, the compressed data can also be used as bidirectional scattering surface reflectance distribution functions (BSSRDF)
without incurring much computational overhead. These practical aspects of the proposed method also facilitate the use of
higher-resolution BSSRDFs in devices with large memory capacity.

Keywords Subsurface scattering · Data compression · BSSRDF · Mobiles

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00371-018-01626-x) contains
supplementary material, which is available to authorized users.

B Tatsuya Yatagawa
tatsy@acm.org

Hideki Todo
todo@fla.cgu.ac.jp

Yasushi Yamaguchi
yama@graco.c.u-tokyo.ac.jp

Shigeo Morishima
shigeo@waseda.jp

1 Graduate School of Advanced Science and Engineering,
Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo
169-8555, Japan

2 Faculty of Liberal Arts, Chuo Gakuin University, 451 Kujike,
Abiko, Chiba 270-1196, Japan

3 Graduate School of Arts and Sciences, The University of
Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan

1 Introduction

One of the important goals in the field of computer graphics
is the realistic representation of the appearance of real-world
objects. Among such objects, the representation of translu-
cent objects such as human skin, leaves, and biological tissue
is challenging because of subsurface scattering, which is a
complex light interaction which occurs beneath the surface
of a sample. Subsurface scattering is represented numerically
by a vast number of scattering parameters, especially for het-
erogeneous translucentmaterials. Although these parameters
can be measured by special setups which involve camera(s)
and projector(s) [1–3], the large data sizes of the obtained
representations often complicate their practical application,
particularly in the case of real-time rendering on devices with
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Fig. 1 Qualitative and quantitative comparison between the proposed
method and a representative previous method by Song et al. [5]. The
rendered image is divided into four regions. The regions highlighted
in blue represent the rendered image with the compressed BSSRDF of
the previous method. Those highlighted in red represent the image with
the compressed BSSRDF of the proposed method. As can be seen, the
proposed compressionmethod achieves a data size that is 2.94% smaller
compared to the previous method even though the visual qualities of all
the regions are nearly identical

limited random access and graphics memory, such as video
game consoles, tablets, and mobile phones.

Subsurface scattering in heterogeneous materials is often
represented by the bidirectional scattering surface reflectance
distribution function (BSSRDF) [4], in which explicit mate-
rial distribution inside translucent objects does not need to
be considered. Because the measured BSSRDF of a het-
erogeneous material also has a significant amount of data,
compression methods for the BSSRDF have been investi-
gated to improve its rangeof applications. In previous studies,
Peers et al. [2] and Song et al. [5] applied such approxi-
mation techniques using nonnegative matrix factorization,
and local scattering profiles, respectively. Unfortunately, the
resulting data sizes based on these methods are of the order
of megabytes for small pixel areas. Such a compression ratio
is insufficient for memory-limited devices or for large pixel
areas. While the size of random access and graphics mem-
ory has rapidly increased over the last decade, the large
data size of measured BSSRDFs is still a challenge from
a data storage and processing perspective. Firstly, the size of
the memory capacity on mobile devices such as tablets and
mobile phones is still limited, even though many graphics
applications are currently being developed on these devices.
Secondly, the aforementioned studies examined only mea-
sured BSSRDFs for small pixel areas. As such, when these
parameters are measured for much larger pixel areas, their
compression ratios are insufficient in practice.

To address these problems,we propose a data compression
method for BSSRDFs of heterogeneous translucent materi-
als. The key insight of this study is that many non-biological
materials such as waxes, soaps, candles, and minerals are
often comprised of a limited number of base materials. For
example, the cross-section surface of the onyx shown inFig. 1
is comprised of approximately 20–30 base materials. Based
on this observation, we represent the scattering properties of

heterogeneous translucentmaterials byparameterizingonly a
fewbasematerials. Figure 1 represents a comparisonbetween
the proposed compression method and a representative pre-
viousmethod by Song et al. [5] in terms of the visual qualities
of rendered graphics. As shown in this figure, the proposed
compression method achieves nearly identical visual qual-
ity although the size of the output data using the proposed
method is only 2.94% compared to that of the previous study.

Figure 2 compares the proposed compression model to
that of Song et al. [5]. In their representation, the surfaces of
the object are discretized with pixels, and a local scattering
profile is assigned to each pixel. The local scattering profile is
a one-dimensional function, which is discretized as a piece-
wise linear function in the previous method. Directionally
varying local light scattering is approximated by processing
the values of local scattering profiles in the log scale. Instead
of assigning a local scattering profile to each pixel, the pro-
posed method assigns several scattering profiles of the base
materials to each pixel. We refer to the scattering profile of
the base material as the base scattering profile. We approx-
imate the local scattering profile of a given pixel by using
a linear combination of base scattering profiles in the log
scale. In this case, we assume that a target material is com-
prised ofM basematerials and approximate a local scattering
profile of a pixel using K out of M base scattering profiles
(K < M). The optimization problem to obtain the proposed
compression model is formulated in a similar manner to that
of Song et al. [5]. However, the formulation of the proposed
approach requires the assignment of K different base materi-
als to each pixel, which results in an NP-hard combinatorial
optimization problem. In addition, the task of solving for the
linear combination of weights and the base scattering profiles
is formulated as a nonlinear constrained problem, although
a simple linear optimization approach was used in the pre-
vious study. To solve this complex problem, we proposed
an optimization method by alternating between two differ-
ent solvers for the combinatorial and nonlinear constrained
problems. In the case of combinatorial optimization, we also
propose a randomized algorithm based on PatchMatch [6],
which was originally a method for texture synthesis.

In the proposed method, the base materials are indexed by
8-bit unsigned integers, and the linear combination weights
for the base scattering profiles are represented by 32-bit float-
ing point numbers. Therefore, the data size assigned to each
pixel is (8+32)×K = 40K .We empirically determined that
K = 2 is typically sufficient to compress the BSSRDF data
without significant loss of visual quality in rendered graph-
ics. In this case, it is possible to further reduce the data size
of a single pixel to 48 bits, which is significantly less than
the local scattering profile that was assigned to each pixel in
the previous method. The resulting data size for the proposed
method is discussed in further detail in Sect. 3.

123



Data compression for measured heterogeneous subsurface scattering via scattering… 543

Fig. 2 A measured BSSRDF is represented by light attenuation factors for arbitrary pairs of surface positions. Local scattering properties of the
BSSRDF can be represented in the image of local light scattering. Song et al. [5] compressed this formwith local scattering profiles by approximating
the directionally varying local light scattering with multiple isotropic local scattering profiles. The proposed method further approximates the local
scattering profiles with the profiles of base materials. The number of base materials M is much smaller than the number of pixels. From M base
materials, a different set of K base materials is assigned to each surface positions. Then, the scattering profiles of the K base materials are blended
using the mixture ratio. This figure illustrates the magnitude of the mixture ratios with a grayscale image, and the distribution of the base material
indices using different colors (the colors themselves do not make any sense)

In summary, the proposed data compression method for
heterogeneous translucent materials has the following char-
acteristics:

– it achieves an efficient representation for heterogeneous
subsurface scattering that requires only 40K bits for each
pixel when K base materials are assigned to the pixel,

– the resulting data size can be determined flexibly by
changing the value of K ,

– for example, with K = 2, approximately 30 times
smaller data size than that of the state-of-the-art method
is achieved,

– resulting compressed data can be used in standard real-
time rendering algorithms without incurring computa-
tional overhead or the loss of visual quality.

To demonstrate the practical applicability of the proposed
method with regard to memory-limited devices, we imple-
mented a rendering system on several mobiles and tablets. It
was determined that the small data size of the model is pre-
ferred to reduce the time to load the data onto such devices.

2 Related work

2.1 Subsurface scatteringmodels

Light transport behavior in translucent materials is theoreti-
cally described according to the radiative transfer theory [7],

and most of the practical approximations used in the com-
puter graphics community are derived based on this theory.
For homogeneous materials, Jensen et al. [8] proposed a
practical dipole model derived from an analytical dipole dif-
fusion approximation, and Donner and Jensen [9] extended
the dipole model to multilayered materials, such as human
skin. d’Eon and Irving [10] performed an elaborate analysis
of subsurface light transport and introduced a computa-
tion model referred to as the quantized diffusion model.
Frisvad et al. [11] proposed a directional dipole model to
appropriately handle the directional effect of incident light.
Recently, Frederickx and Dutré [12] introduced a variant of
the dipole model that considers the relationship between the
incident and outgoing directions induced by strong forward
scattering.

For heterogeneous materials, most surface-based repre-
sentations are based on theBSSRDF [4]. Themain advantage
of theBSSRDF is that it does not explicitly representmaterial
distribution in object volumes. A BSSRDF S(xi , ωi ; xo, ωo)

describes the ratio of exiting radiance at position xo to direc-
tion ωo to incident radiant flux at xi from direction ωi . When
BSSRDFs are used for heterogeneous materials, they are
often discretized and compressed to provide greater flex-
ibility in practical applications. For example, nonnegative
matrix factorization [2] and local scattering profiles [5,13]
have been used to compress the discretized form of the
functions. However, these representations focus mainly on
physical accuracy rather than data size. Thus, the data size
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aspect of BSSRDF representations has not attracted much
attention despite the long-standing research onBSSRDF rep-
resentations.

The proposed data compression method also targets BSS-
RDFs just as the aforementioned previous studies. However,
compared to the previousmethods,we focusmore on the final
data sizes of the compressed BSSRDFs. The proposedmodel
achieves nearly the same visual quality in rendering results
with a data size approximately 30 times smaller compared to
the previous methods.

2.2 Translucency rendering

Here, we briefly introduce real-time rendering algorithms
for translucent materials. We focus primarily on how BSS-
RDFs or other numericalmodels for subsurface scattering are
used in rendering. Three classes of rendering algorithms are
introduced, i.e., volumetric, image-space, and surface-based
methods.

Volumetric methods simulate the light diffusion process
in material volumes. This simulation can be performed effi-
ciently on graphics hardware. Stam et al. [14] simulated light
transport in an optically thick material as a diffusion process
in the volume ofmaterials.Wang et al. [3] extended their pro-
cedure to heterogeneous translucent materials by solving the
diffusion equation for tetrahedralized object volumes. A sim-
ilar method with a data structure, which is known as the light
propagation volume (LPV) [15], is often used in real-time
applications. Although the LPV is typically used to represent
weak scattering in aerosols, it has also been applied to ren-
der optically dense translucent materials [16,17]. The main
drawback of these volumetric approaches is that they often
produce blurry results because of the utilization of volumetric
parameter mappings on low-resolution discretized grids. To
obtain accurate rendering results, the object volumesmust be
precisely divided into small grids. However, storing different
scattering parameters for such small grids requires signifi-
cant memory resources. Consequently, volumetric methods
are not suitable for the use in memory-limited devices.

Image-space methods compute the BSSRDF convolution
of surface irradiance on texture space or screen space. Lensch
et al. [18] divided subsurface light transport into local and
global components and computed the local component for
close point pairs using texture-space image filtering. Shah
et al. [19] proposed an interesting approach based on image-
space splatting for homogeneous translucent materials. Chen
et al. [20] later extended their approach to heterogeneous
materials. Currently, methods that employ screen-space fil-
tering are commonly used in real-time graphics applications.
In these methods, diffuse reflectance components are ini-
tially calculated and stored in a G-buffer. Then, the diffuse

reflection components are blurred in the screen space [21,22].
Although these methods of screen-space filtering are com-
putationally efficient, and the resulting visual quality is
reasonable, the filtering operation is usually based on empir-
ically determined parameters. Therefore, these methods
cannot be directly used to physically measured BSSRDFs.
Surface-based methods rely on BSSRDFs to represent light
attenuation factors between pairs of surface positions.Dachs-
bacher and Stamminger [23] sampled virtual point lights
(VPL) from an irradiance buffer of shadow maps and evalu-
ated the appearance of objects by summing the contributions
from VPLs. Rather than computing vertex-to-vertex light
transport, Mertens et al. [24] computed area-to-area light
transport by clustering triangular meshes of the target object.
Recently, more sophisticated approaches using screen-space
splatting [19] and multiple irradiance buffers [25] have been
proposed. However, the aforementioned methods are all
based on dipole approximation [8], which is only applica-
ble to homogeneous materials. For heterogeneous materials,
BSSRDFs are typically approximated and compressed to
improve the computational efficiency of graphics hard-
ware. In previous studies, compressed BSSRDFs were ren-
dered by implementing an accelerated BSSRDF evaluation
method known as hierarchical integration [26] with graph-
ics hardware [2,5]. However, these studies reported that they
achieved at most 2 frames per second (fps) using computer
systems of 10 years ago. Therefore, this performance is con-
sidered to be far from real-time frame rates, even if the latest
computers are used. Recently, Chen et al. [20] introduced
a real-time multiresolution splatting algorithm using BSS-
RDFs and achievedmore than 30 fps using computer systems
of 5 years ago. Considering the improvement in computa-
tion power of graphics hardware, their method can achieve
real-time frame rates of more than 60 fps using current
technology.

We obtain memory-efficient BSSRDFs by further reduc-
ing the data sizes of the previous compression method using
local scattering profiles [5]. The BSSRDF representation of
our compression method is compatible with other existing
BSSRDF representations, and it does not incur any compu-
tational overhead. As demonstrated in the later sections, the
proposed method achieves real-time frame rates when used,
for example, with a real-time rendering algorithm based on
multiresolution splatting [20].

3 BSSRDF compression

In the following explanation, we used the symbols listed in
Table 1. We do not explicitly provide the definitions of these
symbols for simplicity of explanation.
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Table 1 The notations used in
this paper

Symbol Meaning

M # of Base materials that comprise a target object

K # of Base scattering profile assigned to each pixel

S(xi , ωi ; xo, ωo) BSSRDF

Fdr (x) Fresnel diffuse reflectance at x

Ft (x, ωi ) Fresnel transmission for x and ω

Rd (xi , xo) Diffuse reflectance between xi and xo

Px (r) Scattering profile at x in distance r

P̂x (r) Log-scale scattering profile at x , (= log Px (r))

P̂b(r) Log-scale base scattering profile of base material b

P̂h
b hth coefficient of the log-scale base scattering profile Pb

bx,k kth base material assigned to x

tx,k kth linear combination weight at x

Θx Set of parameters for x , i.e., {bx,k}k and {tx,k}k
B Set of base materials

a Acceptance probability for updating base material assignments

p Progression ratio to increase the acceptance probability a

Niter # of Iteration for the proposed alternating optimization method

3.1 Background

The subsurface scattering behavior of light can be described
generally byBSSRDFs [4]. ABSSRDF S(xi , ωi ; xo, ωo) can
be separated into two components, i.e., a local component
and a global component. As in the previous studies [1,2,5],
we restrict our focus to the global components of BSS-
RDFs, which we denote by Sd . For optically dense materials,
approximation based on only Sd can sufficiently reproduce
the scattering properties of the original BSSRDFs. The func-
tion Sd , which is also known as the diffuse BSSRDF [8], can
be further decomposed as:

Sd(xi , ωi ; xo, ωo) ≈ 1

π
Fdr (xo)Rd(xi , xo)Ft (xi , ωi ),

where Fdr denotes the Fresnel diffuse reflectance at xo,
Ft denotes Fresnel transmittance at xi , and Rd denotes
the diffuse reflectance function. In this form, a standard
eight-dimensional BSSRDF is simplified into a product of
lower-dimensional functions. Among these functions, only
Rd describes the properties of subsurface light transport, i.e.,
a light attenuation factor between each pair of surface posi-
tions xi and xo. For heterogeneousmaterials, light attenuation
factors differ for different position pairs. By denoting the
N discretized surface positions as x1, x2, . . . , xN , we can
represent the attenuation factors in a matrix form R where
Ri j = Rd(xi , x j ).

The proposed BSSRDF compression is inspired by the
previous method by Song et al. [5], which uses local scatter-
ing profiles to compress BSSRDFs. Here, we first introduce

their compression model; then, we describe the proposed
compression model and how its modeling parameters are
obtained. Both the previous and the proposed methods are
based on physically measured BSSRDFs by Peers et al. [2].
Their BSSRDFs are measured for several flat materials and
formulated using the aforementioned matrix form with R.
Song et al. assigned a local scattering profile to each surface
position and approximated the diffuse reflectance function
Rd(xi , xo) using the profiles Pxi and Pxo at two surface posi-
tions xi and xo:

Rd(xi , xo) ≈ √
Pxi (r)Pxo(r), (1)

where r denotes the Euclidean distance between xi and xo
on the flat surface of a material. By taking the logarithms of
both sides of the equation, Eq. 1 can be rewritten as follows:

2 log Rd(xi , xo) = log Pxi (r) + log Pxo(r). (2)

For simplicity, we use the hat symbol to indicate that the
function is in the log scale, e.g., log Px is denoted as P̂x . In
the representation by Song et al., a log-scale scattering profile
is further approximated as a piecewise linear function:

P̂x (r) ≈ (1 − w(r)) P̂h
x + w(r)P̂h+1

x , (3)

when distance r satisfies:

h

n
rmax ≤ r ≤ h + 1

n
rmax.
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Here, rmax denotes the maximum scattering radius, and the
range between 0 and rmax is divided into n intervals. The
coefficient P̂h

x is the value of the local scattering profile for
rh = hrmax/n. The linear interpolation weight w(r) is com-
monly defined as wh

x (r) = nr/rmax − h for every x . The
profile coefficients {P̂h

x } for all pixel x and all interval indices
h = 0, . . . , n are obtained by minimizing the least square
errors over the original diffuse reflectance function. Song et
al. minimized this function by simply solving a linear sys-
tem, which was obtained by taking the derivative of the least
square error function.

3.2 Compression by scattering profile blending

As described in the previous subsection, the compression
method proposed by Song et al. [5] assigns different local
scattering profiles to different surface positions. However,
this expression is obviously redundant when the target mate-
rial is composed of a few base materials. For example, the
cross-section surface of the onyx shown in Fig. 2 contains
at most 20 base materials, whereas Song’s representation
assigns different scattering profiles to its target area of 229
× 229 pixels. Rather than the per-pixel assignment of the
local scattering profiles, the proposed compression method
represents each local scattering profile using the scattering
profiles of the base materials. The scattering profiles of the
base materials are referred to as the base scattering profiles.

Figure 2 shows the compressed BSSRDF representation
for the proposed method. According to the number of base
materials assigned to a single pixel, we refer to the represen-
tation of K -BMPP as an abbreviation of “K base materials
per pixel.” The simplest representation with base scattering
profiles is obtained by assigning a single base material pro-
file to a single location (1-BMPP). This can be extended
by assigning two or more base scattering profiles to each
location. To represent the local scattering profile at a given
location, the weighted averages of the assigned base scatter-
ing profiles are taken in the log scale. As shown in Fig. 2,
each pixel generally has data for M mixture ratios and M
indices for the base materials. The 2-BMPP model, which is
a special case of the K -BMPP model, can further reduce the
resulting data size because two mixture ratios, i.e., t1 and t2,
can be represented with a single t as t1 = t and t2 = 1 − t .
Thus, only one illustration is shown for the mixture ratio of
the 2-BMPP model in Fig. 2.

We begin with a representation of the local scattering
profiles in the proposed compression method. Let B =
{b1, . . . , bM } be a set of M base materials and Pb be the
base scattering profile for a base material b. As represented
in Eq. 3, we approximate a log-scale scattering profile P̂x at
position x with a convex combination of the log-scale base
scattering profiles P̂b:

P̂x (r) ≈ t1x P̂b1(r) + · · · + t Mx P̂bM (r),

where
∑

i t
i
x = 1 and t ix ≥ 0 for ∀i . However, assigning all

base materials to each pixel is redundant because a single
position is often associated with only a few base materials.
Thus, the proposed method assigns up to K of M base mate-
rials bx,1, . . . , bx,k (K < M) to a single position x . Then,
the local scattering profile at x is rewritten as follows:

P̂x (r) ≈
K∑

k=1

tx,k P̂bx,k (r),
K∑

k=1

tx,k = 1, (4)

where tx,k ≥ 0 is the mixture weight at position x . Eventu-
ally, the compressed BSSRDF obtained using the proposed
method is described using the indices of the base materials,
i.e., {bx,1, . . . bx,K }, the mixture ratios for these base mate-
rials, i.e., {tx,1, . . . , tx,K }, and the profile coefficients P̂h

b for
b ∈ B at a sampling distance rh .

3.3 Parameter optimization

A compressed BSSRDF of the proposed method is obtained
by minimizing the least square error of the input diffuse
reflectance function Rd . However, compared to the previ-
ous method, the minimization problem for the proposed
method involves two difficulties. Firstly, the optimization
problem is a constrained nonlinear problem, while the previ-
ous methods are formulated as a simple nonnegative matrix
factorization [2] or linear problem [5]. Secondly, the assign-
ment of the optimal base materials represented with indices
to each pixel is an NP-hard combinatorial problem. There-
fore, it requires an inordinately long computational time. To
address these problems, the nonlinear optimization and com-
binatorial optimization problems are solved alternatively as
opposed to the simultaneous optimization of all the parame-
ters. In addition, we propose a randomized algorithm based
on PatchMatch [6] to solve the combinatorial optimization
problem. Pseudocodes for the proposed optimizationmethod
are provided in Algorithms 1 and 2.

In the first step, the indices for the base material for each
pixel are fixed. The profile coefficients and mixture ratios are
updated by solving a nonlinear minimization problem. Using
Eqs. 2, 3, and 4, the cost function can be defined in the least
squares sense:

ELS = 1

2

∑

x,y

ϕ(‖x − y‖)
[((

1 − w(‖x − y‖))
K∑

k=1

tx,k P̂
h
bx,k

+ w(‖x − y‖)
K∑

k=1

tx,k P̂
h+1
bx,k

+ (
1 − w(‖x − y‖))

K∑

k=1

ty,k P̂
h
by,k

+ w(‖x − y‖)
K∑

k=1

ty,k P̂
h+1
by,k

)
− 2 log Rd (x, y)

]2
. (5)
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Algorithm 1 Pseudocode for parameter optimization
Input: Initial acceptance ratio a0 and # of iteration Niter
1: Initialize a = a0, p = (1/a0)2/Niter

2: for i = 0, 1, 2, ..., Niter − 1 do
3: Step 1: Optimize {P̂h

b } and {tx,k}.
4: Solve the problem in Equation 6 with L-BFGS-B (K = 1, 2)

or augmented Lagrangian (K ≤ 3).

5: Step2: Optimize base material assignments {bx,k}.
6: for each pixel x=(ξ, η) do
7: if i is odd then
8: x ′ ← (ξ−1, η) 
 Left neighbor
9: UpdateWith(x , x ′, a)
10: x ′′ ← (ξ, η−1) 
 Upper neighbor
11: UpdateWith(x , x ′′, a)
12: else
13: x ′ ← (ξ+1, η) 
 Right neighbor
14: UpdateWith(x , x ′, a)
15: x ′′ ← (ξ, η+1) 
 Lower neighbor
16: UpdateWith(x , x ′′, a)
17: end if
18: Sample random pixel x̃ from the entire image area
19: UpdateWith(x , x̃ , a)
20: end for
21: a ← min(ap, 1) 
 Increase acceptance ratio

22: end for

Algorithm 2 Pseudocode for UpdateWith
1: function UpdateWith(x, x ′, a)
2: u ∼ U [0, 1] 
 Sample uniform random number
3: if u < a then
4: Evaluate ELS terms involving x and x ′. Store the value to E
5: t ′k ← tx,k , b′

k ← bx,k for ∀k 
 Backup
6: tx,k ← tx ′,k , bx,k ← bx ′,k for ∀k 
 Update
7: Evaluate ELS terms involving x and x ′. Store the value to E ′
8: if E ≤ E ′ then 
 Not decrease cost
9: tx,k ← t ′k , bx,k ← b′

k for ∀k 
 Restore
10: end if
11: end if
12: end function

In this equation, P̂h
b denotes the hth coefficient of P̂b. Each

least square term is multiplied by a weighting factor ϕ(r),
which resolves the imbalance in the number of least square
terms for position pairs. The number of pairs over a short dis-
tance is smaller than the number of pairs over a large distance.
We use the inverse quadratic function ϕ(r) = 1/(1+ r2) for
this weighting factor. The domain of the cost function in
Eq. 5 is limited by the constraints for the mixture ratios tx,k
because they are in [0, 1] and their sum is equal to 1.

Based on several experiments, it was determined that
the preceding optimization process is numerically unstable
because it often falls into a local minima or goes beyond the
feasible region. To avoid such problems, we first add a reg-
ularization term to ensure the C2 continuity of the profiles
following the previous method [5]:

Ereg = 1

2

∑

b,h

(
P̂h
b − 2 P̂h+1

b + P̂h+2
b

)2
,

where b ∈ B and h = 0, . . . , n − 2. Secondly, we added
barrier functions to keep the optimization variableswithin the
feasible region. Since the mixture ratios should be between
0 and 1, we added the following barrier functions to the cost
function.

Ebarr =
∑

x,k

B0
(
tx,k

) + B1
(
tx,k

)
,

B0(t) =
{

− log(γ t) t > 0,

∞ otherwise,

B1(t) =
{

− log(1 − γ t) t < 1,

∞ otherwise,

where we typically use γ = 10−3 as the default value.
Consequently, the optimization problem for the proposed
compression method is defined as follows:

minimize: ELS + λregEreg + λbarrEbarr,

subject to:
∑K

k=1
tx,k = 1 for ∀x,

tx,k ≥ 0 for ∀x, k.

⎫
⎪⎪⎬

⎪⎪⎭
(6)

The weighting factors in Eq. 6 are empirically determined as
λreg = λbarr = 10−3.

The optimization problem in Eq. 6 is a nonlinear con-
strained problem with both inequality and equality con-
straints. Despite this complexity, this class of optimization
has been extensively studied in applied mathematics, and it
can be efficiently solved using the augmented Lagrangian
method [27]. In addition, in cases where K = 1 and K = 2,
the preceding optimization can be simplified. For K = 1, we
donot need to consider theweighting factors for the base scat-
tering profiles; therefore, the optimization problem in Eq. 6
can be simplified as a box-constrained nonlinear problem.
For K = 2, we only need to assign a single weight tx to pixel
x becausewe can represent tx,1 = tx and tx,2 = 1−tx . There-
fore, only the box constraints tx ∈ [0, 1] are required. These
nonlinear optimizations with box constraints can be solved
more efficiently with the L-BFGS-B method [28], which is
a variant of the quasi-Newton method for box-constrained
nonlinear problems.

The second partial optimization step is inserted after every
iteration for these iterative nonlinear solvers, i.e., the aug-
mented Lagrangian and L-BFGS-B methods. In the second
step, we fix the profile coefficients P̂h

bx,k
and update the base

material indices bx,k and mixture ratios tx,k . To find opti-
mal indices and mixture ratios, we need to solve an NP-hard
combinatorial optimization problem. Rather than solving
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Fig. 3 Parameter updates in the 2-BMPPmodel. The iterative optimiza-
tion process for the proposed compression method gradually improves
the detailed appearance of the onyx. Similarly, the mixture ratios and
indices of the base materials are updated to form pixel clusters. Here,
we observe that the clusters are grown along the vertical layers of the
onyx

this complex problem directly, we update the base material
indices and mixture ratios approximately with a randomized
process inspired by PatchMatch [6]. LetΘx be a set of param-
eters at pixel x that includes the base material indices {bx,k}
and {tx,k}. The parameter setΘx is temporarily substituted by
the parametersΘx ′ of candidate pixel x ′. The parametersΘx ′
are accepted as the parameters of x provided that this substi-
tution reduces the least square error in Eq. 5. In this updating
process, the immediate neighbors of x to the left and above
are used as candidate pixels in even-numbered iterations,
and those to the right and bottom are used in odd-numbered
iterations. We also use the random pixels chosen from the
entire pixels as candidates. Unlike the original PatchMatch,
we leverage a probabilistic update strategy to avoid unex-
pectedly updating parameters using the scattering profile
coefficients that are not sufficiently converged. In the i th iter-
ation, the parameters are updated based on the probability of
min(a0 pi , 1.0) even if the error values are reduced.Typically,
we use a0 = 0.1 and set the value p = (1/a0)2/Niter such that
a0 pi = 1 when i = Niter/2. Figure 3 shows the update pro-
cesses of the base material indices, mixture ratios, and recon-
structed appearances in each iteration of the 2-BMPPmodel.
In this experiment, the number of total iterations Niter = 20
and the indices and mixture ratios are only partially updated
when the number of iteration was less than Niter/2 = 10.

In our implementation, we initialized the parameters with
random values before performing the above alternating opti-
mization process. The profile indices were chosen randomly
for each pixel from {1, . . . , M} such that any two of the base
material indices did not overlap. Mixture ratios were all ini-
tialized with 1/K , and the profile coefficients in the log scale

were initialized with random real numbers between − 1.0
and 1.0.

3.4 Real-time rendering

Since BSSRDFs compressed by the proposed method are
compatible with BSSRDFs in the general forms, they can be
used in ordinary rendering algorithms based on BSSRDFs.
The rendering results presented in this paper were computed
using amultiresolution splatting algorithmproposed byChen
et al. [20]. Their algorithm first renders multiresolution G-
buffers from the light sources; then, irradiance samples are
positioned on these multiresolution buffers. Subsequently,
the splatting-based algorithm [19] is performed for multires-
olution render buffers, and the buffers are accumulated to
obtain the final rendering result. In our implementation, log-
scale values of the profile coefficients are sent to shader
programs as uniform buffer objects, and other parameters,
i.e., profile indices and mixture ratios, are sent as textures.
In our experiment, the compression was typically performed
with M ≤ 128 base materials. Therefore, we can represent
the profile indices with 8-bit unsigned integers, which can
represent integers between 0 and 255. The mixture ratios are
represented with 32-bit floating point numbers. The BSS-
RDF values are evaluated in a pixel shader using Eqs. 2, 3,
and 4. This evaluation of BSSRDFs in the shader program is
slightly more complex than the evaluation that is used in the
previous study bySong et al. [5].However, the computational
overhead using our compressed BSSRDFs is nearly negligi-
ble considering the complexity of the other computations in
rendering algorithms.

3.5 Estimated data size

Let N be the number of pixels in the target area, then the esti-
mated data size of an uncompressed BSSRDF is (N 2 pixel
pairs) × (4 bytes) × (3 color channels) = 12N 2 bytes when
each attenuation factor is represented with three-channel 32-
bit floating point numbers. If only the neighboring pixels are
considered as the counterparts of the pairs, it is reduced to
12NW 2, whereW is the window size for neighboring pixels.
In the compression method by Song et al., a local scattering
profile is assigned to each pixel in the target area. When
each local scattering profile is defined by a piecewise lin-
ear function with S discrete coefficients (S 
 N ), the data
size is estimated as N × S × 4 × 3 = 12NS bytes. Typi-
cally, the value of S is determined as S = (W − 1)/2. In
contrast, the proposed model only considers the profile func-
tions of M base materials (M 
 N ). Therefore, the data size
for a base scattering profile is as large as 12MS bytes. In
addition, we assign K pairs of 8-bit unsigned integers and
32-bit floating point number to a pixel, which corresponds
to the base material indices and mixture ratios, respectively.
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Fig. 4 Magnitudes of the mixture ratios in the 3-BMPP and 5-BMPPmodels. For all the three materials and both the 3-BMPP and 5-BMPPmodels,
the mixture ratios #1 and #2 assume large values, and the other three ratios assume values close to zero. These results imply that two or three
materials are enough for our compression model to appropriately approximate the original BSSRDFs

The data size for these indices and mixture ratios is esti-
mated as (8 + 32) × K × N = 40K N bits, i.e., 5K N bytes.
Overall, the estimated data size of the proposed compressed
BSSRDF is 12MS + 5K N bytes. In the case of K = 5,
the proposed model is more efficient than Song’s method
if 12MS + 25N < 12NS, which can be simplified to
N < 0.48(N − M)S. Because Song et al. reported that they
typically used S = 25 in their implementation, this condition
can be rewritten as M < 0.92N . Consequently, the data size
of the proposed compression method is smaller than that of
the previous method in most cases. The advantage of the pro-
posed method in terms of the data size is further improved
when a large number of pixels N are included in the target
area. In addition, for K = 2, it is not necessary to use two
floating point numbers for the mixture ratios of each pixel
because two mixture ratios can be represented by either of
themonly. Therefore, the data size for the 2-BMPPmodel can
be as small as 12MS+(8×2+32)N/8 = 12MS+6N bytes.

3.6 Relationship to other data compressionmethods

Although our idea of using basis functions to compress the
BSSRDF data is common with many other compression
methods, the problem formulation introduced in this paper
is much more complicated than that encountered in common
approaches. The base scattering profiles are conceptionally
similar to clusterswith commonclustering algorithms such as
the k-means and the fuzzy c-means methods. In these meth-
ods, the assignment of a cluster to a single pixel does not
affect neighboring pixels. Therefore, the problem of assign-
ing the clusters to each pixel can be independently solved.
However, in theBSSRDFcompression problem thatwe solve
as a part of the proposed solution, the assignment of the
base scattering profile can affect neighboring pixels as well.
This makes the optimization problem much more difficult to
solve. Other compression methods such as principal compo-

nent analysis for dimensionality reduction cannot be applied
straightforwardly to our problem for the same reason.

Our problem formulation is also similar to that of the
Gaussian mixture model in the sense that a target function is
approximatedwith amixture ofmultiple basis functions. The
Gaussian mixture model approximates the original function
using a basis function defined in the same domain. Therefore,
to approximate the 8D BSSRDFs or 4D diffuse reflectance
functions using the Gaussian mixture model, we need to use
8D or 4D basis functions. However, an accurate approxi-
mation of such higher-dimensional function requires dense
sampling of the function’s domain. Therefore, an approxi-
mation using the Gaussian mixture model is not reasonable
to approximate high-dimensional BSSRDFs.

Another option is clustering local scattering profiles that
are obtained by Song et al.’s approach [5]. When the local
scattering profiles are clustered using the ordinary k-means
method, the resulting data size is the same as our 1-BMPP
model. We refer to this option as the “LSP-clusters” (local
scattering profile clusters) and compare with the proposed
method in the following section.

4 Results and discussion

Weexperimentedwith the compression and rendering system
described in this paper using a computer with an Intel Core
i7-6700K 4.0 GHz CPU, an NVIDIA GeForce GTX 1070
graphics card, and 32 GB RAM. The compression program
was implemented using C++, and the real-time rendering
method was implemented using C++ with OpenGL and
GLSL as the graphics API. The BSSRDFs used in our exper-
iments were physically measured using the previous method
proposed by Peers et al. [2]. The experiments described in
this report were performed using M = 128 base materials
unless otherwise specified. Owing to space limitations, all
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Table 2 Performance of our
compression method and the
comparison to the previous
study by Song et al. [5]

Material Art. stone Chessboard Onyx Blue wax Yellow wax Jade
Pixels 108 × 108 222 × 222 229 × 229 228 × 88 110 × 110 260 × 260

Size (MB)

Original 163 857 912 281 210 947

Song et al. [5] 2.5 10.7 11.4 4.4 2.6 14.6

Size (kB)

1-BMPP 39 80 83 48 43 95

2-BMPP 98 326 345 148 103 433

3-BMPP 203 770 817 329 212 1041

5-BMPP 319 1263 1341 529 333 1717

Time (s)

1-BMPP 3 m 45 s 23 m 10 s 23 m 12 s 6 m 54 s 5 m 17 s 24 m 23 s

2-BMPP 4 m 07 s 24 m 04 s 21 m 48 s 7 m 25 s 4 m 57 s 22 m 56 s

3-BMPP 5 h 45 m 33 h 21 m 35 h 19 m 9 h 50 m 7 h 14 m 38 h 08 m

5-BMPP 8 h 15 m 46 h 41 m 20 h 01 m 13 h 49 m 10 h 21 m 53 h 48 m

results for mixture ratios, base material indices, and recon-
structed appearances for K = 1, 2, 3, and 5 are provided in
the supplementary materials.

Table 2 summarizes the compression performance for the
proposed method and its comparison to a state-of-the-art
method [5]. As shown in this table, the proposedmethodwith
K = 2, M = 128 resulted in BSSRDF data that are approx-
imately 2,000 times smaller than the original. Compared to
the state-of-the-art method [5], these data are approximately
30 times smaller. The size of the resulting data is of the order
of a hundred kilobytes which is sufficiently small for use in
video game consoles or mobile phones, which typically have
relatively limited memory resources. The computation times
of the proposed method with K = 2, M = 128 are 4–25 min
for input BSSRDFs in Table 2. These compression processes
of several minutes should be performed only once for each
BSSRDF data.

4.1 Selecting the number K

In the proposed compression method, the number K is an
important factor in determining the final data size, computa-
tion time for compression, and visual quality of the rendered
images. The final data sizes and computation times for dif-
ferent K values are provided in Table 2. In addition, the
appearance of the reconstructed material under different illu-
mination and the relative errors of the diffuse albedo are
compared in Fig. 5. Here, a diffuse albedo value ρd(x) for
pixel x is computed by integrating Rd over the local scatter-
ing range A as ρd(x) = ∫

A Rd(x, y)dy, and the relative error
is computed as ‖ρd(x) − ρ′

d(x)‖/‖ρd(x)‖ where ρ′
d(x) is a

diffuse albedo value of the compressed diffuse reflectance
function Rd .

As shown inTable 2, a smaller value of K results in smaller
BSSRDFdata,whereas fewer relative errors occur for a larger

value of K , as can be seen in Fig. 5. To provide a more fair
comparison between the cases of K = 1 and K = 2, we
also provide the results for K = 1, which has data sizes
that are matched to those of K = 2 by changing the value
of M . By comparing these results in Fig. 5, it is determined
that both the reconstructed appearance and relative errors of
K = 2 are superior to those of K = 1, even if the size of the
resulting data is equal. Specifically, anisotropic light scatter-
ing is appropriately reproduced by the compressed BSSRDF
of K = 2, as shown in Fig. 5d. The improved reproducibil-
ity of K = 2 compared to K = 1 is considered because
the number of base scattering profiles used to represent a
value of Rd(xi , xo) is larger for K = 2 compared to K = 1.
Althoughonly twobase scatteringprofiles are used in the case
of K = 1, four base scattering profiles are used in the case of
K = 2. By comparing the relative errors of K = 1, M = 128
and K = 1, M = 1221, it was observed that the error and
scattering heterogeneity are not improved by increasing the
value of M . According to these observations, K = 2 is more
preferable than K = 1 for the efficient reproduction of the
input BSSRDF with a specific amount of data.

By comparing the results of K = 2 and K = 3, the rel-
ative errors of for the diffuse albedo and the reconstructed
appearances in Fig. 5e are nearly identical, whereas the com-
pression time for K = 3 is significantly longer than that for
K = 2. This is because nonlinear optimization with equality
constraints requires considerably more computational pro-
cessing compared to box-constrainednonlinear optimization.
Even if the value of K is increased to 5, the relative errors and
reconstructed appearance are still nearly identical to the case
of K = 2. In addition, the magnitude of the mixture ratios
in Fig. 4 implies that using two or three materials at most
for each pixel is sufficient to approximate the input BSS-
RDFs. Figure 4 shows the mixture ratios of the 3-BMPP and
5-BMPPmodels after they are sorted in descending order for
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Fig. 5 Comparison of
reconstructed appearances under
different lighting conditions
using the proposed compression
method with different values of
K . For K = 1, 2, 3, and 5, the
compressed BSSRDFs are
computed with M = 128 base
materials. For K = 1, we also
provide another result with
M = 1221 base materials. The
resulting data size for
K = 1, M = 1221 is nearly the
same as that for
K = 2, M = 128

Fig. 6 Real-time rendering results using the 2-BMPP models computed with the multiresolution splatting algorithm [20]. The performance data
of the rendering processes are provided in Table 3

each pixel. As shown in this figure, the mixture ratios #1 and
#2 assume particularly large values, whereas the other mix-
ture ratios assumevalues close to zero.According to the result
of these experiments, we consider that the 2-BMPP model is
more practical than the K -BMPPmodels for K ≥ 3. Eventu-
ally, the 2-BMPPmodel was determined to be the best choice
by considering its small data size, reduced computation time,
and low relative error. Comparisons are shown in Fig. 5 for
the other material samples in the supplementary materials.

Following the preceding discussion, the case of K = 2,
i.e., the 2-BMPP model, is primarily considered in the fol-
lowing experiments.

4.2 Real-time rendering

Figure 6 shows real-time rendering results obtained using the
2-BMPP model. For these images, we compressed the mea-
sured BSSRDFs of the materials shown in the insets. These
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Table 3 Rendering performance
of the multiresolution splatting
algorithm [20] used with
BSSRDFs of the 2-BMPP
model

Figure Model Meshes Time (ms) fps

Art. stone Figure 6a Dragon 871,414 9.7 103

Chessboard Figure 6b Armadillo 345,944 7.9 127

Onyx Figure 6c Fertility 81,782 9.6 104

Blue wax Figure 6d Bunny 69,664 6.7 149

Yellow wax Figure 6e Kitten 25,246 5.4 185

Jade Figure 6f Budda 870,256 12.0 83

Fig. 7 Comparisons of rendered images with compressed BSSRDFs obtained with the proposed method and the state-of-the-art method [5]. As
shown in this figure, our results are nearly identical to those obtained for the state-of-the-art method in terms of visual quality, even though the size
of our compressed BSSRDFs is significantly smaller as shown in Table 2. The differences of colors in the rendered images are magnified by a factor
of 10 for ease of identification. It should be noted that only a negligible computational overhead is required while using the proposed compression
models

images were rendered for the frame buffers with 1280× 720
pixels. The rendering performance is summarized in Table 3.
As shown in this table, the rendering speed was approxi-
mately 103 fps for the dragon model with 871 K meshes.
The speed is sufficiently fast considering that real-time ren-
dering at 60 fps is insufficient for real-time applications such
as computer games, due to the time requirements for non-
rendering computations. The rendering results obtained with
the 2-BMPP models are compared to that of the previous
study in Fig. 7. Even though the size of the data is much less
than that of the previous methods, as shown in Table 2, the
rendered images are nearly identical. The difference values
in this figure represent the Euclidean distance of RGB pixel
colors in [0.0, 1.0]3, and the distances are magnified by a

factor of 10 such that they can be readily identified. The sup-
plementary materials include the complete video for these
rendering results and comparisons.

We implemented our rendering system on a tablet and
a mobile phone to demonstrate the applicability of the
proposed method in memory-limited hardware. The hard-
ware configurations are summarized in Table 4. The system
was implemented using Android SDK 7.0 and coded with
Kotlin 1.12.101 [29]. We demonstrate the rendering results
in Fig. 8 and the demo video in the supplementary materials.

1 Kotlin is amodernmultiplatform programming language. It primarily
focuses on accelerating the development of Android applications, and
its compiled binary is executed on Java VM.

123



Data compression for measured heterogeneous subsurface scattering via scattering… 553

Table 4 Hardware
configurations of the tablet and
mobile used in the experiment

HTC Nexus 9 (tablet) Sony F5321 (mobile)

CPU Dual core 2.3 GHz Hexa core 1.8 GHz

GPU NVIDIA Kepler DX1 Qualcomm Adreno 510

RAM 1.8 GB 2.8 GB

Fig. 8 Rendering demo on a tablet and a mobile phone

Compared to the rendering performance on computers, the
duration of the data loading time can be an issue on such hard-
ware. For the “Onyx” example, 335 kB of the BSSRDF data
obtained using the proposed method was loaded in 0.28 s on
the HTC Nexus 9, while 11.4 MB of the data obtained using
Song et al.’s method was loaded in 6.60 s. This result reveals
that the high compression ratio of the proposed method
can reduce both the loading time and graphics memory
usage.

4.3 Experiments

Figure 9 compares the appearances of light scattering among
the original data, previous method [5], the LSP-clusters, and
the proposed method. We used M = 128 base materials for
the proposedmethod and chose the number of clusters for the
LSP-clusters such that the resulting data size was the same as
that of the proposedmethod using (K , M) = (2, 128). In this
figure, the reconstructed appearances under uniform, circle-
shaped, and line-shaped illuminations are shown from left to
right, and the relative errors of the diffuse albedo are shown
in the rightmost column. By comparing the reconstructed
appearances of the 2-BPMM model, previous method, and
original data, it was determined that all their appearances
are nearly identical. According to the relative errors, the 2-
BMPP model performs comparably to the previous method
[5] even though the data size of the proposed method is
significantly smaller. These results demonstrate that the pro-
posed method with two base materials effectively reduces
redundancy in Song et al.’s previous method. Comparing
the proposed method with the LSP-clusters, it was deter-
mined that the reconstructed appearances and relative errors
are almost the same. We further performed a quantitative

Fig. 9 Appearances of light scattering compared among the original data, approximation with local scattering profiles [5], the LSP-clusters, and
our compression method. In this experiment, uniform, circle-shaped, and line-shaped illuminations were exposed to three different materials. For
the LSP-clusters, we used the number of clusters such that the resulting data size was the same as that used for the 2-BMPP method with M = 128.
The images in the rightmost column of each group represent the relative errors of the diffuse albedo over the original data. The similarities of the
light scattering and relative error values reveal that the proposed compression method effectively reduces the redundancy of the per-pixel scattering
profile assignment
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Table 5 Comparison of the
average relative errors of
compressed BSSRDFs among
the proposed method, the
previous method by Song et
al. [5], and the LSP-clusters

Material Art. stone Chessboard Onyx Blue wax Yellow wax Jade

Avg. relative error

Song et al. [5] 0.0223 0.0376 0.0413 0.0237 0.0222 0.0610

LSP-clusters 0.0429 0.0438 0.0435 0.0402 0.0619 0.0807

1-BMPP 0.0303 0.0425 0.0434 0.0441 0.0351 0.0728

2-BMPP 0.0372 0.0438 0.0428 0.0276 0.0319 0.0753

3-BMPP 0.0413 0.0452 0.0430 0.0273 0.0307 0.0789

5-BMPP 0.0491 0.0444 0.0427 0.0345 0.0370 0.0773

The average relative errors are calculated by averaging the error values in the error maps as in the bottom row
of Fig. 5. The number K used for the results of the LSP-clusters and 1-BMPP are controlled such that the
data size is the same as those of 2-BMPP. The relative error distributions for each pixel are depicted in Fig. 9
and in the supplementary materials

Table 6 Comparison of PSNR
and SSIM among our
compression method, the
previous study by Song et al. [5],
and the LSP-clusters. Since the
PSNR and SSIM are metrics for
comparing image qualities, we
compared the appearance of the
reconstructed material under
uniform illumination as in
Fig. 5. In addition, the number
of base materials K used for the
results of the LSP-clusters and
1-BMPP are controlled such that
the data sizes are the same as
those of 2-BMPP

Material Art. stone Chessboard Onyx Blue wax Yellow wax Jade

PSNR (dB)

Song et al. [5] 39.7 28.8 18.8 40.5 36.8 26.6

LSP-clusters 25.3 25.2 18.0 21.3 21.4 19.6

1-BMPP 31.3 26.4 18.0 20.7 28.8 20.5

2-BMPP 30.7 26.5 18.6 27.3 31.9 20.9

3-BMPP 26.7 24.8 18.5 27.1 32.9 20.4

5-BMPP 24.6 26.8 18.3 25.3 31.7 20.9

SSIM

Song et al. [5] 0.998 0.960 0.888 0.999 0.995 0.977

LSP-clusters 0.875 0.855 0.835 0.949 0.949 0.852

1-BMPP 0.970 0.940 0.853 0.843 0.942 0.821

2-BMPP 0.937 0.905 0.870 0.964 0.962 0.823

3-BMPP 0.901 0.873 0.870 0.974 0.962 0.793

5-BMPP 0.854 0.901 0.873 0.959 0.952 0.811

comparison of the proposed method with the LSP-clusters as
discussed in the following paragraphs.

Table 5 quantitatively compares the average relative errors
of the scattering profiles among the proposed method, pre-
vious method [5], and the LSP-clusters. The values are
computed by averaging the relative error distribution shown
in Fig. 5. In addition, Table 6 shows the results of a quantita-
tive comparison of the peak signal-to-noise ratio (PSNR) and
the structural similarity (SSIM) [30] among the above meth-
ods. Since these quantitative metrics are both for comparing
images, we compared the reconstructed appearances under
uniform illumination as shown in the first row of Fig. 5. It is
worth recalling that the relative error values in Table 5 com-
pare the qualities of BSSRDFs, while the PSNR and SSIM
values compare the qualities of the reconstructed images.

The values in Tables 5 and 6 are computed by compar-
ing the reference BSSRDF data and the compressed data
obtained using the proposed method or the previous method.
ThePSNRandSSIMvalues are only slightly lower than those
of the previous method even though the data size obtained

using the proposedmethod is significantly smaller than those
obtained by the previous method. In addition, compared to
the results for the LSP-clusters, the proposed method with
2-BMPP outperforms the LSP-clusters for all values except
in the case of the SSIM for “Jade.” For the “Jade” example,
the SSIMvalues of the proposedmethod are smaller than that
of the previous method. The resulting base material assign-
ments can sometimes converge insufficiently for such precise
and complex mixtures, even for an increase in the number of
base materials K . The development of a more efficient opti-
mization for material assignment will be addressed in future
work.

Figure 10 shows the reproduced appearances and rela-
tive errors of the diffuse albedo for different numbers of
scattering profiles. As can be seen in this figure, the repro-
duced appearances obtained with 8 and 32 base materials are
sufficiently comparable with those obtained using the origi-
nal data. As the number of profiles increases, the details of
the reproduced appearance become clearer. For example, the
appearance of the small white circles in the upper left of “Art.
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Fig. 10 Comparison of reproduced appearance and relative errors of diffuse albedo obtained for different numbers M of the total base materials.
When the values of K were relatively small, it was possible to reproduce the appearance obtained using the original data. By increasing the number
of base materials used for the compression, the relative errors decrease, and the texture details become more apparent

stone” becomes close to that of the original data, and the ver-
tical lines of the “Onyx” become more apparent. According
to these results, users can flexibly select the number of base
materials depending on their size requirements for BSSRDF
data. Even when M = 128 is selected for high visual quality,
the resulting data size is still significantly smaller than that
of the previous methods as shown in Table 2.

4.4 Discussion

4.4.1 Target object shapes

The compression results shown in this paper are all for the
BSSRDFs on flat objects, even though such flat shapes are
not common in real-world materials. On the other hand, the
proposed compression method is independent of the objects
shape. Therefore, it can be extended to the case of non-flat
objects as far as the distance between two surface positions
can be calculated. Such BSSRDFs for general shapes are
measured, for example, by the method of Goesele et al. [1],
and our compression method can be immediately applied to
theirmeasurements.Whenwe use themeasuredBSSRDFs in
real-time rendering, the BSSRDFs measured for flat objects
can be applied to non-flat shapes as shown in Fig. 6 based on
the assumption that the target shapes are locally flat and the
materials are optically thick.

4.4.2 Computational time for optimization

To obtain compressed BSSRDFs of K-BMPP models with
K ≥ 3, the current implementation is time-consuming as
shown in Table 2 because the optimization problem for
K ≥ 3 needs to be solved using the slow-convergence aug-
mented Lagrangian method. The computational bottleneck

in the optimization is the evaluation of the least squares cost
function in Eq. 5 and its derivative. However, evaluations of
these cost function and its derivative can be accelerated with
GPUs. Therefore, the problem of the computational time can
be reasonably addressed. In addition, the 2-BMPP models,
which can be yielded in a significantly reduced computa-
tional time, are practically sufficient in most cases as shown
by the experimental results in the previous subsections.

4.4.3 Random versus cluster-based initialization

As described in Sect. 3, the parameters of the compressed
BSSRDF are initialized with random numbers before opti-
mization. On the other hand, these parameters can be
initialized with an input BSSRDF data. For example, the
base scattering profiles can be initialized by clustering the
local scattering profiles of the input pixels. However, it
was determined in the preliminary experiments that such
initialization by clustering can easily be stuck in a local
minimum of the cost function in Eq. 5. This is because
cluster-based initialization tends to inhibit updating of base
material assignment by the preceding optimization steps. As
a result, this inappropriate initialization can cause approx-
imation errors at material boundaries. This is also the
reason why the probabilistic update strategy was used in the
PatchMatch-based material assignment. If material assign-
ment is always updated as in the original PatchMatch algo-
rithm, the solution can be stuck in a localminimumof the cost
function.

4.5 Limitations

Except for the slight increase in the approximation errors, the
proposed method with 2-BMPP does not have any critical

123



556 T. Yatagawa et al.

limitations. One possible problem is the many optimization
parameters in the proposed optimization method. As far as
the proposedmethodwas examinedwith the parameters indi-
cated in the paper, the optimization problems were robustly
solved for the 2-BMPP model.

On the other hand, if the user specifically needs to
approximate a measured BSSRDF using more than two base
materials, the proposed method has several limitations as we
discussed in the previous paragraphs. First of all, the com-
putation time for the case of K ≥ 3 is impractically long
as shown in Table 2. This long computation time is due to
the need for many iterations to allow the modeling parame-
ters to converge. In addition, as indicated in Tables 5 and 6,
approximation results given with K ≥ 3 can be worse than
the case of K = 2. A possible reason for this problem is
the slow convergence of the augmented Lagrangian method,
which can complicate the appropriate assignment of the base
materials. Another possible reason is the large search space
for the combinations of the base materials in the cases of
K ≥ 3. Suppose that the typical test case of M = 128 and a
BSSRDF is defined on 256×256 = 65,536 pixel area.When
K = 2 is used, the number of possible base material combi-
nations is 128C2 = 8128 < 65,536. Meanwhile, it increases
to 128C3 = 341,376 > 65,536 when K = 3 is used. Since
the proposed combinatorial optimization does not change
the combinations assigned by the random initialization, the
increase in the base material combinations can complicate
the appropriate assignment of the appropriate combinations.

In conclusion, we recommend the use of the 2-BMPP
model in most practical cases given its numerical instability,
relatively low computation time, and good approximation for
many heterogeneous translucent materials.

5 Conclusion

In this paper, we proposed a memory-efficient BSSRDF
model for the measurement of heterogeneous translucent
materials. The high compression ratio of the proposed
method is typically preferred for memory-limited devices
such as video game consoles and mobile phones. The pro-
posed method compresses physically measured BSSRDFs
into significantly smaller data sizes compared to the state-
of-the-art compression method by Song et al. [5]. The
compression is based on the observation that most translu-
cent materials are comprised of only a limited number
of base materials. The compression method represents the
local scattering profile of each pixel with a linear combina-
tion of the scattering profiles of base materials in the log
scale. In the proposed method, we assign multiple indices
of the base materials and mixture ratios to each pixel. How-
ever, optimizing these parameters is a complicated problem
in which constrained nonlinear optimization and NP-hard

combinatorial optimization must be simultaneously solved.
To solve this complex problem, we proposed an alternat-
ing optimization method using the L-BFGS-B method [28]
or an augmented Lagrangian method [27] for the con-
strained nonlinear optimization and a randomized approach
inspired by PatchMatch [6] for the combinatorial optimiza-
tion. The resulting compressed data are approximately 30
times smaller than the data obtained using the state-of-the-
art method. In addition, the visual quality of the rendered
images compared to the compressed BSSRDFs is nearly
identical to that obtained with the previous method. Sev-
eral experiments have confirmed that the small data size
obtained using the proposed method is preferable in practice
for memory-limited devices. Apart from the direct utiliza-
tion of the proposed compressionmethod in memory-limited
devices, its high compression ratio is expected to be more
important when high-resolution BSSRDFs are used in prac-
tical applications.
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