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Abstract In this paper, we present a flexible and fast sys-
tem for multi-scale objects/scenes 3D reconstruction from
uncalibrated images/video taken by amoving camera charac-
terized by variable parameters. The proposed system is based
on incremental structure from motion and good exploitation
of bundle adjustment. At first, from two selected images, our
system allows to recover, in a well-chosen reference, coordi-
nates of a set of 3D points. In this context, we have proposed
a new method of self-calibration based on the use of two
unknown scene points with their image projections. After
that, new images are inserted progressively using 3D infor-
mation already obtained. Local bundle adjustment is used to
adjust the new estimated entities. At some time, we introduce
a global bundle adjustment to adjust as best as possible all
estimated entities and to have an initial 3D model of quality
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covering an interesting part of the object/scene. This model
will be used as reference for the insertionof the rest of images.
The proposed system allows to obtain satisfactory results
within a reasonable time.

Keywords 3D reconstruction · Self-calibration · Incremen-
tal structure from motion · Bundle adjustment

1 Introduction

3D reconstruction from images/video is an important and
widely studied subject in recent decades. It is to recover 3D
information from 2D images taken from different viewpoints
or from video.

Several approaches [1–15] have been proposed to solve
this problem. There are approaches that are based on points
matching between different images. Structure from motion
approach [5,11,12,15] allows automatic recovery of 3D
structure and camera motion. It is based on the detection
and matching of interest points between different images.
The matched points with other estimated geometric enti-
ties (epipolar geometry) will be used to recover a projective
(uncalibrated images) and sparse representation of the scene.
To move to a metric/Euclidean representation, a step of
camera self-calibration to recover the intrinsic parameters
is necessary. The reconstructed sparse 3D point cloud does
not allow to properly define the shape of objects. So, to
have dense results closer to the reality, dense matching meth-
ods should be used [16]. Delaunay triangulation, the Crust
method [17] and the Poisson surface [18] aremethods used to
convert the obtained 3D point cloud into triangulated surface
model. The approaches based on multi-view stereo [7–10]
are often used to get high-quality dense 3D reconstruction
results, but they require in input calibrated stereo images as
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well as a long computation time. In robotics, simultaneous
localization and mapping (SLAM) [19,20] simultaneously
allows robot location and environment map construction
using data retrieved from the sensors which may include
cameras.

In this work, we propose a complete 3D reconstruc-
tion system from uncalibrated image/video sequences. Our
3D reconstruction system is able to produce very realistic
three-dimensional models using a single camera. The cam-
era intrinsic parameters are variable, the displacements of
the camera are free, and the reconstruction environment is
uncontrollable. All these factors offer more flexibility and
generality for the 3D reconstruction of any objects/scenes
(multi-scale objects/scenes). Our 3D reconstruction system
is based on the incremental structure frommotion. It is initial-
ized from two images with a sufficient number of matches
and a large camera motion [15]. In this context, we have
proposed a new method for automatic recovery of intrinsic
and extrinsic camera parameters that correspond to these two
images. The 3D structure of the object/scene is initiated by
the triangulation of matched/tracked interest points between
these two images. The quality of initialization affects the
whole system. Therefore, bundle adjustment is applied to
adjust the estimated entities. The projection matrix of each
new inserted image is estimated after locating projections of
3D reconstructed points in the inserted image. This estimate
is based on the use of RANSAC algorithm [21] by solving
a linear system using 3D points already reconstructed and
their projections located in the inserted image. After, new 3D
points are recovered from the interest point matching result
between the inserted image and the image that precedes, and
a local bundle adjustment is performed to adjust the new
estimated entities. The local optimization does not guaran-
tee the accuracy of the obtained solutions. So, in our system
we integrate a global bundle adjustment after the insertion
of M0 images (in our experiments 10 ≤ M0 ≤ 20) to have
an initial 3D model that will be used as a reference to insert
the rest of the images in order to obtain a more complete
final 3Dmodel. To have a surface model, the Poisson surface
algorithm [18] or the 3D Crust method [17] can be applied
to the obtained 3D point cloud. Finally, the texture mapping
provides realistic results.

The good exploitation of the existing (incremental struc-
ture from motion [12], bundle adjustment [5,12,22,23], …)
and our own vision to solve the problem (camera self-
calibration from only two images, the use of camera with
varying intrinsic parameters, local and global vision of the
problem, …) allow us to propose a system that is fully
automatic, flexible and able to reconstruct multi-scale three-
dimensional models (small, medium and large) within a
reasonable calculation time. On the other hand, there are sys-
tems [5,24] that are based on the global bundle adjustment of
all estimated entities, which require a fairly important com-

putation time and demand a very important step of parameter
initialization to avoid falling into local optima.Other systems
[11,12] require prior information on camera parameters to
make a 3D reconstruction of the scene.

This paper is organized as follows. Section 2 presents
related work. Section 3 describes the notations and back-
ground. The proposed method is described in Sect. 4. The
experiments and the comparison of our method with other
methods are presented in Sect. 5. Finally, the conclusion is
presented in Sect. 6.

2 Related work

Several methods have been proposed to solve the problem of
3D reconstruction from images/video. The methods based
on multi-view stereo [8,10,25] allow to have satisfactory
results with a high density. Tran and Davis [25] presented the
graph cut method to recover the 3D object surface by the use
of silhouettes and foreground color information. In [8], the
authors presented a new method for large-scale multi-view
stereo based ondensematching betweenvery high-resolution
images. It allows to obtain a 3D point cloud that is very dense
and of high quality at a relatively low computational cost.
However, it requires the use of rich texture images to avoid
making use of costly optimization algorithms. Furukawa and
Ponce [10] also proposed a method to solve the problem of
multi-view stereo. It consists in retrieving an initial set of
patches covering the surface of the object/scene from the
matching result of key points detected by Harris and DoG
operators. The final patches are obtained by iteration between
an expansion step, to obtain a dense set of patches, and a fil-
tering step based on the visibility constraint to eliminate false
matches. Finally, the resulting patchmodel is converted into a
polygonal mesh, which can be refined by applying the photo-
metric consistency and regularization constraints. All these
methods provide dense three-dimensional models of good
quality, but they require stereo cameras of known parameters
(methods that start from stereo calibrated images) and they
are expensive in terms of computation time.

Structure from motion methods [5,11,12,26] allows to
automatically recover both the three-dimensional structure
and camera motion from uncalibrated image sequences.
These methods are based on the detection and matching of
interest points between different images. Pollefeys et al. [5]
presented a complete system for three-dimensional model-
ing from uncalibrated images. First, structure from motion
approach was used for the recovery of projective 3D struc-
ture and cameramotion. Then, the different estimated entities
will be refined by global bundle adjustment. To pass to a
metric 3D reconstruction, they have gone through a cam-
era self-calibration phase based on the use of the absolute
conic. Finally, pairs of images are rectified and multi-view
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stereo matching is used to obtain a dense 3D reconstruc-
tion. However, the global bundle adjustment requires a very
long calculation time, especially with the use of a large num-
ber of images and can converge to a local solution due to
a bad initialization. Snavely et al. [11,26] presented a sys-
tem for 3D reconstruction from large photo collections. It
is based on the incremental structure from motion approach
to simultaneously recover the camera motion and a sparse
3D reconstruction of the scene. However, it requires prior
information to initialize camera parameters (the use of EXIF
tags) and requires a long calculation time, especially with
the increase of images number, dominated by the bundle
adjustment after the insertion of each new image. In [27], the
authors presented a new incremental Structure from Motion
technique based on geometric verification strategy, next best
view selection and robust triangulation method. Fuhrmann
et al. [13] presented a3D reconstruction systemofmulti-scale
scenes from images. It is based on structure from motion,
multi-view stereo depth maps and surface reconstruction.
Mouragnon et al. [12] proposed a method for real-time esti-
mation of motion and 3D structure from video captured by a
calibrated camera. The proposedmethod is based on the local
bundle adjustment to refine the camera poses and 3D struc-
ture. However, this method requires the use of camera with
known and unchanged intrinsic parameters during the acqui-
sition of images. Thus, the quality of the 3D reconstruction
is not assured because of the accumulation of errors when
increasing the images number.

3 Notation and background

3.1 Pinhole camera model

The pinhole camera model is used to project a scene 3D
point A j = (

X j , Y j , Z j , 1
)T in the image point ai j =

(
ui j , vi j , 1

)T. This projection is represented by the following
formula:

λi j ai j = Pi A j (1)

where λi j is a nonzero scale factor, Pi = Ki
[
Ri ti

]
is a

3× 4 projection matrix, ti is a translation vector, Ri is 3× 3
a rotation matrix defined by:

Ri =
⎛

⎝
1 0 0
0 cosαi − sin αi

0 sin αi cosαi

⎞

⎠

⎛

⎝
cosβi 0 sin βi
0 1 0

− sin βi 0 cosβi

⎞

⎠

×
⎛

⎝
cos γi − sin γi 0
sin γi cos γi 0
0 0 1

⎞

⎠

as αi , βi and γi represent the three Euler angles.

Ki is intrinsic parameter matrix defined by:

Ki =
⎛

⎝
fi si u0i
0 εi fi v0i
0 0 1

⎞

⎠

where fi is the focal length, εi is the scale factor, si is the
skew factor and (u0i , v0i ) are the coordinates of the principal
point.

3.2 Estimation of distortion coefficients

The distortion effect affects the quality of the 3D reconstruc-
tion [28]. In this work, we consider the first two coefficients
of radial distortion k1 and k2 in order to obtain more accurate
results.
The relationship between the distorted image points (ud , vd)
and the undistorted image points (u, v) is defined by [29]:

⎧
⎨

⎩

ud = u + (u − u0i )
(
k1

(
x2 + y2

) + k2
(
x2 + y2

)2)

vd = v + (v − v0i )
(
k1

(
x2 + y2

) + k2
(
x2 + y2

)2)

where (u0i , v0i ) are the coordinates of the principal point that
correspond to the i th image and (x, y, 1)T = K−1

i (u, v, 1)T.
So, for each image point we have the following formula :

[
(u − u0)

(
x2 + y2

)
(u − u0)

(
x2 + y2

)2

(v − v0)
(
x2 + y2

)
(v − v0)

(
x2 + y2

)2

][
k1
k2

]

=
[
ud − u
vd − v

]

3.3 Homography between two images

Thehomographybetween two images Ii and I j is represented
by a 3 × 3 matrix denoted Hi j . For each point aik of the
image Ii and its corresponding a jk in the image I j , we have
the following relationship:

a jk ∼ Hi jaik

Four non-aligned matches are sufficient for the estima-
tion of this matrix. The use of the RANSAC algorithm [21]
provides a reliable solution.

3.4 Selection of two images with a large displacement

In this work, we used the criteria already presented in [15]
to select two images with a large displacement.
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Let Ir be the reference image, and the disparity matrix is
defined as follows:

D =
⎡

⎢
⎣

‖a11 − ar1‖F · · · ‖a1n − arn‖F
...

. . .
...

‖am1 − ar1‖F · · · ‖amn − arn‖F

⎤

⎥
⎦

wherem is the number of images, n is the number ofmatches,
‖ai j − ar j‖F is the disparity between the two points and
(ai j , ar j ) is the j th matched point between Ir and Ii .

The image Ir ′ that corresponds to a large camera motion
relative to the reference image Ir is obtained by the use of
the following formula:

r ′ = max

(
DM � DS

‖DM‖F‖DS‖F
)

where DM =
⎡

⎢
⎣

e1
...

em

⎤

⎥
⎦ is a vectorwhich represents themean of

each row of D; DS =
⎡

⎢
⎣

s1
...

sm

⎤

⎥
⎦ is a vector which represents the

standard deviation of each row of D; � denotes the element-
by-element multiplication.

4 Proposed method

We present an incremental 3D reconstruction system based
on structure from motion approach and the good exploita-

tion of bundle adjustment. It takes as input uncalibrated
images/videos captured by a camera with variable parame-
ters.As output, it determines the camera parameters (intrinsic
and extrinsic) and the three-dimensional structure. Our sys-
tem offers more flexibility to adapt and to reconstruct
multi-scale objects/scenes (small, medium and large) in a
reasonable time compared to methods applied in real time
[12].

As already known, structure from motion approach using
uncalibrated images allows to recover only a 3D projective
reconstruction. To get a 3D metric/Euclidean reconstruc-
tion, it must pass through a camera self-calibration phase.
In this work, we proposed a system that can directly retrieve
the metric structure of the 3D scene. First, it is to initial-
ize our system from two images with a sufficient number of
matched interest points and a large movement of the cam-
era [15]. In this context, we have proposed a new method
of camera self-calibration from two images, which allows
us retrieving coordinates of a set of 3D points in the scene
corresponding to thematched image points. After each inser-
tion of a new uncalibrated image, the camera parameters
are retrieved based on the previously estimated 3D struc-
ture and new 3D points are recovered from interest point
matching between the inserted image and the image that
precedes. Our 3D reconstruction system is realized in three
main steps: detection andmatching/trackingof interest points
between different images, initialization of the reconstruc-
tion system from two images with a large displacement
[15] and incremental insertion of new images. The global
algorithm of our 3D reconstruction system is presented as
follows:
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Algorithm 1 allows, from m (m ≥ 2) input images, to
gradually recover the metric 3D structure and the camera
parameters (intrinsic and extrinsic) that corresponds to each
image. The value of m0 is initialized to 3 because the local
bundle adjustment is applied to the three last images. This
allows to provide a reliable initial solution for the global
bundle adjustment (GBA) which will be applied after the
insertion ofM0 images to have an initial 3Dmodel of quality.
The value of M0 is selected between 10 and 20 because the
application of the GBA on a large number of images requires
much calculation time. Also, the use of a small number of
images does not allow to have a reliable initial 3D model.
When inserting the remain images {Ik}M0<k≤m , the value of
m0 can be taken greater than 3 to increase the system relia-
bility. The initialization of our system from two images is a
very interesting phase. So, to ensure the stability and relia-

bility, we have selected two images with a sufficient number
of matched points and a large movement of the camera [15].
The selected images allow to ensure the stability of epipolar
geometry calculation (estimation of the fundamentalmatrix).
This matrix will be used later to estimate the camera param-
eters.

4.1 Interest point detection and matching/tracking

In this work, we have chosen to use the SIFT algorithm [30]
for interest point matching between different images because
of its robustness to scale changes compared to other methods
[31]. For the elimination of false matches and the estimation
of fundamental matrix, the RANSAC algorithm was used
[21].
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4.2 Initialization of 3D reconstruction system from two
images

The initialization of our 3D reconstruction system is per-
formed from two selected images with a sufficient number
of matched points and a large displacement of the camera
[15] in order to stabilize the calculations. It consists in:

1. Camera self-calibration: estimation of intrinsic parame-
ters from two images.

2. Estimation of extrinsic parameters.
3. Retrieving a set of 3D points from matched interest

points.
4. Bundle adjustment taking into account the radial distor-

tion.

4.2.1 Self-calibration

In this step, we present a new formulation of the self-
calibration problem based on the good choice of global
reference and the use of planar calibration/self-calibration
concepts [29]. This formulation allows to obtain a linear sys-
tem which leads, assuming that the principal point is in the
center of the image and the skew factor is equal to zero, to
determine the scale factor and the focal length. Thus, this
formulation allows us to automatically estimate the camera
extrinsic parameters.

Let A1 and A2 two unknown points of the 3D scene as
ai1 and ai2 are, respectively, their projections in the image
Ii with 1 ≤ i ≤ 2. We define an Euclidean reference (O, X,
Y, Z) as O is the midpoint of segment [A1A2], and the two
points A1 and A2 belong to the plane Z = 0 (plane OXY)

(see Fig. 1).
In this reference:

A1 = (d cos θ, d sin θ, 0, 1)T

A2 = (−d cos θ,−d sin θ, 0, 1)T

where d = A1A2/2 and θ is the angle between the line
(A1A2) and the X -axis of the reference.

To simplify the calculations, we can choose the global
reference such as θ = π/3 (other values can be selected).
So, we obtain:

A1 =
(
d/2,

√
3d/2, 0, 1

)T
and

A2 =
(
− d/2,−√

3d/2, 0, 1
)T

We consider the Euclidean reference (O, X, Y).

Fig. 1 Different entities used for automatic estimation of camera
parameters

In this reference:

A1 =
(
d/2,

√
3d/2, 1

)T
(2)

A2 =
(
−d/2,−√

3d/2, 1
)T

(3)

The projection of the plane Z = 0 in the image plane Ii is
defined by the homography Hi as:

Hi ∼ Ki Ri

⎛

⎝
1 0
0 1 RT

i ti
0 0

⎞

⎠ , i = 1, 2 (4)

As A1 ∈ (O, X,Y ) and A2 ∈ (O, X,Y ).
So, we can write

ai j ∼ Hi A j , i = 1, 2 and j = 1, 2 (5)

Expressions (2) and (3) can be written in the form:

A1 =
⎛

⎝
d 0 0
0 d 0
0 0 1

⎞

⎠

⎛

⎝
1/2√
3/2
1

⎞

⎠ (6)

A2 =
⎛

⎝
d 0 0
0 d 0
0 0 1

⎞

⎠

⎛

⎝
−1/2

−√
3/2
1

⎞

⎠ (7)

We put:

B =
⎛

⎝
d 0 0
0 d 0
0 0 1

⎞

⎠ , A′
1 =

⎛

⎝
1/2√
3/2
1

⎞

⎠ and

A′
2 =

⎛

⎝
−1/2

−√
3/2
1

⎞

⎠
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Expression (5) can be expressed as follows :

ai j ∼ Hi BA′
j , i = 1, 2 and j = 1, 2 (8)

We put:

Qi =
⎛

⎝
Qi00 Qi01 Qi02

Qi10 Qi11 Qi12

Qi20 Qi21 Qi22

⎞

⎠ = Hi B, i = 1, 2 (9)

Expression (8) can be written as follows:

ai j ∼ Qi A
′
j , i = 1, 2 and j = 1, 2 (10)

Qi is a matrix 3× 3 that allows to project the point A′
j in the

image Ii .
At first, we want to recover the projection matrices

{Qi }1≤i≤2.
From (9), we can write:

B = H−1
1 Q1 and Q2 = H2H

−1
1 Q1

Q2 = H12Q1 (11)

H12 is the homography between the images I1 and I2.
In (10), we replace Q2 by its formula (11) and we obtain:

a2 j ∼ H12Q1A
′
j , j = 1, 2 (12)

From [32], we know that:

F12 ∼ [e2]×H12 (13)

where [e2]× =
⎛

⎝
0 −e2z e2y
e2z 0 −e2x

−e2y e2x 0

⎞

⎠ is the antisymmet-

ric matrix associated with the epipole of the image I2 e2 =(
e2x , e2y , e2z

)T.
Then, formulas (12) and (13) give:

[e2]×a2 j ∼ F12Q1A
′
j , j = 1, 2 (14)

From formulas (10) and (14), a linear system of eight linear
equations (for the elements of Q1) is obtained. The resolution
of this system allows the estimation of matrix Q1.

Expressions (11) and (13) give:

[e2]×Q2 ∼ F12Q1 (15)

The matrix Q2 is estimated from Eq. (15).
Now, the estimated projection matrices will be used to

recover the intrinsic parameters. Formulas (4) and (9) give:

K−1Qi ∼ Ri

⎛

⎝
1 0
0 1 RT

i ti
0 0

⎞

⎠ B (16)

The previous formula gives:

QT
i ωi Qi ∼

⎛

⎝
d 0 0
0 d 0

tTi Ri

⎞

⎠

⎛

⎝
d 0
0 d RT

i ti
0 0

⎞

⎠ (17)

where ωi =
⎛

⎝
ωi00 ωi01 ωi02

ωi10 ωi11 ωi12

ωi20 ωi21 ωi22

⎞

⎠ = (
Ki KT

i

)−1
is the

image of the absolute conic.

ωi00 = 1

f 2i
, ωi01 = ωi10 = − si

εi f 3i
,

ωi02 = ωi20 = u0i si − εi u0i fi
εi f 3i

,

ωi11 = s2i
ε2i f

4
i

+ 1

ε2i f
2
i

,

ωi12 = ωi21 = − si (v0i si − u0iεi fi )

ε2i f
4
i

− v0i

ε2i f
2
i

,

ωi22 = (v0i si − u0iεi fi )2

ε2i f
4
i

+ v20i

ε2i f
2
i

+ 1.

We put B ′ =
⎛

⎝
d 0
0 d
0 0

⎞

⎠.

Formula (17) gives:

QT
i ωi Qi ∼

(
B ′T B ′ B ′T RT

i ti
tTi Ri B ′ tTi ti

)
(18)

B ′T B ′ =
(
d2 0
0 d2

)

Formula (18) gives:

((
QT

i ωi Qi
)
00

(
QT

i ωi Qi
)
01(

QT
i ωi Qi

)
10

(
QT

i ωi Qi
)
11

)
∼

(
d2 0
0 d2

)
, i = 1, 2.

(19)

From (19), the following equation system is obtained:

{(
QT

i ωi Qi
)
00 = (

QT
i ωi Qi

)
11(

QT
i ωi Qi

)
01 = (

QT
i ωi Qi

)
10 = 0

(20)

Assuming that the principal point (u0i,v0i ) is in the center of
the image and si = 0, εi and fi will be determined.

Expression (20) gives:

{
α1ε

2
i f

2
i + α2ε

2
i + α3 = 0

β1ε
2
i f

2
i + β2ε

2
i + β3 = 0

(21)
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where:

α1 = Q2
i20 − Q2

i21,

α2 = Q2
i00 − Q2

i01 − 2 (Qi00Qi20 + Qi01Qi21) u0i

+
(
Q2

i20 − Q2
i21

)
u20i ,

α3 = Q2
i10 − Q2

i11 − 2(Qi10Qi20 + Qi11Qi21)v0i

+
(
Q2

i20 − Q2
i21

)
v20i ,

β1 = Qi20Qi21,

β2 = Qi00Qi01 − Qi01Qi20u0i − Qi00Qi21u0i

+Qi20Qi21u
2
0i and

β3 = Qi10Qi11 − Qi20Qi11v0i − Qi10Qi21v0i

+Qi20Qi21v
2
0i .

Expression (21) is a linear system of the form:

{
a0X1 + a1X2 = b0
a2X1 + a3X2 = b1

where X1 = ε2i f
2
i and X2 = ε2i .

Solving this linear system by substitution allows to esti-
mate X1 and X2.

The values of εi and fi are obtained from X1 and X2 (the
two positive values).

4.2.2 Estimation of extrinsic parameters

Formula (4) gives:

Hi ∼ Ki
[
r i1 r

i
2 ti

]
, i = 1, 2 (22)

where r ik (1 ≤ k ≤ 3) denotes the kth column of the rotation
matrix Ri .

As already presented in [29], the formula (22) gives:

r i1 = μi K
−1
i hi1 (23)

r i2 = μi K
−1
i hi2 (24)

ti = μi K
−1
i hi3 (25)

where μi = ‖K−1
i hi1‖−1 = ‖K−1

i hi2‖−1.
In our situation, the homography Hi = [

hi1 hi2 hi3
]
is

unknown because the scene is not planar.
Formula (9) gives:

Hi = Qi B
−1 (26)

Expressions (23), (24), (25) and (26) give:

r i1 = μ′
i K

−1
i qi1 (27)

r i2 = μ′
i K

−1
i qi2 (28)

r i3 = r i1 × r i2 (29)

ti = dμ′
i K

−1
i qi3 (30)

where μ′
i = ‖K−1

i qi1‖−1 = ‖K−1
i qi2‖−1 and qik (1 ≤ k ≤ 3)

denote the kth column of the matrix Qi .
The rotation matrix is obtained from (27), (28) and (29).
It remains to estimate the value of d to obtain the transla-

tion vector.
Expression (17) gives:

{(
QT

i ωi Qi
)
00 = νi d2(

QT
i ωi Qi

)
02 = νi dtTi r

i
1

(31)

where νi is a nonzero scale factor.
So, from (31) we obtain.

d =
(
QT

i ωi Qi
)
00(

QT
i ωi Qi

)
02

(
tTi r

i
1

)
(32)

Then, substituting in (30) d by its formula (32), we obtain a
linear system of the form:

Ati = 0 (33)

where A ∈ R
3×3.

The resolution of this system by the singular value decom-
position (SVD) allows to estimate the translation vector.

4.2.3 Recovering 3D point coordinates

The coordinates of 3D points are recovered from the match-
ing result between the two images {I1, I2} and the projection
matrices defined by:

P1 = K1 [R1t1] and P2 = K2 [R2t2]

4.2.4 Bundle adjustment

The optimization of different entities previously estimated
(intrinsic and extrinsic parameters, radial distortion and the
3D point coordinates) is performed by minimizing the crite-
rion (34) using the Levenberg–Marquardt algorithm [23,33]:

C (θ) =
2∑

i=1

n1,2∑

j=1

‖ai j − P(Ki , k1i , k2i , Ri , ti , A j )‖2 (34)
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Fig. 2 Projections’ localization of already reconstructed 3D points in
the inserted image Ik using the interest point matching results. akj is
the projection of the 3D point A j , reconstructed from ak−2 j and ak−1 j ,
localized in the image Ik

where n1,2 is the number of reconstructed 3D points and

θ =
{
f1, ε1, s1, u01, v01, k11, k21, α1, β1, γ1, t

1
x , t

1
y , t

1
z ,

f2, ε2, s2, u02, v02, k12, k22, α2, β2, γ2, t
2
x , t

2
y ,

t2z , X1,Y1, Z1, . . . , Xn1,2 ,Yn1,2 , Zn1,2

}

4.3 Inserting a new image Ik(3 ≤ k ≤ m)

After inserting a new uncalibrated image, suitable projection
matrix is estimated on the basis of the three-dimensional data
already retrieved. The RANSAC algorithm [21] was used
for the reliable recovery of this matrix by solving a linear
system using previously reconstructed 3D points and their
projections located in the inserted image [1] (Fig. 2). Then,
new 3D points are retrieved from the interest point matching
result between the inserted image and the previous image.
So, the following steps are performed:

1. Projections’ localization of already reconstructed 3D
points in the image Ik .

2. Estimating the projection matrix Pk from n0 (n0 ≥ 6)
3D points and their projections located in the image Ik
by the use of RANSAC method [21]

3. Recovery of a set of 3D points from the interest point
matching result between Ik−1 and Ik .

4. Decomposition of the projection matrix Pk for the recov-
ery of intrinsic and extrinsic parameters.

5. Local bundle Adjustment between the lastm0 images (in
our experiments m0 = 3) taking into account the radial
distortion.

6. If k = M0 (10 ≤ M0 ≤ 20 for our experience) applied
a global bundle adjustment between the M0 inserted
images.

4.3.1 Projection matrix estimation and new 3D point
recovery

After the projections’ localization of already reconstructed
3D points in the image Ik , Pk projection matrix is estimated
from at least six already reconstructed 3D points and their
projections localized in the image Ik [1] using RANSAC
algorithm [21]. Then, the coordinates of new 3D points are
estimated by triangulation from the interest point matching
result between the images {Ik−1, Ik} and the estimated pro-
jection matrices Pk−1 and Pk .

Algorithm 2 is based on the manipulation of the 3D infor-
mation already estimated as well as on the interest point
matching between the last 3 images {Ik−2, Ik−1, Ik} to esti-
mate the projectionmatrix Pk that corresponds to the inserted
image Ik .

4.3.2 Local bundle adjustment between the m0 = 3 latest
images

The new estimated elements: the camera parameters that cor-
respond to the image Ik , the radial distortion coefficients and
the new reconstructed 3D points, are optimized by minimiz-
ing the criterion (35) [23,33].

C (θ) =
k∑

i=k−m0

nk−1,k∑

j=1

‖ai j − P (
Ki , k1i , k2i , Ri , ti , A j

) ‖2

(35)

where nk−1,k is the number of new reconstructed 3D points
from the interest point matching result between the couple
image {Ik−1, Ik} and
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Fig. 3 a Three images of the sequence, b result of interest point match-
ing between two images after removing false matches by RANSAC
algorithm, c four views of the sparse 3D reconstruction, d two views of

3D surface model achieved using 3D Crust algorithm, e three views of
textured 3D model

Table 1 Estimated camera
intrinsic parameters that
correspond to the first two
images for the five sequences

Sequences Images f ε s u0 v0 k1 k2

Vase Image 1 1129 0.94 0.03 452 605 −0.053 0.023

Image 2 1137 0.97 0.02 449 602 −0.045 0.041

Villa pot Image 1 873 0.95 0.05 371 503 0.019 −0.121

Image 2 889 0.93 0.04 367 501 −0.03 0.021

Medusa head Image 1 1066 0.92 0.03 382 278 −0.34 0.028

Image 2 1081 0.95 0.04 384 281 −0.12 0.03

Castle-P30 Image 1 910 0.96 0.02 1530 1019 −0.086 0.018

Image 2 921 0.95 0.04 1541 1028 −0.099 0.023

Complex scene Image 1 994 0.97 0.05 366 279 −0.105 0.035

Image 2 1005 0.95 0.04 375 285 0.067 0.027
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Table 2 The number of
reconstructed 3D points (sparse
3D reconstruction) for the five
sequences

Sequences # Images Resolution M0 # Reconstructed 3D points

Vase 32 900 × 1200 14 8547

Villa pot 28 750 × 1000 13 6435

Medusa head 26 765 × 560 12 7342

Castle-P30 30 1020 × 680 13 12,654

Complex scene 142 740 × 565 20 35,057

Fig. 4 a Three images of the sequence, b result of interest point matching between two images after removing false matches, c Two views of
sparse 3D reconstruction, d matching result after the application of the match propagation algorithm, e three views of dense 3D reconstruction

θ =
{
fk, εk, sk, u0k, v0k, k1k, k2k, αk, βk, γk, t

k
x , t

k
y , t

k
z ,

X1,Y1, Z1, . . . , Xnk−1,k ,Ynk−1,k , Znk−1,k

}

4.3.3 Global bundle adjustment between the M0 inserted
images

Global bundle adjustment applied to all images requires a
very long calculation time, especially with the use of a large

number of images. In this work, we have combined between
the local bundle adjustment after the insertion of a new
image and the global bundle adjustment after the insertion
of M0 images (10 ≤ M0 ≤ 20) to accelerate the treatment
maintaining system reliability. So, after the insertion of M0

images, all estimated elements (already locally optimized)
will be used as an initial solution to minimize the criterion
(36) using the Levenberg–Marquardt algorithm [23,33].
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Fig. 5 a Four key frames, b example of interest pointmatching between two images, cmatching result after the application of thematch propagation
algorithm, d two views of sparse 3D reconstruction, e two views of dense 3D reconstruction

C (θ) =
M0∑

i=1

n∑

j=1

‖ai j − P (
Ki , k1i , k2i , Ri , ti , A j

) ‖2 (36)

where n is the number of reconstructed 3D points and

θ =
{
f1, ε1, s1, u01, v01, k11, k21, α1, β1, γ1, t

1
x , t

1
y , t

1
z ,

. . . , fM0 , εM0 , sM0 , u0M0 , v0M0 , k1M0 , k2M0 , αM0 ,

βM0 , γM0 , t
M0
x , t M0

y , t M0
z , X1,Y1, Z1, . . . , Xn,Yn, Zn

}

5 Experiments

To validate and test the robustness of the proposed approach,
several images and video sequences are used. We present
the results for five images/video sequences of scenes with
different sizes (vase, villa pot, Medusa head [34], castle-
P30 [35] and complex scene). All experiments are executed
on a machine HP 650 Intel Core i3, 2.30 GHz CPU and 4 GB
RAM.

5.1 Vase sequence: small scale object

This first sequence consists of thirty-two images, with a res-
olution of 900 × 1200, taken around a small object. Three

images of the sequence are presented in Fig. 3a. First, we
begin by the detection and matching of interest points with
SIFT method [30]. An example of interest point matching
between two images is shown in Fig. 3b. Our reconstruc-
tion system is initialized from two images with a sufficient
number of matches and a large camera motion [15]. After
the estimation of camera parameters using our method, a
set of 3D points is recovered from the result of interest
point matching between these two images. A bundle adjust-
ment, taking into account the radial distortion and using
Levenberg–Marquardt algorithm [23,33], is applied to adjust
as best as possible the estimated entities. Table 1 shows the
estimated values of the camera intrinsic parameters and the
first two radial distortion coefficients corresponding to the
two first images for the five sequences. For each new inserted
image, new3Dpoints are recovered and a local bundle adjust-
ment between the last m0 = 3 images is performed to adjust
the new estimated entities. After the insertion of M0 = 14
images, a global bundle adjustment is executed to adjust all
parameters and to obtain a reliable initial 3D model that will
be used with the local bundle adjustment for the insertion of
new images. Four views of the sparse 3D reconstruction are
shown in Fig. 3c. Figure 3d shows the obtained 3D surface
model after applying 3D Crust algorithm [17]. The textured
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Fig. 6 a Four images of the sequence, b result of interest point matching between two images, c matching result after the application of the match
propagation algorithm, d two views of the sparse 3D reconstruction, e two views of the dense 3D reconstruction

3D model is presented in Fig. 3e. Table 2 shows the values
of M0 and the number of reconstructed 3D points (sparse 3D
reconstruction) for the five sequences.

5.2 Villa pot sequence: medium-scale scene

In this second experiment, a sequence of 28 images, with
a resolution of 750 × 1000, was used. Three images of the
sequence are shown in Fig. 4a. Figure 4b shows the result of
interest point matching between two images after removing
false matches using RANSAC algorithm [21] (353 matches

are obtained). Two views of the sparse 3D reconstruction
are presented in Fig. 4c. Figure 4d shows the almost dense
matching result after applying the Match Propagation algo-
rithm [36] (297694 matches are obtained). Three views of
the dense 3D reconstruction are presented in Fig. 4e.

5.3 Medusa head sequence: medium-scale object

In this third experiment, we tested the power of our approach
on the ‘Medusa head’ video downloaded from the Marc
Pollefeys page [34]. Four key frames are shown in Fig. 5a.
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Fig. 7 a Four images of the sequence, b interest point matching
between two images after removing false matches, c two views of the
sparse 3D reconstruction, d matching result after the application of the

match propagation algorithm, e three views of the dense 3D reconstruc-
tion that corresponds to the last matching result

Sparse and dense matching are shown in Fig. 5b, c respec-
tively. Two views of the sparse 3D reconstruction (7342 3D
points were reconstructed) are presented in Fig. 5d. Two
views of the obtained dense 3Dmodel (dense 3D point cloud)
are presented in Fig. 5e.

5.4 Castle sequence: large-scale scene

In the previous experiments, we have tested our approach
on small- and medium-scale scenes. In this part, we used
a sequence of 30 images, with resolution of 1020 × 680,
of a large-scale scene (castle-P30 [35]). Four images of the

sequence are shown in Fig. 6a. We begin by the interest
pointmatching between different images [30].An example of
result obtained between two images is shown in Fig. 6b. The
initialization of our system is performed from two selected
images [15]. Then, the rest of images is inserted progres-
sively using the already estimated 3D structure and bundle
adjustment. Two views of the obtained sparse 3D reconstruc-
tion, after the insertion of all images, are shown in Fig. 6d. To
obtain a dense 3D reconstruction, we must pass through the
densematching between images. So,we used thematch prop-
agation method [36] which starts from the sparse matching
result to search for new matches in the vicinities of the old.
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Table 3 Comparison results
Approaches Sequences RMS error (pixel) Time (s)

Our approach Vase 0.21 16

Villa pot 0.29 29.7

Medusa head 0.23 25

Castle-P30 0.51 39

Complex scene 0.86 138

Mouragnon approach [12] Vase 0.65 12

Villa pot 0.80 25.6

Medusa head 0.68 21

Castle-P30 0.79 32

Complex scene 1.32 117

Pollefeys approach [5] Vase 0.47 108

Villa pot 0.45 95

Medusa head 0.52 92

Castle-P30 0.71 115

Complex scene – –

Schonberger approach [27] Vase 0.18 17

Villa pot 0.21 62.1

Medusa head 0.22 43

Castle-P30 0.39 64

Complex scene 0.61 381

VisualSFM [37,38] Vase 0.19 12

Villa pot 0.23 47

Medusa head 0.21 31

Castle-P30 0.44 56

Complex scene 0.65 357

Figure 6c shows the almost dense matching result obtained.
The dense 3D model is presented in Fig. 6e.

5.5 Complex scene sequence

In this experiment, our approach was tested on a sequence of
142 images, with a resolution of 740×565, of complex scene
composed of objects with different sizes. Four images of the
sequence are shown in Fig. 7a. An example of interest point
matching between two images, after removing falsematches,
is shown in Fig. 7b. Two views of sparse 3D reconstruction
are presented in Fig. 7c. Figure 7d shows matching result
after the application of thematch propagation algorithm [36].
Three views of dense 3D reconstruction that corresponds to
the last matching result are presented in Fig. 7e.

As presented in the experiments, our approach allows to
obtain 3D reconstruction results of quality for different types
of objects/scenes. These results also prove the reliability of
our formulation for the estimation of intrinsic and extrinsic
camera parameters.

To evaluate our approach, four state-of-the-art methods
[5,12,27,37] are used. Pollefeys approach [5] uses structure
from motion and global bundle adjustment for the recovery

of 3D projective structure and camera motion. This approach
requires a camera self-calibration step to pass from the
projective 3D structure to metric 3D structure. Mouragnon
approach [12] is based on incremental structure frommotion
and the local bundle adjustment for the estimation of 3D
structure and camera motion from video captured by a cal-
ibrated camera. (To adapt this approach to our situation,
we used our camera self-calibration method.) Schonberger
approach [27] and VisualSFM [37,38] are two incremental
Structure from Motion systems for 3D reconstruction from
unordered image collections.

Table 3 shows that our method gives satisfactory results
compared to the other methods [5,12,27,37]. This is due
to the good initialization based on the proposition of a new
approach for self-calibration from two images (taking into
account the radial distortion)which allows us estimating a set
of 3Dpoints of the scene, and also to the incremental recovery
of new 3D points (after inserting new images) based on the
local bundle adjustment as well as to suitable integration of
the global bundle adjustment. Concerning the computation
time (not counting the matching time), our approach is close
to that of Mouragnon approach [12] and it is more rapid
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Fig. 8 Reprojection error in terms of images’ number

Fig. 9 Execution time needed for the sparse 3D reconstruction (not
counting the matching time)

than Pollefeys approach [5], Schonberger approach [27] and
VisualSFM [37,38].

To test the performance of our approach compared to other
methods [5,12,27,37] in function of the number of used
images. We used the sequence 2 (the other sequences lead to
similar results). The results are shown in Figs. 8 and 9.

As shown in Fig. 8, concerningMouragnon approach [12],
the reprojection error rises with the increase of images num-
ber because of errors accumulation as it is an incremental
approach based on local bundle adjustment. On the contrary,
concerning Pollefeys approach [5], the reprojection error
decreases when images’ number increases because it is based
on global bundle adjustment. So, with the use of a large num-
ber of images the Pollefeys approach becomes more stable.
Our approach allows to have more accurate results than these
two methods, and it is closer to those obtained by Schon-
berger approach [27] and VisualSFM [37,38]

When the images number is between 2 and 13 (in these
experiments we took M0 = 13), our approach performs as
global structure from motion systems [5] with more pre-
cision, because it is based on global bundle adjustment
(GBA)with good initialization of different parameters (those
obtained by local bundle adjustment). When the number of

images is greater than 13, we note that the reprojection error
is almost stable with some augmentation because the new
images are inserted on the basis of the obtained initial 3D
structure (already optimized locally and globally), and on
local bundle adjustment.

As shown in Fig. 9, our approach is faster compared to
Schonberger approach [27] and VisualSFM [37,38], and it is
much faster than Pollefeys approach [5]. This latter applies
the global bundle adjustment on all estimated entities after
the insertion of all images, which requires a long calcula-
tion time especially with the increase of images number and
can even pose convergence problems (problem resolution by
Levenberg–Marquardt algorithm [33] with a bad initializa-
tion). On the other hand, the proposed approach allows to
have results of quality, in a time close to Mouragnon method
[12] which is based on local bundle adjustment and applied
in real time.

6 Conclusion

In this paper, we have proposed a complete system for 3D
reconstruction from images/videos taken by a moving cam-
era characterized by varying parameters. Our system allows
to automatically recover camera parameters and to obtain
metric 3D reconstruction results without gone through a
3D projective reconstruction. It is properly initialized from
two images with a large camera motion. So, we have pro-
posed a newmethod for automatic estimation of intrinsic and
extrinsic camera parameters. Incremental 3D reconstruction
systems are based on the local bundle adjustment to ensure
the rapidity. But, the quality of reconstruction results can
be affected by errors accumulation. Our system introduces
a global bundle adjustment after the insertion of a suitable
images number by avoiding the use of all images in order
not to fall on optimization problems with a large parameters
number to be optimized, which requires a lot of calculation
time. The optimal 3D model obtained and the local bundle
adjustment will be used for the insertion of the rest of images.
Our 3D reconstruction system is completely automatic and
provides more reliability in keeping rapidity.
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