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Abstract WepresentGeoBrick, an interactive technique for
exploring spatiotemporal data. In GeoBrick, each region is
comprised of multivariate data, which is encoded into simple
shapes with colors. Additionally, users can adjust the resolu-
tion of data values to get an overview as well as details of the
data. GeoBrick allows users to (1) juxtapose data and spa-
tial profiles of discontiguous regions, (2) identify temporal
patterns of user-defined classes of regions, and (3) compara-
tively evaluate across distinct configurations of regions. We
demonstrate the effectiveness and efficacy ofGeoBrick using
two case studies.

Keywords Visual analytics · Spatiotemporal visualization ·
Multivariate data · Interactive data analysis

1 Introduction

A number of multivariate visualization techniques have been
developed [7,12,13,17,19,37,39]. Traditional spatiotempo-
ral visualization approaches cater to one or two of the
following aspects but not all: (1) importance of neighbor-
ing regions/information, (2) inherent hierarchical structure
between areas (e.g., state/county/city), (3) presence of time-
dependent multiple variables. In the GeoBrick visual analyt-
ics framework, we cater to all these aforementioned aspects
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while allowing the user to visualize, explore, and analyze
spatiotemporal data. We characterize the goals of users and
derive design goals and tasks. To perform the tasks,GeoBrick
allows different time periods and relationships between mul-
tiple variables to be visually examined concurrently (Fig. 1).

Broadly speaking, two distinct approaches for visualiz-
ing relationships between multiple categories/variables have
been employed, clustering (e.g., [1]) and glyphs (e.g., [3]).
Clustering-based approaches rely first on aggregating the
variables and then assigning colors to the clusters. The advan-
tage of this approach is that it can scope more variables than
the glyph-based alternative. The disadvantage of clustering
is that the attributes for individual data points cannot be visu-
alized, since different attributes can be clustered together.

Glyph-based approaches, on the other hand, simply assign
glyphs or visual representations to individual data points
and thereby allow for visualizing at a much finer resolution
than clustering-based approaches. In addition, glyph-based
approaches can easily cater as many as 12 variables, which
is also the upper limit of colors that humans can distinguish
simultaneously [36]. Hence, in this paper, we use glyphswith
12 variables to underpin our GeoBrick platform.

The aim of our GeoBrick is to detect regions with similar
or different attributes, to analyze local neighborhoods, and to
identify relationships between multiple variables. GeoBrick
provides several views to meet these aims. The details of
these views will be discussed in Visualization section. The
main contributions of this paper are summarized as follows:

– We provide users with visual encodings for comparing
data points from regions, and for exploring temporal vari-
ation of selected variables in spatiotemporal data.

– We offer interactive tools within our platform to aid users
in local neighborhood analysis and temporal analysis of
selected regions.
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Fig. 1 An example of GeoBrick for local neighborhood analysis (the
New England states) based on revenue from residential electricity sales.
(A) The Abstract View displays abstracted spatiotemporal data, (B) the
Map View shows the spatial relationship of the selected regions on a
map, (C) the Comparison View allows users to compare among selected
regions or time variation at a selected region, (D) navigation legends and
polygon allow policy makers to select a variable and reordering vari-

ables across regions, and in (E) the control panel, policy makers can
modify variable ranges, the resolution of polygons, the type of com-
parison and merging, and other basic operations for interaction. In the
Abstract View (A) and Map View (B), the path depicts the order of
regions based on a selected variable (with the darkest line depicting a
regionwith the highest value and the brightest line representing a region
with the lowest value)

– We illustrate the effectiveness of our platform with two
use cases.

2 Related work

There are many previous approaches to efficiently visual-
ize spatiotemporal data. Descartes [4] visualizes variables
based on choropleth maps with other visual encodings such
as shapes and sizes. It also allows users to interactively
explore maps, where each map was displayed in a separate
window. Andrienko et al. [2] have described several issues
and recommendations for spatiotemporal visual analytics.
STempo [31] has also visualized events to analyze them by
offering several views to explore spatiotemporal events by
using computational methods. Jern and Franzen [18] have
visualizedmultivariate data by integrating several techniques
such as parallel coordinates, time graph, time trend graph,

and choropleth maps to analyze spatiotemporal data. Hoeber
et al. [16] have introduced GTdiff to visualize spatial and
temporal differences.

GTdiff consists of three views such as a temporal, differ-
ence, and geospatial views. The temporal view allows users
to select a specific time period and generated temporal bins.
In the difference view, differences between all the possible
pairs of temporal bins are displayed. The geospatial view
shows detailed information from a selected elements(s) of
the other views. Slingsby et al. [29] have presented a tech-
nique to explore the Output Area Classification. It contained
various techniques such as dotmaps, rectangular hierarchical
cartograms, bar charts, and parallel coordinates plots. Lastly,
Andrienko et al. [1] have suggested a framework based on
Self-Organizing Map to interactively analyze spatiotempo-
ral data. The Great Wall of Space-Time [33] has visualized
selected spatial regions by creating a line among them and
add a temporal component by extending the line to a 3D sur-
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face. All the above work focused on comparing individual
variables.

A few approaches similar to our GeoBrick have also been
proposed. Guo et al. [14] have developed VIS-STAMP to
visualize multivariate data. In their approach, multivariate
data were clustered using a Self-OrganizingMap (SOM) and
the resultant clusters were visualized as a reorderable matrix
and map matrix. Moreover, the patterns between variables
were shown on parallel coordinates. The clustering is a lim-
iting factor in this approach since users cannot find regions
with exactly the same data values. Goodwin et al. [11] have
focused on comparing variables with different scales and
locality in only the spatial domain. There are spatiotemporal
visual analytics frameworks for just one variable (i.e., trajec-
tory data) by simplifying the complex data [20] and using
3D animation [5] and multiple views [6]. In contrast, Geo-
Brick can display multiple variable data with discrete spatial
scales and temporal variation to understand the relationships
between these variables.

3 Design goals and tasks

Based on discussions with potential users and prior art [27],
we derived design goals of GeoBrick as follows:

– Help users interactively cluster geographical regions and
show the corresponding spatial distributions.

– Explore relationships between temporal variables within
a specific region.

– Perform local neighborhoodanalysiswhich allows select-
ing a region and comparing the selected region to its
neighboring regions.

Spatiotemporal data can have different geographical units,
time periods, and a hierarchy of geographical units (e.g.,
nation > regions > divisions > states in the USA). Based
on these data characteristics and our objectives, GeoBrick
allows the following tasks to be performed:

T1. Find regions with (dis)similar data attributes (e.g.,
Which state(s) have similar residential electricity con-
sumption to Connecticut?).
T2. Identify patterns (similarity or difference) in neigh-
boring regions (e.g., Do neighboring regions of Mas-
sachusetts have similar types of energy sources? Do the
New England states have similar education and house-
hold income patterns?).
T3. Find region(s) with the highest/lowest metric value
in selected regions and how these regions are spatially
distributed (e.g.,Which state(s) have the highest residen-
tial electricity expenditure in the Northeast region? Are
these neighboring states?).

T4. Compare regions with same/different geographical
unit (e.g., Does the state of New York have similar data
points to the states in New England?).
T5. Find a variable that correlates with another variable
within a region/across regions? (e.g., Why did the resi-
dential electricity bill for Hawaii decrease from 2014 to
2015?Does a strong relationship exist between increased
solar power electricity and the decreased cost of residen-
tial electricity in US?).

4 Visualization

GeoBrick offers three linked views, namely the Abstract
View, theMap View, and the Comparison View, to help users
perform the tasks mentioned in Sect. 3.

4.1 Abstract View

4.1.1 Glyph

The Abstract View provides an overview of the data points
for neighboring regions in a certain spatial locality (Fig. 1a).
One of our goals is to compare data points for each region
(T1, T2). Star glyph is a popular method to compare data
points in small multiples [10]. Here, we use a glyph (visual
representation) similar to the star glyph, which shows multi-
ple variables for a region in a specific time period, as shown
in Fig. 2. More specifically, when we have n variables, we
create an n-polygon to represent each region and then divide
the n-polygon into n sections uniformly, where each section
represents a variable. We have selected n-polygon represen-
tation because it can easily be extended up to 12 variables
based on our experiments, which is enough for our target
cases such as electricity consumption and US census data.
Additionally, in ann-polygon, each section can have the same
shape, which is similar to a star glyph. Throughout the rest
of this paper, we refer to n-polygon simply as a polygon. We
assign a color to each section to represent a variable because
color is one of the pre-attentive features [36] and a popu-
lar element to encode data in geographical visualization [4].
In order to successfully distinguish between variables, we
deploy the ColorBrewer color schemes [15].

Once we have determined the color of each variable, the
data value of each variable is represented as the number and
the size of the most basic unit in our polygon representation,
triangles. We have opted for a triangle to represent a data
value because we can tightly divide each section of polygons
which itself is a triangle. The number and the size of the
symbols are determined by the resolution of the symbols. The
users might want to perform our characterized tasks (T1–
T5) at varying granularity. For example, a user may want
to find states with higher residential electricity consumption
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Fig. 2 An example of our glyph, including 12 variables and two
selected variables for temporal rings. A polygon is divided into 12 sec-
tions, where each section represents a variable (examplemarked in red).
Each temporal ring visualizes temporal variation of a selected variable.

Each arc/subsection in a temporal ring denotes a specific time period;
we arrange these in a clockwise direction with chronological ordering.
The color of each arc represents data values. An overview arc allows
users to see the difference of a region across time by selecting that arc

Fig. 3 An example of varying resolution to show data points from two
regions—Region 1 (a and b), Region 2 (c and d)—with different levels
of granularity. a and c show resolution 2, and b and d illustrate reso-
lution 4. There are no visible differences at resolution 2, but when the
resolution is increased to 4, these differences become more pronounced

compared to other states, and then find the state with the
highest residential electricity consumption and the state with
the lowest one. For this purpose, we allow users to change
the resolution of symbols (the granularity of the data), where
i resolution indicates i triangles on an edge of each section.
If users want to see more details or abstract of datasets, they
can increase or decrease the resolution (Fig. 3).

If the current resolution is i , the total number of symbols
for each section or variable is i2. After computing the number
of symbols for each variable,we calculate a data value of each
symbol, as follows. First, we set the range of each variable by
computing themaximum(max j ) of eachvariable ( j) in all the
regions and set zero as the minimum value (min j ). The users
can adjust the range manually to remove outliers or magnify
the small difference of a variable across regions. Given the
range of the variables, the data value of a symbol for each
variable is (max j −min j )/ i2. We use two types of symbols,
namely active and inactive symbols. Active symbols denote
a data value of a variable while inactive symbols represent
the difference between the defined maximum data value of
the variable and the data value of the variable in the selected
regions. Given the data value of each symbol, we compute
how many active symbols (Nactive) are required to show the
data value of each variable, and then we define the number of
inactive symbols (Ninactive) as i2 − Nactive. Active symbols
are colored according to the method described previously.
We note that in the current implementation, the background
color for GeoBrick is black, and thus we opted for a darker
shade for inactive symbols to make them unnoticeable.

After we calculate the number of active and inactive sym-
bols, we arrange the symbols. The active symbols are placed
from bottom to top and left to right of each section to com-
pare variables within each polygon. When we arrange the
symbols, we keep symbols as close as possible by switching
the order of every leftmost symbol to their next symbols. We
note that unlike other active symbols, the last active sym-
bol of every variable in the arrangement indicates a value
between 0 and (max j −min j )/ i2.

When the users change the resolution of polygons, the
sizes of all the symbols are changed accordingly to maintain
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the size of polygons irrespective of resolution. If the current
resolution is i and the size of a symbol is Si , the size of
the symbol will be Si × i2

(i+1)2
or Si × i2

(i−1)2
for a changed

resolution i + 1 or i − 1, respectively.
In GeoBrick, the order of variables can be computed

based on the correlation among variables. First, users select
one variable. Next, we compute the correlation between the
selected variable and the other variables by using Pearson’s
correlation coefficient. We then place variables with a higher
correlation coefficient close to the selected variable while
variables with a lower correlation coefficient are positioned
on the opposite side of the selected variable.When comparing
selected variables, the arrangement of variables in each poly-
gon might be important because it enables users to view the
pattern of selected data values. Thus, GeoBrick also allows
users to reorder variables manually.

4.1.2 Temporal ring

In GeoBrick, data vary spatially as well as temporally. To
visualize time-varied selected variables, we provide a tempo-
ral ring, where a series of concentric rings indicating selected
variables are wrapped around a polygon.We chose a concen-
tric ring because it can be tightly integrated into our polygon.
In order to compare the difference between regions with dif-
ferent time periods (T4), we allow users to select a time
period for each region by selecting an arc in the concentric
ring. Moreover, we provide an overview of a time-varying
selected variable to see the difference of a region across
time. For the overview of time-varying data, we highlight
the difference among time periods, where uncommon active
symbols across time periods are brighter. We divide the ring
into the number of time periods+1 arcs (time arcs) to select
time periods and present an overview (Fig. 2).

The color of each arc represents a normalized data value
of a selected variable in a time period (T5). The normalized
data value can be computed in two ways. The first method is
global normalization, where each value is normalized based
on the maximum and minimum data values of a selected
variable over all regions. This normalization can help users
find the difference among regions. The second method is
local normalization, where the color of each arc shows the
relative difference of a selected variable across time periods.
This local normalization can be usefulwhen the users analyze
time variation of a selected variable in each region. Figure 4
illustrates our global and local normalization methods.

We assign white to an overview arc to distinguish it from
arcs for other time periods becausewe do not assignwhite for
the arcs. Moreover, we use the ColorBrewer color schemes
for coloring the arcs. We make the overview arc thinner than
other arcs to distinguish between these easily. Furthermore,
we arrange the arcs in a clockwise direction based on their

Fig. 4 An example of our a global normalization, and b local normal-
ization for temporal rings. In our global and local normalizations, each
value is normalized based on the maximum and minimum data values
of a selected variable over all regions and in each region, respectively

chronological order, and the arc for an overview is located
at the top. When users select multiple variables, we can also
add multiple temporal rings. Additionally, a temporal ring
can visualize temporal variation of a sum/average of selected
variables.

4.1.3 Layout

As we mentioned earlier, one of our aims is local neigh-
borhood analysis (T2), so preserving neighboring regions is
important. Therefore, in the Abstract View, GeoBrick pre-
serves neighboring regions in order for users to detect (1)
a neighborhood with similar data points, and (2) a region
with different data points within the local neighborhood. For
this purpose, we can use an existing approach, as several
layout algorithms have been proposed in the past. To save
space and approximately preserve neighboring, we can eas-
ily apply algorithms such as [9,21,30] to polygons in the
Abstract View. In this paper, we simply use a force-directed
algorithm to preserve the neighborhood, where we consider
each region as a node and create links between nodes if two
regions share their border. If users want to see the data of dis-
contiguous regions such as Hawaii and Alaska in the USA,
the regions are placed close to the main layout (Fig. 5a).

4.2 Interactive operations

4.2.1 Clustering

One of our objectives is to identify regions similar to
user-selected regions (T1,T2). For this,we use k-means clus-
tering [38] to cluster regions based on selected variables. The
k-means clustering algorithm requires users to set the number
of clusters. In our approach, we start with a small number of
clusters and interactively increase or decrease this number.
Our experiments with several datasets show that 3–5 clus-
ters are good to start with. Additionally, we observed that the
adjustment of the number of clusters does not always result in
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Fig. 5 An example of two different layouts for GeoBrick: a force-
directed layout, and b CorrelatedMultiples [21]

better clustering. Therefore, we allow users to interactively
include/exclude regions based on their glyphs.

4.2.2 Merge and split

Spatiotemporal data can contain various geographical units
and time periods, which are linked to several variables in
GeoBrick. In order to explore the data across those units
and periods (T4), GeoBrick needs to support the change in
geographical units and time periods, for example, merging
regions to obtain a super region at a higher level in a hier-
archy of geographical units; splitting a region into several

subregions at a lower level in the hierarchy of geographical
units; or merging data values from different time periods.

In GeoBrick, we offer methods to easily merge or split
regions. For merging regions, if data regarding a super region
of selected regions are available, we visualize it. In cases
where these data are not available, we create this super region
data based on selected regions. In this case, we use two types
of operations for merging data: aggregation and averaging.
For aggregating data from the selected regions, we compute
the size of a merged polygon by calculating the maximum of
merged variables. The size of each symbol does not change.
We sum the data values of merged variables from the regions
and then compute the number of active and inactive symbols
for each merged variable. Averaging is done by deriving the
mean for data values of variables from selected region. After
creating a merged polygon by aggregating and/or averaging
data, we average the center of the selected regions at the
position of a merged polygon. We also compute neighboring
regions of a merged region based on selected regions’ neigh-
boring regions. We then reapply a layout algorithm to all
regions to avoid overlap between a merged region and exist-
ing regions. We only split a region into subregions when
their data are available about subregions. In other words,
if a selected region is a merged region, we simply remove
the merged region and display subregions, where we already
have the data available. In Fig. 6, we use the aggregation
method to merge eight variables and the averaging method
for two variables (pink and green).

In some cases, users need to compare between a region
and one of its subregions. For this purpose, we also provide
a method to visualize both a merged region and subregions,
where subregions are displayed at their original positions,
and a merged region is located at the Comparison View.

For merging time periods, users select time periods and
thenmerge data values through either an aggregation or aver-
agingmethod, as described above.When the data aremerged,
we also merge selected time arcs.

4.2.3 Comparison

In the Abstract View, polygons for two regions have the
same size, and each polygon can show the same range of
a data value for each variable if the polygons are not merged.
Users can compare the regions by dragging one region onto
another region (T4), which is similar to the approach used in
OnSet [28]. When the distance between two regions reaches
less than a certain threshold, we start comparing the regions.
Similar to our temporal overview approach, the difference
between the two regions is highlighted.We compute whether
each active symbol in the regions is common in both regions
(common active symbol) or not (uncommon active sym-
bol). An uncommon inactive symbol is a symbol located
at the same position as an uncommon active symbol in the
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Fig. 6 An example of merging
and splitting the New England
states, including New
Hampshire (NH), Maine (ME),
Connecticut (CT),
Massachusetts (MA), Vermont
(VT), and Rode Island (RI),
using averaging and
aggregation. After the user
selects the states, two variables
(green and pink) are merged by
using averaging, and the others
are merged by using aggregation

other regions. We then make uncommon active symbols and
uncommon inactive symbols brighter and darker, respec-
tively.

If the two regions have different polygon sizes due to
merging regions, all the common active symbols can be
shown, but all the uncommon inactive symbols in a smaller
polygon cannot be shown.However, since they have the same
layout for the variables, we can focus on a bigger polygon
to see the difference and similarity between the two regions
by displaying all types of symbols while the other region
illustrates only symbols, which can be illustrated within the
region.

4.2.4 Labels and shapes

In order to assist users to identify each regionmore efficiently,
we provide a label and a way to show the actual location and
shape of each region. A label shows the abbreviation (e.g.,
NY for New York) or the name of each region (e.g., North-
east), and it is placed at the top of each region. In addition,
we also add a symbol next to a label, where the color of a
symbol is the same as that in the Comparison View and Map
View.

In order to display the shape of each region, we normalize
each region based on its area to focus on its shape instead
of its size. We also blend the shapes of the regions and their
corresponding polygons together to show both the shape and
data of a region.

Lastly, to help users understand the range and position
of each variable, we show navigation legends and the nav-
igation polygon. All operations on the navigation polygon
are applied to all the regions. Navigation legends present the
color of each variable, its name, and the range of a symbol.
Every polygon has the same layout, as shown by the naviga-
tion polygon in Fig. 1d.

4.3 Map View

The Abstract View shows local neighboring regions, but can-
not show the geographical context, the exact location and size
of each. Thus, we provide the Map View, which shows each
region in an actual map (Fig. 1b). When the users select a
region(s) in the Abstract View or the Map View, we high-
light those regions in both views. When a user finds similar
regions using our clustering method, these regions are also
highlighted in the Map View (T1). Additionally, when we
analyze the local neighborhood, the colors of selected regions
in the Map View are the same as the colors of rectangles for
the corresponding regions (T3). In the Map View, we can
also overlay information such as the ordering path between
regions, which will be described in the Comparison View.

4.4 Comparison View

The Abstract View shows only an overview of data points in
regions and temporal variation of selected variables and pro-
vides very basic comparison capabilities. Thus, we present
the Comparison View to analyze temporal variation in a
region or local neighborhood, in a more detailed way (T2–
T5).

In the Comparison View (Fig. 1c), we visualize selected
information, similar to the Table Lens [26], which can help
users visualize the relationships among selected regions or
variables. For temporal analysis in a selection region, we
visualize data values of variables in each period at the bottom,
and the time variation of each variable at the top (Fig. 7).
Each colored cell represents the data value as the same as a
triangle in a polygon. The goal of this temporal analysis is to
analyze the difference between each time period. Thus, we
again utilize the global and local normalization methods to
visualize different distributions (Fig. 7).
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Fig. 7 An example of our temporal analysis from the data of Hawaii
(HI) from 2007 to 2015: a global normalization, and b local nor-
malization. In both normalization methods, the x-axis represents data
values, and the y-axis indicates time (a dashed blue rounded rectangle:
top—2007; bottom—2015) or each variable (in a dashed red rounded
rectangle). In the top part (a blue rounded rectangle), each variable has a

unique color, which is used in the bottom part of the view (a red rounded
rectangle) to show data values of each variable in a region. In the global
normalization, we cannot see the changes of solar power generation.
However, we can clearly see the increase in solar power generation in
the local normalization

For local neighborhood analysis, we also visualize two
types of information as shown in Figs. 1c and 8. In the view
for these two information, the x-axis indicates data value and
the y-axis represents a region (top part) or a variable (bottom
part). At the bottom of the view,we visualize selected regions
and provide a colored square as a label for each region to find
a corresponding region at the bottom of the display. Users
can rearrange the regions by sorting them based on their x
or y positions. At the top of the view, we group data points
from the selected regions into variables to show the correla-
tion between the variables. Users can sort regions based on a
selected variable by clicking the name of a variable. In order
to show the spatial relationship between sorted regions, a
path between regions is drawn in both the Abstract View and
Map View, where the color of the path indicates the order of
each region based on a color scheme selected by users, e.g.,
the darkest line shows a region with the highest value while
the brightest line indicates a region with the lowest value
(Fig. 1a, b).

In temporal rings, users can select a specific time period
for data points within a region. This is useful for comparing

data points from two regions with different time periods. It
is still, however, difficult to compare data points from mul-
tiple regions with different time periods. For this purpose,
we provide a way to visualize data values of variables from
selected regions in each time period. In this visualization,
each row shows data values of variables from a given region
for a specific time period (Fig. 9a).

4.5 Interaction

We provide several basic interactions to help users under-
stand the overall data. As we described previously, users
can change the resolution of all the polygons to obtain an
overview of data. To assist users in exploring different levels
of aggregation of regions, we allow users to choose an initial
geographical unit of all the regions to be visualized. When
users hover over a variable, we show the name of the pointed
variable and the data value of the selected variable on the
tooltip. Users can zoom into a specific region by increasing
the size and resolution of the region. Additionally, we allow
users to select regions by manual selection and brushing.
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Fig. 8 Acomparison of the local neighborhood ofWashington in 2007.
In the top of the Comparison View (a dashed blue rounded rectangle),
we group data points from the selected regions into variables to show
the correlation between the variables. Each variable has a unique color,
which is used in the bottom part of the view (a dashed red rounded rect-
angle) to show data values of each variable in a region. In the bottom of

the view (a dashed red rounded rectangle), we visualize selected regions
and provide a colored rectangle as a label for each region (a dashed red
rounded rectangle), which is used in the top view to represent data val-
ues of a corresponding region. In the top and bottom parts, the number
of squares represents data values

Fig. 9 An analysis of Ohio (OH), Pennsylvania (PA), and Illinois (IL): a comparison of overall temporal variation of three regions and selected
time periods (outlined with red boxes), and b analysis of three regions with selected time periods

Once users have selected the region(s) of interest, the neigh-
boring regions or regions belonging to the same selected
geographical unit can be automatically selected.

5 Case studies

We describe two examples to demonstrate the benefits of
GeoBrick. In the first case study, we use GeoBrick to under-
stand the sales and generation of residential electricity (10
variables) in the USA. In the second example, GeoBrick is
used to explore the US census data (12 variables). In both
cases, we use a hierarchy of geographic units from US cen-
sus [34], i.e., nation> regions> divisions> states. We also
use our force-directed layout for both case studies because

we focused on neighboring information of each region, and
we have enough space to display all the data.

5.1 Residential electricity generation and sales in the
USA

Electricity is one of the essential components of modern life.
The US Energy Information Administration (EIA) releases
data on annual residential electricity generation and sales
every year [35]. From these datasets, we used information
on the amount of sales, revenue from the sales, the num-
ber of customers, the unit cost, and average electricity bills
from 2007 to 2015. We also used data regarding different
energy sources such as coal, natural gas, petroleum, solar,
and hydroelectric power for the period from 2007 to 2015.
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Analyzing this dataset allows our potential user (e.g., a pol-
icy maker) to understand where obvious pressures exist and
where optimization could potentially be introducedwith new,
local sources of power.

First, we wanted to compare regions in the New England
states in terms of residential electricity consumption (T1).
We selected five variables (revenue, sales, the number of
customers, unit price, and electricity bills) to cluster regions
based on these variables and select one of the New England
states such as Rhode Island (RI). Massachusetts (MA) and
Connecticut (CT) belonged to a different cluster because of
the unit price and the electricity bills. We then chose these
two variables and visualize their temporal variation through
temporal rings (T4). Connecticut had higher electricity bills
and unit cost than MA from 2007 to 2015.

Among states with the highest residential electricity bills,
Hawaii (HI) andDelaware (DE) had relatively low electricity
sales (T3).We found that HI had the highest unit price among
all states. We then analyzed its temporal variation through
the Comparison View (T5), as shown in Fig. 7b. In 2015,
the electricity bills dropped significantly compared to 2014
due to the drop in unit cost. To see the effect of electricity
generation in more detail, we explored and found an increase
in solar and hydroelectric power generation.

Lastly, we determined that Washington (WA) had one of
the lowest unit costs for electricity in the USA because of
hydroelectric energy. We wanted to know whether its local
neighborhood had similar electricity generation (T2). We
found that Washington, Oregon, and Idaho had similar elec-
tric generation through our clustering approach. We then
evaluated these regions in the Comparison View and found
that they had similar unit costs and electricity generation
(Fig. 8).

5.2 US census

The other dataset we explore using GeoBrick is US cen-
sus data. We use data from the US Census Bureau [34] and
National Center for Health Statistics [23]. In doing so, one
can determine where new critical infrastructure and public
services may be required in relation to population. There are
various types of information related to census data. Among
these, we first chose five variables: total population, edu-
cation attainment (no high school, high school, college (<
4years), bachelor or higher), household income ($0–$25k,
$25k–$30k, $35k–$50k, $50k–$75k, > $75k), and health
insurance status from 2008 to 2012.

First, we wanted to compare Ohio (OH), Pennsylvania
(PA), and Illinois (IL), where IL and PAwere themost similar
states to OH in 2008.We visualized the overall time variation
of OH, PA, and IL, and then compared data points for OH
in 2008 to those of IL and PA in 2009 (Fig. 9). Neighboring
states such as IL andOHhad the same data values exceptwith

the insurance status, namely uninsured rate and insurance
rate. One interesting point of note is that PA had a higher
average household income ratio (> $75k) and lower no-high-
school and only-high-school-degree rates than others. We
further compared the neighboring regions of OH to identify
whether the neighboring regions had similar data points in
2012 (T2). Overall, they had similar data points in 2012.

Next, we wanted to know which state(s) in the Northeast
region had the highest average household income (> $75k)
in 2008 (T3). We chose all states in the Northeast region by
using a region selection method. We then sorted these based
on average household income (> $75k) in the Comparison
View. New Jersey had the highest average household income
(> $75k), followed by New Hampshire (NH), Connecticut,
Massachusetts, Rhode Island, and New York (NY). We also
found that neighboring regions of CT had similar income
levels. We then investigated neighboring regions of CT. To
do so, we selected CT and chose all variables. We found that
regions that were not adjacent to CT had more similar data
points than its neighboring regions by using our clustering
method (T1), as shown in Fig. 10.

Lastly, we merged all the states in the New England divi-
sion and compared it to NY (T5). NY had lower average
household income (> $75k) and uninsured rate than the aver-
aged New England states.

5.3 Expert review

To evaluate our framework, we interviewed two potential
users (policy makers working in the public policy domain).
We first explained to them our system workflow and visual
encoding, and then asked them to try GeoBrick out.

Overall, they expressed that GeoBrick could serve as a
powerful and central tool for analysts and policy makers,
allowing unusual integration of what is often highly dis-
crete levels of analysis. They enjoyed the Abstract View
because this is an unusual way to view (in)congruences
among neighboring entities and regional profiles. One expert
commented, “I can see a lot of value with its capacity to
incorporate variables at a complex resolution.” The other
expert said, “I like the Abstract View because it is compact
visualization of multiple variables across time.” They espe-
cially liked our interactive clustering method, and merging
and splitting operations because they can find regions with
similar/different data points, where regions can have differ-
ent geographical units. An interesting observation was that
some experts changed the layout of our glyph based on their
task, not dataset. For example, if a task did not require an
exact neighborhood preservation, the expert preferred to use
a grid layout. They expressed that the Comparison View was
a powerful way to drill in and evaluate scenarios at a more
granular level. Both experts appreciated showing the geo-
graphical context of selected regions in the linkedMapView.
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Fig. 10 Local neighborhood analysis in the Northeast region high-
lighted in the Abstract View and Map View (bottom right) by ordering
states based on their averaged income (> $75k). States in the Northeast

region are analyzed in the Comparison View. States with similar data
points to Connecticut (CT) are highlighted in the Map View (bottom
left)

One expert said that the Map View is useful to geographi-
cally orient users because users can select some states with
this view and then move to the Comparison View to evaluate
their profiles more fully. The other expert pointed out that the
Map View is useful for spatial correlation compiling similar-
ities and differences of states/regions against geographical
units. Both experts really liked that they could interactively
sort regions and that the sorted regions were shown as a col-
ored path. They expressed that GeoBrick was not entirely
intuitive for immediate use, so users should give themselves
time to experiment; the experts were able to perform tasks
easily (without any hindrance) after a brief 30-min tutorial.
One expert suggested that it might be good to make unse-
lected regions invisible in the Abstract View and Map View
when users perform analysis in the Comparison View.

We also asked them to speculate about potential applica-
tion areas. They proposed that it would be good for many
areas such as the environment, education, and technology
adoption analysis.One expert said, “GeoBrickwould begood
for public health assessments, tracking high-level regional

similarities, and then drilling in for fuller socioeconomic
correlations.” The other expert mentioned, “It would be a
great tool for analyzing educational attainment based on cen-
sus data, including test score averages, budgetary allocation,
dropout rates, and information of other resources.”

5.4 Discussion and future work

Currently, GeoBrick is designed to deal with any spatiotem-
poral data (Fig. 11). Our technique can be extended to
any multivariate data visualization without the geographi-
cal information constraint. For example, GeoBrick can be
used in image analysis by exploring the graph of attributes
of multiple connected components of a segmented image
(or a segmented video frame). Another possible scenario is
an exploration of planar graphs with nodes associated with
multivariate geometric and temporal data. There are some
limitations in applying GeoBrick to other spatiotemporal
data.
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Fig. 11 An example of GeoBrick for the euro area data from 2000 to
2014 [24]. In the temporal rings, we visualize CO2 emission and gross
domestic product (GDP)

5.4.1 Scalability

InGeoBrick,weuse color to encode eachvariable and assign-
ing colors to more than twelve variables is a non-trivial
task [36].Moreover, when these variables have a hierarchical
structure, the problem becomes even more challenging [32].
One possible extension to GeoBrick is combining color with
other visual elements such as surface texture to represent
more variables.

Another issue is thatwe canvisualize temporal variation of
only a certain number of variables, depending on the display
size.However, policymakerswe collaboratedwith expressed
that comparing temporal variation of up to four variables was
enough for most cases; on most displays, we can visualize
temporal variation for these number of variables. Lastly, a
traditional display (e.g., monitor, smartphone, tablet screen)
has limited resolution, which is often not enough for display-
ing a large number of polygons and symbols. We will work
on creating an optimal layout and conduct experiments to
optimize the size and the number of polygons and symbols
for different resolution displays from low-resolution displays
to extremely high-resolution displays such as the Reality
Deck [25].

5.4.2 Glyph design

In our glyph design, all triangles have the same size, so the
glyph represents quantized values accurately. However, the
position/order of each triangle in the glyphmight not be intu-
itive to some users. Thus, although we had positive feedback
from potential users on our glyph design, there are possible
design alternatives depending on users’ need. Users, wanting
an intuitive order of data values with minimal training over-
head, can use a glyph that emphasizes the order of data values
such as a multi-level pie chart in which the number of levels
is given by the level of resolution. However, every subsection
of the pie chart does not have the same size, so people might
misinterpret data values and difference between two regions.
Thus, our design would be beneficial for users once they are
familiar with our glyph ordering.

5.4.3 Spatial scale

In GeoBrick, we can show data from discrete spatial scales
based on predefined geographical units. In the future, wewill
investigate approaches to select and show arbitrary-selected
regions, for example, by drawing a region on the Map View,
and extracting and visualizing data within that region.

5.4.4 Layout

In our use cases, we dealt with geographic entities at the state
level by using our force-directed layout algorithm tomaintain
neighboring information accurately. However, one limitation
of our force-directed layout is white space between regions,
which limits the size of each region [22]. If users want to
explore data at a finer level such as county, we can pack
regions by applying an existing algorithm for small multiples
(e.g., [8]). However, there is no existing algorithm to satisfy
all factors for small multiples [22]. To solve this issue, we
plan to further study this problem.

5.4.5 Correlation in the Comparison View

Lastly, in order to show a correlation between variables, we
have used a visualization, which is similar to the Table Lens.
However, it only shows a brief correlation among variables in
selected regions. If the number of variables increases beyond
a certain number, it can be difficult to understand the corre-
lation of the variables. To remedy this issue, we can apply
another technique [11], as a complementary method for our
comparison method.
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6 Conclusion

In this paper, we introduced GeoBrick, an interactive visual
analytic tool for analyzing spatiotemporal data.We presented
linked views such as the Abstract View, the Map View, and
the Comparison View to facilitate this analysis. The Abstract
View showed abstracted data points and regions to identify
regions with similar/different data points. It also helped users
analyze local neighborhoods. The main purpose of the Map
Viewwas to show the spatial distribution of selected regions.
The Comparison View allowed users to analyze selected
regions and temporal patterns of a selected region in more
detail. We also offered interactions to aid experts in analyz-
ing the data. Lastly, we demonstrated the effectiveness of
our GeoBrick technique using two case studies and expert
feedback from our potential users.
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