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Abstract In this paper, we present a novel structure-
preserving image completion approach equipped with dyna-
mic patches. We formulate the image completion problem
into an energy minimization framework that accounts for
coherence within the hole and global coherence simulta-
neously. The completion of the hole is achieved through
iterative optimizations combined with a multi-scale solution.
In order to avoid abnormal structure and disordered texture,
we utilize a dynamic patch system to achieve efficient struc-
ture restoration. Our dynamic patch system functions in both
horizontal and vertical directions of the image pyramid. In the
horizontal direction, we conduct a parallel search for multi-
size patches in each pyramid level and design a competitive
mechanism to select the most suitable patch. In the vertical
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direction, we use large patches in higher pyramid level to
maximize the structure restoration and use small patches in
lower pyramid level to reduce computational workload. We
test our approach on massive images with complex structure
and texture. The results are visually pleasing and preserve
nice structure. Apart from effective structure preservation,
our approach outperforms previous state-of-the-art methods
in time consumption.

Keywords Image completion · Patch-based approach ·
Dynamic patches · Structure preservation · Parallel search ·
Multi-scale solution

1 Introduction

Image completion is one of the challenging tasks in image
editing. It plays an important role in impaired photograph
reparation, object removal in photograph editing and disoc-
clusion in image-based rendering. Given a deficit image, the
basic goal of image completion is to fill the hole while keep-
ing the overall visual effect realistic and harmonic. The main
difficulties in the completion of task lie on structure recon-
struction and texture representation, which are essential for
achieving visually pleasing results.

One basic idea to accomplish image completion is to allow
the information in the known region to propagate into the
hole. For instance, the classical image inpainting technique
by Bertalmio et al. [4] repairs small cracks on pixel level
through propagating image Laplacians in the isophote direc-
tion. The pixel values in the known region diffuse into the
hole according to partial differential equations (PDEs).Many
diffusion-based methods work on the pixel level and perform
well in local structure reservation in small gaps. However,
in the task of completing large cavity, abnormal artifacts or
strange structure may occur.
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Fig. 1 a The original image. Its
resolution is 399 × 533. b A
hole is masked(magenta). c The
result is generated with the
state-of-the-art ImageMelding
[11]. d Our approach

Fig. 2 Multi-size patches for structure preservation. Large patches are
not always the best choice in structure preservation. aWe try to capture
the structure of the branches with 10 × 10 patches. Part of the bird’s
body and the leaves are absorbed into the patches. b We try to capture

the same structure with a series of patches in different sizes (2 × 2, 3
× 3 and 5 × 5). The intake of irrelevant information is significantly
reduced

When handling large holes, patch-based methods outper-
form diffusion-based techniques that work on pixel level.
The seminal work of the patch-based completion by Efros
and Leung [13] is under the topic of texture synthesis. In
fact, texture synthesis can be regarded as an extreme situa-
tion which the cavity takes up most of the image. Due to the
similarities between image completion and texture synthe-
sis in some circumstances, many approaches such as [10,12]
successfully reproduce textures in the unknown region by
amplifying texture synthesis automatically.

An important aspect of successful completion is to capture
sufficient structural information and reconstruct structures
smoothlywithin the cavity. Because the human visual system
is sensitive to structural region [24]. In a lot of patch-based
methods, structure restoration is conducted implicitly in the
process of pursuing global coherence. These methods try to
make the patches in the filled region similar to the known
patches and hope to completely represent existing structure
in the hole. However, disrupted structure may appear when
the image contains complex structural information.As shown
in Fig. 1c, even the completed image generated by the state-
of-the-art technique [11] may present structural distortions
in the hole. Figure 1d shows the completed result by the

approach we introduce in this paper. As can be clearly seen,
the cavity is filled with nice textures while preserving the
realistic structure.

In general, patch-based methods, which conduct structure
restoration implicitly, tend to use large patches. The purpose
of applying large patches is to capture structural information
as much as possible. However, the optimization frameworks
usually neglect the internal coherence of the hole. This may
cause misarrangement of the patches and affect the overall
completed effect. In addition, patches of large size may not
be necessarily suitable for structure restoration. As observed
in Fig. 2a, a large patch may absorb more irrelevant informa-
tion and cause abnormal structure within the hole. Moreover,
using large patch causes extra burden on hardware and higher
time consumption.

In this paper, we introduce a new approachwhich balances
the coherence between global and local to produce realistic
completed image that preserves nice structure and texture.
We formulate the image completion as an energy minimiza-
tion problem that accounts for global and local coherence
simultaneously. To achieve efficient structure restoration, we
apply a dynamic patch system in our approach. Our dynamic
patch system consists of two parts. The first part is the paral-
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Structure-preserving image completion with multi-level dynamic patches 87

lel search for multi-size patches. Different size patches enter
the hole through a competitive mechanism. The second part
is the multi-scale solution using multi-size patches. Large
patches are applied in lower-resolution scale to maximize
the structural information restoration. Small patches are used
in higher-resolution scale to reduce the computational work-
load.Numerous results generated by our approach are shown.
In sum, our approach has the following contributions:

– Efficient structure restoration The mixed use of different
sizes of patches capture the structural information effi-
ciently, avoiding the absorption of irrelevant information
which causes abnormal structures.

– Balanced computational workload Multi-scale solution
with dynamic patches adjusts the computational work-
load in the operation. It significantly reduces the compu-
tation in low pyramid level without sacrificing the visual
effects and accelerates the completing process at the same
time.

– Parallel search and competitive mechanism Parallel
search for different size patches is conducted with GPU
acceleration. A competitive mechanism is included to
select the patch with minimum unit energy.

2 Related work

2.1 Image inpainting

Large quantities of methods and algorithms have been pro-
posed for the task of image repairing. Bertalmio et al. [4]
introduced an automatic technique that fills the user-defined
region along the isophote lines without specification of
the information sources. Their method has no requirements
on the topology of the cavity. The information propagates
according to a PDE which has roots in Navier–Stokes
equation. Based on [4], researchers develop a lot of tech-
niques through improving the mechanism of propagation
and expanding the information sources. Chan and Shen
[8] embedded Euler’s Elastica to deal with curves in the
image and provided a numerical PDEs-based computational
scheme. Levin et al. [21] conducted image inpainting with
loopy belief propagation according to a specific image distri-
bution. Ballester et al. [2] developed a variational framework
for the inpainting problem. Their framework is based on joint
interpolation on gray-level and gradient directions. Cai et
al. [7] combined the image inpainting with the popular fully
conventional neural network. Ignácio and Jung [18] devel-
oped a block-based image inpainting technique in thewavelet
domain. All the methods above are based on the pixel level
and work effectively when the impaired region of the image
is small and have limited structure. However, abnormal arti-

facts may occur when they are applied to large missing area
or region with complex structure.

2.2 Texture synthesis and patch-based approaches

Patch-based methods which take advantages of texture syn-
thesis techniques have also been proposed for image com-
pletion. Efros and Leung [13] introduced a nonparametric
method for texture synthesis that based on the estima-
tion of the sample image and similar neighbors. It fills
the gap by pasting sample patches according to an esti-
mation. Later research improved the search and sampling
mechanism to achieve better structure preservation. Wei
and Levoy [30] embedded a deterministic search process
derived fromMarkov randomfield texturemodel and utilized
tree-structured quantization for acceleration. Ashikhmin [1]
developed a specific algorithm for natural images which
include quasi-repeating patterns. This algorithm is fast and
straightforward without changing the basic spatial frequen-
cies. Liang et al. [22] designed a real-time sampling algo-
rithm according to a nonparametric estimation of the local
conditional MRF density function. Criminisi and Toyama
[10] applied the propagation of information in inpainting into
the exemplar-based method. Shen et al. [27] developed an
image completion technique under the guidance of a gradient
map.Hao et al. [16] proposed an image completion technique
which enhanced with a mechanism that automatically cap-
tures perspective information from a single image. Hua and
Wang [17] used pictures obtained from the Internet to restore
structure in the image completion tasks. Iizuka et al. [19]
designed a fully convolutional neural network for image
completion which can maintain global and local consistency
simultaneously. Liu et al. [23] used patches of different sizes
in image completion for better structure preservation. Patch-
based methods also have applications in other problems such
as dense matching [26] and image fusion [25].

2.3 Image blending

The transition between the hole and the known region plays
an important role in the overall effect of the completion. A
sound completed result usually has an imperceptible edge
which seamlessly connects the hole and the known region. To
achieve consistent blending in image completion, researchers
draw support from image blending. Burt and Adelson [6]
introduced the seminal image stitching techniquewhich com-
bines images through pyramidal image decomposition. Shen
et al. [28] designed a boosting Laplacian pyramids for multi-
images exposure fusion. Sunkavalli et al. [29] applied similar
multi-scale techniques with a preliminary treatment called
image harmonization which transfers the appearance of an
image. In 2003, Kwatra et al. [20] employed graph cut as a
tool for seamless combination of images and textures. Gra-
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cias et al. [15] developed a fast method to combine a set of
registered images into a mosaic using watershed segmenta-
tion and graph cut optimization. Chen et al. [9] developed
a system which is able to select suitable images from the
Internet automatically and generate high-quality combined
pictureswith blending boundary optimization.Whitaker [32]
proposed an image blending technique through level set com-
parison. A more recent technique is the ImageMelding by
Darabi et al. [11]. It is designed for synthesizing transitional
region between images with inconsistent color, texture and
structural properties. Besides image blending, this method
is versatile and successfully handle multiple tasks including
image completion andobject cloning.We regard ImageMeld-
ing as the state-of-the-art technique in this paper.

3 Image completion with dynamic patches

Image completion is not a simple copy–paste of the exist-
ing pixels, because images are more than collections of
pixels. They all follow certain patterns. Textural and struc-
tural information is contained in these patterns which our
visual system is sensitive to. One of the important aspects
of image completion is to fill the hole with proper preser-
vation of the structure and texture. To represent visually
pleasing patterns in the hole, we formulated the problem into
an energyminimization framework.Our goal is to fill the cav-
ity with patches which are harmonious with both the global
pictures and other patches within the hole. The challenge
is to discover existing patterns in the known region and at
the same time capture structural information efficiently and
avoid interference of irrelevant information. Our approach
is to directly optimize an objective function that respects
coherence within the hole and global coherence. That is,
the objective function consists of two terms: an external
term and internal term. Then, the minimum of the objec-
tive function is achieved through an iterative optimization.
The iterative optimization contains two phases: the search
phase and the vote phase. In the search phase, we apply
parallel search to retrieve different size patches. The most
suitable patch is selected through a competitive mechanism.
In the vote phase, all the patches are combined to fill the
cavity. To make the patches seamlessly connected and avoid
abnormal structure and texture, we calculate the minimum
cost boundary between overlapped patches to achieve opti-
mal seam. To accelerate the overall completing process, we
apply a multi-scale solution in our approach. However, dif-
ferently from previous methods, our approach uses large
patches in lower-resolution scale in order to capture more
structural information and provide a sound foundation for
next scale.

3.1 Energy minimization

Given a color image I with a cavity C , we assume that the
known region S = I − C contains sufficient information
for image completion. The completed image is obtained by
minimizing the following objective function:

E(C |S) =
∑

q∈C
min
p∈S [w1E1(Q, P) + w2E2(Q)] (1)

where E1 is the energy term for external coherence and
E2 is the term for internal coherence. These two terms are
described in detail in the following paragraphs. The w1 and
w2 are the weighting factors that balance the preference
between internal and external coherence. In all our exper-
iments, we set w1 + w2 = 1. Q = N (q) is a h × h patch
in the hole with target pixel q in its center. We set the target
pixel q as the origin Q0,0, and the other pixels in the patch are
denoted as Qi, j . Similarly, P = f (N (p)) is a h×h patch in
the known region after transformation f and p is its anchor
pixel in the center. In our approach, the image is in L ∗ a ∗ b
space and all the pixels have five channels including three
color channels L , a, b and two luminance gradient channels
∇x L ,∇y L .

Combined similarity measure The selection of metric is
important in defining energy function. Most patch-based tex-
ture synthesis algorithms use the sum of squared differences
(SSD) to measure the similarities between patches. How-
ever, the simple application of SSD may give preference
toward uniform region [5] and cause disordered texture and
abnormal structure in the completed image. Thus, we apply
a modified metric based on the Bhattacharyya weighted dis-
tance function in [5]. Given any two patches, A = N (a)

and B = N (b), we define the distance between them
as:

Dm(A, B) = DSSD(A, B) · DBC (A, B) (2)

where

DSSD(A, B) =
h∑

1

||Ai, j − Bi, j ||2 (3)

DBC (A, B) =
⎧
⎨

⎩
1 ρA = ρB,√
1 − ∑h

i=1
√

ρA(i) · ρB(i) else.

(4)

TheρA andρB are the histogramsof the patches. The distance
function is a multiplication of the simple SSD and Bhat-
tacharyya metrics. However, different from [5], we embed
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Fig. 3 An overview of our approach. aAn imagewith a holemarked in
magenta. b The definition of our energy function. Our energy function
considers external and internal coherence simultaneously. c The opti-
mum of our energy function is achieved by a “search and vote” iterative
optimization. e The search phase. Parallel search is conducted in this

phase to retrieve multiple size patches. The retrieved patch candidates
compete to enter the vote phase. fThe vote phase. Patches are combined
through calculating the optimal seam with graph cuts. d The result by
our approach

the Bhattacharyya metric into a piecewise function. The pur-
pose of this definition is to avoid the null measure when two
patches have the exactly the same distribution. Our function
will degrade into simple SSD when two patches follow the
same distribution.

E1 encodes the similarity between the patches within the
hole and those in the known region. As shown in Fig. 3b,
our algorithm searches suitable patches in the known region
and calculates the distance between known patches and the
target patch. The optimum patch minimizes the energy term
below:

E1(Q, P) = Dm(Q, P) (5)

Note that the distance between two patches is calculated in
both the color channels and the luminance channels.

E2 constrains the coherence between the patches and its
neighbor within the hole. Given a patch in the cavity Q, its
adjoint patches Q′ share common pixels with Q. As shown
in Fig. 3b, we considered the overlapped region when cal-
culating E2. The energy term that measures the differences
between these overlapped regions is:

E2(Q) =
∑

Q′∈C
Dm(Q, Q′), Q ∩ Q′ �= ∅ (6)

The weighted factors w1 and w2 influence the balance
between internal and external coherence. Users can adjust
theweighted factors to decide completed effect.w1 is usually
set larger than w2 to avoid trivial solution. When w2 is set
much larger than w1, patches may repeat too many times in
the hole.

3.2 Iterative optimization with dynamic patches

To achieve global optimum completion is intractable in gen-
eral, due to the massive solution space and time-consuming
energy term evaluation. The energy function is non-convex
and has lots of local minimum. Iterative optimization scheme
is commonly applied to achieve approximate solutions. The
idea that lies behind the scheme is to use the result of the
previous iteration to initialize the next iteration. Then, the
energy of the objective function is constrained not to increase
in each iteration. Wexler et al. [31] proposed a “search and
vote” iterative scheme to tackle the optimization. In our opti-
mization, we also employ the “search and vote” scheme with
advancing techniques. In the search phases, we introduce
a parallel search strategy and a competitive mechanism to
find the suitable patches. In the vote phases, we employ the
graph cuts technique [20] to achieve seamless connection
between patches. The pseudocode of our iterative optimiza-
tion is shown in Algorithm 1.

3.2.1 Parallel search with competitive mechanism

Parallel search An effective method for patch searching is
PatchMatch which is a randomized correspondence algo-
rithm for structural image editing [3]. It first fills the hole
by randomly picking up patches in the image and then looks
for approximate nearest-neighbor matches between source
patches rapidly. In the search process, good matches will
propagate and random search is conducted to explore poten-
tial matches. In order to search for multiple size patches, we
use a modified PatchMatch algorithm.We conducted a paral-
lel search for different sizes of patches in the known region.
The number of different size patches v is defined by the users.
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Algorithm 1 Dynamic Patch-based Image Completion
Require: Image I , cavity C , source S = I − C , Number of different

size patches v, Pyramid level L
Ensure: Final Image F
1: Initialize F through filling patches randomly
2: Compute image pyramid Ili ,Cli ,K (li ), li = L , L − 1, . . . , 0
3: for each pyramid level li do
4: Define the patch sizes with Eq.11
5: repeat
6: for All q ∈ C do
7: Parallel Search for v different size patches
8: Retrieve the patch P that satisfies Eq.8
9: end for
10: Calculate the minimum cost boundary
11: Combine all the patches
12: until convergence
13: Propagate solution to the next level
14: end for

Obviously, themoredifferent patches are searched, the higher
the computational cost. It requires high computing power and
mass memory to store patches. Thus, we take advantages of
the graphics processing unit (GPU) in our approach. GPU
is a multi-thread, highly parallel processor that is suitable
for massive data operations. The stream of GPU processing
enables ourmulti-size patch search to be operated in the form
of parallel acceleration. With the GPGPU ability emerged in
CUDA, we can explore parallel programming model with
shared memory and search for different size patches simul-
taneously. Different size patches found in this phase will be
retrieved as candidates and enter the competition in the next
stage.

Competitive mechanism Candidate patches have to com-
pete to enter the hole and become part of the filling content.
To simulate the process of competition, we calculate the unit
energy term Uhi of every hi × hi patch:

Uhi = Dm(Phi×hi , Qhi×hi )

h2i
(7)

The patch with the lowest Uhi will be selected to enter the
voting phases. Supposed that there are v candidates attending
the competition, the winner satisfies:

Pwin = argmin{Uhi }, i = 1, 2 . . . v (8)

In our experiments, we defined v = 3 which means three
different sizes of patches are searched simultaneously at each
pyramid level in the search phases and they compete against
each other to enter the hole. After all the winning patches are
selected, they will be stored as material to form the contents
of the cavity.

The parallel search and competitive mechanism allow us
to use multi-sizes patches when completing a deficit image.
The advantage of utilizing different sizes of patches is that it

enables us to carry out efficient structure and texture restora-
tion. When capturing structure with large patches of a single
size, irrelevant background information is easily absorbed
into the patches. As shown in Fig. 2, when trying to cap-
ture the structure of the branches with a series large 10× 10
patches, much irrelevant information (the background and
the part of the bird) is absorbed. The result is significantly
improved when replaced by the mixed use of three different
sizes of patches. In addition, the mixed use of multi-size
patches can lower the computational cost. Because small
patches contain fewer pixels and require less calculation in
energy evaluation.

3.2.2 Vote phase with graph cuts

After retrieving all the suitable patches in the search phase,
we fill the hole by combining the candidate patches into
an entity. In [31], Wexler et al. proposed a weighted voting
scheme that the color of the pixel is decided by the median of
all votes. This scheme works well when using the fixed size
patch. However, it cannot solve the problem of the discon-
tinuity when combining different size patches. Mishandling
the overlapping area of different size patches may lead to
textural disorder or fracture of the structure. Thus, in order
to seamlessly combine different size patches and enhance
the coherence of the patches within the hole, we employ the
techniques of graph cuts [20] for partly overlapped patches
in the voting phase. Given two patches Q1 and Q2 that are
overlapped along with their vertical edges (Fig. 3f), let s and
t be the adjacent pixel positions in the overlap region and
Q1(·) and Q2(·) be the corresponding pixel value at the spe-
cific position. Note that the two patches are only partially
overlapped which means Q1 − Q2 �= ∅. In order to cut the
overlap region that can make the two patches match best, we
have to lower the adaptive matching quality cost M proposed
by [20]:

M(s, t, Q1, Q2)

= ||Q1(s) − Q2(s)|| + ||Q1(t) − Q2(t)||
||∇d

Q1
(s)|| + ||∇d

Q1
(t)|| + ||∇d

Q2
(s)|| + ||∇d

Q2
(t)||

(9)

Here d is the direction of the gradient and is the same as
the edge direction between s and t . ∇d

Q1
and ∇d

Q2
are the

gradients in the patches along the direction d. This adap-
tive matching quality cost penalizes more on seams crossing
low-frequency regions than on those crossing high-frequency
regions. The optimum seam that minimizes the cost M
can be achieved through solving the path finding problem
with graph cuts. Consider the graph shown in Fig. 3f, we
want to find a minimum cost path through the 3 × 3 over-
lap region. The adjacent pixel nodes are connected with
arcs which are labeled with the adaptive matching qual-
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Fig. 4 An overview of the
dynamic patch systems. Our
dynamic patches system take
effect in two directions of the
image pyramid. In the horizontal
direction, we conduct a parallel
search for different size patches
in each pyramid level. In the
vertical direction, we constrain
the algorithm to apply large
patches in higher pyramid level
and small patches in lower
pyramid level

ity cost M(s, t, Q1, Q2). Two additional nodes representing
the patches Q1 and Q2 are added and are connected to the
adjacent nodes with constraint arcs. The constraint arcs are
weighted heavily to ensure that those connected nodes must
come from specific patches. When we try to find a cut of
minimum cost in the graph, we are separating node Q1 and
node Q2. This is a classical graph cut problem calledmin-cut
[14] which has efficient solutions and is easy for implemen-
tation.

3.3 Multi-scale solution with dynamic patches

To further speed up convergence and strengthen global con-
sistency, our approach follows a coarse-to-fine fashion in
the implementation. We resized the image into L differ-
ent resolutions to form an image pyramid. The “search and
vote” iterations repeat in each pyramid level. The size of
the patches changes continuously in the “search & vote”
process. In order to further capture structural and textu-
ral information efficiently, we add constraints on the sizes
of patches at each pyramid level. As shown in Fig. 4,
patches in our approach vary vertically in each coarse level
of the pyramid. The patch sizes adapt to the coarse level
automatically to realize effective structure restoration and
acceleration.

In our approach, we set constraints on the max/min size
of patches allowed in each level. Let hmax be the maximum
patches allowed in all L pyramid levels. hmax is user-defined
and depends on hardware and application. Given a pyramid
level li , we use a discrete function K (·) to map li to the size
of the patches. In our approach, we define this function as:

K (li ) =
⌊

hmax − v

1 + e−li×β

⌋
(10)

where β is a parameter which controls the intervals of differ-
ent values and 
·� is the floor operator. Let hi be the size of
the i th patch. Then, the size of the patches applied in pyramid
level li satisfies :

{
Min(h1, h2, · · · , hv)li ≥ K (li ), for li > L/2

Max(h1, h2, · · · , hv)li ≤ K (li ), for li < L/2
(11)

Equation 11 constrains the size of the patches that can be
applied in coarse level li . It guarantees that large patches are
applied in high pyramid level (which means in the image of
low resolution) and small patches are used in low pyramid
level (which means in the image of high resolution).

In fact, the actual form of K (·) can be different according
to realistic applications. Equation 10 is one of the optional
forms. The monotonicity of K (·) plays an important role in
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Fig. 5 Using large patches in
higher pyramid level can
preserve more structure
information than using those in
lower pyramid level. a A 5 × 5
patch on a bridge picture of
660 × 440 resolution. b The
same patch is applied on the
same picture of 2200 × 1464
resolution

implementation. The K (·) used in our approach implies that
the sizes of the patches shrink along with the falling of the
pyramid level. In other words, an increasing K (·) ensures a
series of shrinking patches along the vertical direction of the
pyramid. Vice versa, a K (·)which is monotonically decreas-
ing guarantees a series of enlarging patches. Large patches
are employed in lower pyramid level.

In our approach, we utilize a monotonically increasing
K (·) to set up limitation for the patches utilized in each
pyramid level. The purpose of using an increasing function
is that large patch is more effective in structure capturing in
coarse images. Figure 5 compares the structural information
captured in different pyramid levels with identical patches
which are represented with the grid in the image. A 5 × 5
patch is applied to the same images in different scales. Their
resolutions are 660×440 and 2200×1464, respectively. It is
shown that one 5× 5 grid can capture the major structure of
the bridge on the 660 × 440 images, but the same patch can
only include minor local structures of the bridge in the image
of higher resolution. Thus, applying large patches in higher
level can grab more information than that in lower pyramid
level. Also, in the aspect of computational workload, apply-
ing large patches in a higher pyramid level is much more
economic. Because in lower pyramid level, the utilization
of large patches has limited effect on structure reconstruc-
tion and consumes more computational resources than small
patches.

4 Results and discussion

To verify the performance of our approach, we apply it to
images which contain different types of textures and struc-
tures.Wecompareour approachwith someof thewell-known
methods, including the ImageMelding [11], the methods by
Wexler et al. [31] and by Criminisi et al. [10]. The program
used in our experiments is a collection of MATLAB and
C++ functions. The program is run on an Intel Xeon E5-
2470 V2 2.40GHz computer with 8GRAM and a Nvidia
Tesla graphic card. In the following subsections, we will
discuss the visual effectiveness of our approach and its run-
time performance. Also, a parameter analysis is presented.
We analyze the internal and external coherence balanced by
w1 and w2 and discuss how the size of patches in the verti-
cal direction controlled by K (·) affects the results. Besides
the subjective visual comparison, we also conduct a user
study to evaluate the completed image generated by our
approach.

4.1 Effectiveness

Figure 6 is the completed results by our approach tested
on images which contain complex texture and structure.
In Fig. 7, we apply our approach to object removal tasks.
From the results, we can see that the restoration of the
structures and texture plays an important role in the over-
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Fig. 6 a The masked image to
complete. b Results generated
with the method by Criminisi et
al. [10]. c Results generated
with method by Wexler et al.
[31]. d Results generated with
ImageMelding [11]. e Our
approach

all effect of the completion. As for the results generated
by the compared methods, the presence of abnormal struc-
tures and texture causes unnatural distortion. When complex
structures exist in the images, even the completed results by
state-of-the-art ImageMelding [11] fail to represent reason-
able structures in the hole. As shown in Fig. 6d, apparent
abnormal fractures appear in the body of the architecture
and lead to unpleasant incoherent. Unlike those results by
previous methods, our results successfully preserve adequate
structures with the aid of dynamic patches. Structural infor-
mation is captured efficiently and well reproduced as seen in
Fig. 6e.

Themetric defined in our approach is a combination of the
simple SSD and the Bhattacharyya distance. With the help
of this combined distance, we appropriately maintain suffi-
cient internal coherence within the hole. Combined with the
dynamic patches we used, our results remarkably avoid the
problem of interference information. Results shown in the
first row of Fig. 6 (the church) are examples. The textured
region of the image is embedded with some alphabets which
are easily absorbed into the cavity causing artifact. Filling
the hole with previous methods may easily be interfered by
the irrelevant information as shown in Fig. 6d. The result
generated by our approach (as illustrated in Fig. 6e) suc-

cessfully averts the disturbing information through allowing
good matches to propagate within the cavity for the purpose
of internal coherence.

4.2 Efficiency

Many vision problems are formulated into energy minimiza-
tion problem. However, the energy minimization problems
are seldom easy tasks. Finding global optimum for the objec-
tive function is often unpractical. We apply the “search and
vote” scheme to guarantee the energy function not to increase
in each iteration. In Fig. 8, we present the energy status
throughout the iterations of optimization. Although initial-
ization at each pyramid level causes a small energy inflation,
we can see from the line chart that the energy continuously
decreases in each iteration and becomes stable after several
iterations. Although this approximate scheme cannot guar-
antee global optimum, our experimental results are visually
pleasing.

In addition to quick convergence, our approach has
advantages in time consumption compared to previous meth-
ods. Although seeking for different size of patches leads
to higher computational cost, we utilize parallel program-
ming techniques to overcome the difficulty. As illustrated in
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Fig. 7 Our approach performs well on object removal tasks. Images
in the left column are ground truth, while those in the right column are
our results. Images in the middle column are masked images

Table 1, with the help of GPU acceleration, our approach
saves approximately 68% of the time cost. We also list
the statistics on time consumption of other methods; our
approach is faster than the method by Criminisi et al. [10]
and that by Wexler et al. [31]. When compared to the
state-of-the-art ImageMelding [11], our approach still has
advantages in time-saving. Our approach is just a proto-
type. The time cost of our approach can be further reduced
if it is developed to maximize the capacity of the hard-
ware.

4.3 Parameter analysis

4.3.1 External coherence versus internal coherence

The balance between internal and external coherence is con-
trolled by w1 and w2. They are user-defined coefficients and
can be adjusted according to the pictures. Figure 9 illus-
trates the results generated with different configurations of
our approach. A higher w1 gives more preference to external
coherence. However, when w1 is weighted much larger than
w2, the abnormal structure anddisordered texturemay appear
again as can be seen in Fig. 9. An objective function with a
largerw2 emphasizes more on internal coherence. Neverthe-
less, the oversize w2 may slightly blur the image since some
patches are reused for too many times. Our experiments sug-
gested that Twenty-Eighty Law may be a possible criterion
for controlling themaximum ratio betweenw1 andw2. A bal-
anced configuration (w1 = w2 = 0.5) is still recommended.

As be seen in Fig. 9. The result generated by this configura-
tion (w1 = w2 = 0.5) is realistic and has sharp structure.

4.3.2 Enlarging patches versus shrinking patches

We conduct an experiment by using enlarging patches in
the vertical direction of the image pyramid and compare
the results with those generated using shrinking patches.
To apply enlarging patches in the vertical direction of the
image pyramid, the K (·) should be a monotonically decreas-
ing function. As illustrated in Fig. 10, the completed images
using enlarging patches are blurred within the cavity. Some
of the textural information is missed which causes obvious
fracture of the structure. In the aspect of efficiency, the time
consumption of image completion using enlarging patches is
22.82%higher than that of using shrinkingpatches (1452.207
vs. 1783.612 s), because patch searching and filling are much
faster in low-resolution scales and using larger patches is
more economical. In addition, the information captured in
the coarse image provides a sound foundation for the com-
pletion in next pyramid level. As illustrated in Fig. 10, we
fetch the intermediate outcomes in different pyramid level
and notice that the visual effects have a significant difference.
Using large patches in lower pyramid level cannot compen-
sate for the poor foundation effectively, while costing extra
computational resources. Thus, in general, applying shrink-
ing patches along the vertical direction of the pyramid ismore
recommended.

4.4 User Study

In order to learn whether our approach generates better com-
pleted results than other methods from the user point of view,
we conduct a user study. 30 different subjects were asked to
rate a 9-point scale ([1–9] with 9 as the best) for the texture
and structure of the completed image. Again, ImageMeld-
ing [11], the method by Criminisi et al. [10], the method
by Wexler et al. [31] and our approach were compared. We
presented each completed results to the subjects, and they
were required to rate without knowing the exact technique
was used. Four sets of test images (16 images in total) were
tested, and we collected 480 data samples in total for anal-
ysis. Table 2 shows the descriptive statistics of the collected
data.

From Table 2, the mean scores for our approach, Image-
Melding, the method by Wexler et al. [31] and method by
Criminisi et al. [10] are 7.98, 6.94, 5.50 and 5.23, respec-
tively. We conduct an analysis of variance (ANOVA) to
test whether the difference between the means is statisti-
cally significant. The F value is the test statistics which
reflects the significance. The ANOVA result among the four
groups is F(3, 476) = 213.142, p < 0.001 which suggests
that there is a significant difference between the means of
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Fig. 8 Energy evaluation. The
energy variation of the objective
function on a picture of a church
is presented. Note that when the
result generated by the previous
pyramid level propagates to the
next pyramid level, the energy
inflates. This inflation is caused
by the increase in the number of
pixels when the resolution rises.
The tendency of the energy also
provides cues of convergence.
When the energy stop falling, it
suggests that image is completed
and reaches to the optimum

Table 1 Run-time performance

Church Engine Crystal Net Heart Bridge

Image size (pixels) 800 × 450 800 × 600 480 × 480 2000 × 1333 400 × 400 730 × 548

Time cost (s)

Criminisi et al. [10] 2408.69 5001.221 3419.57 19931.94 1151.11 3505.27

Wexler et al. [31] 1852.84 3847.093 2630.44 15332.26 885.46 2696.36

ImageMelding [11] 822.663 1923.546 1122.996 7118.54 411.110 1251.882

Ours (without acceleration) 1245.112 2676.238 1699.669 9199.356 531.281 1617.816

Ours (with GPU acceleration) 741.138 1672.649 1011.708 5475.807 316.239 962.986

The time cost of completing the images in Fig. 6. With the GPU acceleration, our approach consumes less time than previous methods in general

Fig. 9 The results generated
through different configurations
of w1 and w2. We use the
Twenty-Eighty Law as a
criterion to control the ratio
between w1 and w2. Notice that,
when w1 = 0.8, w2 = 0.2,
fracture occurs in the petal of
the ice crystal. With the
configuration of w1 = 0.2,
w2 = 0.8, the structure is
blurred and artifact occurs
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Fig. 10 Comparison of the
effect of using enlarging patches
and shrinking patches. Pictures
on the left are results generated
using a series of shrinking
patches. Large patches are
utilized in high level of the
image pyramid. As it is shown,
most structures are captured in
level 5 and it provides a sound
foundation for the iteration in
lower level. The results on the
right are generated using a series
of enlarging patches. The size of
patches increases along the
vertical direction of the image
pyramid. As can be seen,
fracture of the structure occurs
and the loss cannot be
compensated by using large
patches in lower pyramid level

Table 2 User study statics

Methods Mean SD Mean difference with our approach 95% confidence interval

Lower bound Upper bound

Our approach 7.983 0.829 – – –

ImageMelding [11] 6.941 0.812 1.041 0.711 1.372

Wexler et al. [31] 5.500 0.502 2.483 2.153 2.813

Criminisi et al. [10] 5.230 1.459 2.750 2.419 3.080

The scores difference between our approach and other previous methods are presented in the third column of the table. Note that the lower and
upper bounds of the estimated differences do not contain zero

four groups. Then, in post hoc test, we calculate the mean
difference(MD) and compare our approachwith ImageMeld-
ing (MD = 1.042, p < 0.001), method by Wexler et al.
(MD = 2.48, p < 0.001) and method by Criminisi et al.
(MD = 2.78, p < 0.001), all the results are still significant
and suggest that the scores of our approach are higher. From
the 95% confidence interval, it concludes that the results of
our approach are clearly more perceptually pleasing than
those by other methods.

5 Conclusion

In this paper, we present a dynamic patch-based method for
image completionwith efficient structure preservation. Com-
pared to previous patch-basedmethods, our approach applies
dynamic patches, which changes sizes in the horizontal
and vertical direction of the image pyramid simultaneously.

The introduction of the dynamic patches system allows us
to capture structures and textures effectively and econom-
ically. Compared to the state-of-the-art ImageMelding, our
approach does not suffer from abnormal structures and tex-
ture disorder.With the support of experiments and user study,
our approach outperforms previous methods and generates
visually appealing images. In the future, we are going to
adapt our approach to other image editing tasks such as image
cloning and satellite image processing. These tasks can be
formulated into the similar framework of the image com-
pletion problem. Another possible direction is to optimize
the patch search and assign mechanism simulating quantum
behavior to the operators.
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