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Abstract In this paper, we propose a novel robust non-rigid
point set registration method adopting a new probabil-
ity model called inhomogeneous Gaussian mixture models
(IGMM), where we regard one point set as the centroids
of a Gaussian mixture model and the other point set as the
data. The IGMM is defined by applying local features and
Gaussian mixture models. Considering the local relation-
ship among neighboring points is stable, a neighborhood
structural descriptor, named as local shape context, is first
presented. On the basis of local descriptors, we can obtain
a measure of compatibility between local features in the
point sets. Then, the similarity of the local structure of point
neighborhoods can be calculated on the basis of the match-
ing scores. Each Gaussian mixture component is assigned a
different weight depending on the feature similarity, which
differs from the traditional Gaussian mixture model where
each Gaussian mixture component has the same weight. The
proposed IGMM makes point pairs with more similar fea-
tures have bigger probability to formulate a match, while in
algorithms based on GMMs, all point pairs have the same
probability to construct correspondence points. Finally, we
support our claims through regularization theory and formu-
late registration as a likelihoodmaximization problem,which
is solved by updating transformation parameters and outlier
ratios using the expectation maximization algorithm. Exten-
sive comparison and evaluation experiments on synthetic
point-sets datasets demonstrate that the proposed approach is
robust and achieves superior performance in the presence of
non-rigid deformation, noise, outliers and occlusion. In addi-
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tion, a number of experiments on real images reveal that our
proposed algorithm is more applicable than state-of-the-art
algorithms.
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1 Introduction

Point set registration is frequently encountered in computer
vision, pattern recognition and image analysis [1–3], with
various applications, such as 3D reconstruction [4], object
recognition [5], image retrieval [6], image registration [7–
10]. Generally, the registration problem can be broadly
classified as rigid and non-rigid registration. Rigid registra-
tion under affine or projective transformation only involves a
small number of transformation parameters. The rigid regis-
tration problem is relatively easy to solve and has beenwidely
studied [11]. On the contrary, the non-rigid case is more
challenging since the underlying non-rigid transformation
is usually complicated and difficult to model. However, the
non-rigid problem occurs ubiquitously in real-world tasks,
such as medical image registration, hand-written character
recognition and shape recognition [12]. Recently, a variety
of methods have been put forward to tackle non-rigid prob-
lems. In this paper, non-rigid registration problems primarily
focus on four cases of degradation of point sets including
deformation, noise, outliers, and occlusion. The deformation
of the input data denotes that the shape of the point set is
distorted, and noisy data means the feature points cannot be
matched accurately.Outliers and occlusion indicate that there
are some points without correspondences in the correspond-
ing point set.
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Point set registration algorithms can be divided into
three categories, including methods based on transformation
parameters estimation, feature-based registration methods
andmethods combining transformation parameter estimation
with feature comparison. In algorithms based on transforma-
tion parameter estimation, the correspondence relationship
between point sets is first assumed, which turns the reg-
istration problem into an optimization problem with the
transformation parameter as unknowns. The iterative clos-
est point (ICP) [13] algorithm is one of the most well-known
algorithms owing to its simplicity and low computation com-
plexity, which applies the nearest-neighbor distance criterion
to the arrangement of correspondences with binary values.
However, the ICP method requires an adequately close ini-
tialization between the two point sets to be matched. To
overcome the limitations of ICP, Chui and Rangarajan [14]
proposed a robust point set registration method named the
thin-plate spline robust point matching (TPS-RPM), where
the deterministic annealing and a soft assignment technique
were combined to evaluate a candidate transformation and
improve correspondence estimation. The core of TPS-RPM
is modeling a transformation as a thin-plate spline, so the
algorithm ismore robust compared to ICP. However, the joint
estimation of correspondences and transformation increases
the algorithm complexity. In [15], a kernel correlation (KC)
technique for point set registration is presented, where the
matching problem is defined as a search for the maximum
kernel correlation configuration between the given two point
sets. Adopting the idea of kernel correlation, Jian et al. [16]
treat each of the point sets as Gaussians mixture models
(GMM) and the point set registration problem is translated
into a problem of aligning the two mixtures. A closed-form
expression for the L2 distance between these two Gaus-
sian mixtures is obtained to solve the registration problem.
These articles [17–19] extended this method to an asymmet-
ricGaussian representation,mixture of asymmetricGaussian
models to reflect the density of the two point sets. The dis-
tribution of point sets satisfies asymmetric Gaussian model.
The vector field consensus (VFC) algorithm [20,21] is an
efficient algorithm for establishing robust point correspon-
dences between two point sets. The method simultaneously
generates a smoothly interpolated vector field and estimates
the consensus set by an iterative EM algorithm. The coherent
point drift (CPD) [22] algorithm is another efficient method
based on GMM, where model points and target points are
considered as GMM centroids and data points, respectively.
The core idea of CPD is that GMM centroids move with
one accord as a group to preserve the topological charac-
teristics of the point set. However, for this algorithm, an
applicable outlier ratio should be given in advance, which
limits its applicability. To overcome the problem, Yuan Gao
et al. [23] proposed a robust and outlier-adaptive method
for non-rigid point registration with no need for setting the

appropriate outlier ratio which is formulated in Expectation
Maximization (EM) framework and updated in time of itera-
tion. Matching algorithms mentioned above are all based on
the estimation of transformation parameters. These methods
only consider the global structure of point sets ignoring the
local feature.

In feature-based registration methods, the correspon-
dences between point sets are found by comparing the
extracted features of points in the point set. This method
is popular in the field of medical imaging and computer
vision. For example, Belongie et al. introduced the con-
cept of the shape context (SC) [24] which is assigned
to each point and describes the relative spatial distri-
bution of the neighboring points of each point using a
histogram. Yefeng Zheng and David Doermann [25] pre-
sented the robust point matching-preserving local neigh-
borhood structures (RPM-LNS) technique and formulated
the point set registration problem as an optimization solu-
tion with the goal to preserve local neighborhood struc-
tures. There is other related point set registration work
including the probabilistic relaxation labeling algorithms,
generalized in [26–29], and the graph matching method
for constructing feature correspondences [30]. However,
a drawback encountered by most feature-based match-
ing algorithms is to establish point correspondence just
considering local shape features without the global fea-
ture.

The algorithm combining feature-based registration and
transformation parameter estimation gradually becomes an
important research topic. Recently, Ma et al. [31,32] intro-
duced a new point matching algorithm based on SC. They
use SC as the feature descriptor to update the correspondence
iteratively, and a robust L2-Minimizing Estimate (L2E)

estimator is applied to estimate transformation parameters.
Wang et al.[33] proposed context-aware Gaussian fields
(CA-LapGF) to solve point set registration problems. The
CA-LapGF combines shape context with Laplacian Reg-
ularized Gaussian Fields (LapGF) to estimate the most
likely correspondence and the transformation parameters
between point sets iteratively. In this paper, applying GMM,
we combine feature-based registration and transformation
parameters estimation to render point set registration more
robust in the presence of large degree of degradations of point
sets. Considering that the local relationship among neighbor-
ing points is more stable under non-rigid transformations, we
use local shape context which is demonstrated in Fig. 1 to
exploit the feature similarity (the features of one point in
one point set is similar to the features of a point in another
point set) between two point sets, and then define differ-
ent weights for each Gaussian mixture component based on
the quantification of the similarity between the estimated
local shape features to generate Inhomogeneous Gaussian
mixture models (IGMM) for the two point sets. Finally,
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Fig. 1 Local shape context
descriptor. a Diagram of
log-polar histogram bins used in
computing the shape contexts. b
The local shape context of point
xm . There are 12 bins for angle
and 5 bins for distance

we formulate the registration task as solving a likelihood
maximization problem, which is solved by updating trans-
formation parameters and the outlier ratio under an EM-type
algorithm.

The rest of the paper is organized as follows: in Sect. 2, we
describe the Inhomogeneous Gaussian mixture models for-
mulationof solvingpoint set registration. InSects. 3 and4,we
demonstrate the performance of our method through exten-
sive evaluation on both synthetic data and real-world data,
respectively. In Sect. 5, we discuss our conclusions from
the performed experiments, and reason about limitations and
future work.

2 Inhomogeneous Gaussian mixture models
formulation

The article [22] proposed the coherent point drift (CPD) algo-
rithm, and it is considered to be the state-of-the-art approach
for solving non-rigid point set registration. CPD treats the
first point set as the GMM centroids and the second point
set corresponds to the data, and fits the centroids to the
data by maximizing the likelihood. This algorithm obtains
good results in the presence of deformation of the point set
shape, noise in the point locations, outliers, and occlusion,
but the drawback of CPD is that the outlier ratio has to be
specified on beforehand. This piece of extra input outlier
ratio severely limits the applicability of CPD because the
outlier ratio of these two point sets is difficult to predict
before registration. Besides, in the CPD algorithm, all points
of one point set coherently move to another point set with
one accord. Considering that corresponding point pairs have
similar features, we define that more similar point pairs have
larger probability to drift together, which can improve the
efficiency of the algorithms and accelerate algorithm con-
vergence. To avoid the limitation of the CPD algorithm and
make our algorithm more robust to degradations, we con-

struct an IGMM based on local shape context, and input
a random outlier ratio in the EM framework so that the
outlier ratio can successfully be optimized in an iterative
fashion. According to the local shape context descriptor,
the feature similarity between the two point sets can be
obtained. We regard the feature similarity of local shape
context as prior information that guides the IGMM itera-
tively.

2.1 Feature similarity based on local shape context

Shape context, as an effective descriptor of the point set, rep-
resents the spatial distribution of the other neighbor points
relative to the referencepoint in a point set. In non-rigid defor-
mations, the local relationship among neighboring points is
well preserved, which motivates us to introduce the con-
cept of local topological characteristics defined in point
sets. Our method efficiently demonstrates that local topol-
ogy can expedite the matching process. Suppose there are
two point sets, let the two point sets be the template point
set X = {x1, x2, . . . , xM } ∈ R

M×D and the target point set
Y = {y1, y2, . . . , yN } ∈ R

N×D , where M and N denote the
number of points in each point set, respectively, and D is the
dimension of the points. From Fig. 1 we can get the local
shape context of a random point xm . Firstly, we compute the
Euclidean distance of any point pair in point set X . There are
M × (M − 1)/2 point pairs, so we can get M × (M − 1)/2
values about the Euclidean distance. Then we choose the
median distance from these M × (M − 1)/2 values. Finally,
we select a randompoint xm frompoint set X as original point
and regard the median value of all Euclidean distances as the
radius of a circle. The obtained circle is called the neigh-
borhood of the point xm . To make the problem tractable, log
distance and polar angle bins are used to capture the coarse
location information [24]. The bins are uniform in log-polar
space, where we use 5 bins for log distance and 12 bins for
polar angle. In the diagram, the distance is defined as zero
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in the origin and incremented by one unit for points in the
outer bin from 0 to 5, where 0 and 5 indicate the shortest and
the longest Euclidean distance, respectively. And the angle
increases by one radian in the direction of a counterclockwise
from positive x-axis of the local coordinate system [26]. In
log-polar space, the uniform bins guide the descriptor to be
more sensitive to neighboring points than to points far away.
Then a histogram comprised of the remaining neighboring
points in each bin is introduced and evaluated as the local
shape context of point xm which is given as follows:

hm(kd , kθ ) = #{xi �= xm |xi ∈ Xxm , (xi − xm) ∈
bin(kd , kθ )}, (1)

where Xxm denotes the neighborhood of the point xm , and xi
is a random point from Xxm . (kd , kθ ) is the index of a bin,
estimated from the quantized log radial point-pair distance
and polar angle measure.

Considering a point xm and a point yn from the template
point set and the target point set, respectively, letCmn denote
the matching cost of these two points which is defined as
follows [24]:

Cmn ≡ C(xm, yn) = 1

2

∑

kd

∑

kθ

[hm(kd , kθ ) − hn(kd , kθ )]2
hm(kd , kθ ) + hn(kd , kθ )

,

(2)

where hm(kd , kθ ), hn(kd , kθ ) denote the histogram values
for the bin (kd , kθ ) at xm and yn , respectively. The proba-
bility measure of correspondence (xm, yn) can be computed
by [27]:

�mn = exp(−Cmn/α
2), (3)

where α is defined to adjust the reliability of the probability
measures. �mn can be utilized to describe the feature simi-
larity between point xm and point yn . The larger the value of
�mn , xm is more similar to yn .

2.2 Construction of inhomogeneous Gaussian mixture
models

The basic idea of point set registration using IGMM is to
encode local shape context in a GMM framework. In this
subsection, we treat the points in point set Y as n centroids
of the IGMMand fit Y to the data point set X . The purpose of
point set registration is to learn the transformation model T :
X = T (Y ). The transformation which can be demonstrated
by T (Y | f ) = Y + f (Y ) is built using the Gaussian radial
basis function (GRBF) technique and regarded as the sum of
the initial location and a displacement function f (where f is
a set of transformation parameters). The IGMM probability

density function of a random data point xm(i = 1, 2, . . . , M)

is defined as follows:

p(xm) =
N∑

n=1

vmn p(xm |n), (4)

where p(xm |n) = 1
(2πσ 2)

D/2 e
− ‖xm−yn− f (yn )‖2

2σ2 is the proba-

bility of the nth Gauss distribution of xm at the relative
position of yn , and σ denotes the Gauss bandwidth. Here,
vmn(m = 1, 2, . . . , M; n = 1, 2, . . . , N ) denotes the nth
mixture coefficient for the mth data point. In contrast to
GMM, where vmn is uniform for all Gaussian models, vmn in
IGMM is inhomogeneous, which is estimated based on fea-
ture similarity of the two point sets. The feature similarity is
calculated using the local shape context. Here, if one GMM
centroid represented by yn resembles the data point xm in
feature space, we give a larger weight to this GMM com-
ponent in order to make a correct correspondence. If these
two points have more similar features, they will easily form a
correct matching point pair. Therefore the feature similarity
can lead the spatial motion to the correct registration. For a
given random data point xm , using Eqs. 2 and 3, its nth GMM
coefficient vmn can be defined as follows:

vmn = �mn

N∑
o=1

�mo

, (5)

where�mo denotes the feature similaritymeasure of point xm
and point yo. Here, a random data point xm will have N dif-
ferent coefficients vmn(m = 1, 2, . . . , M; n = 1, 2, . . . , N )

which satisfies
∑N

n=1 vmn = 1, vmn ≥ 0. A data point has
more chance to construct a match with one GMM centroid
represented by a model point with larger coefficient. Apply-
ing the feature similarity to construct the GMM coefficients,
an IGMM strategy is formed, which can accelerate algorithm
convergence and obtain robust registration results.

Taking the noise and outliers into account, an extra uni-
formdistribution p(xm |N+1) = 1/M is added to the IGMM.
We denote noise and outliers ratio as γ , so the weight of
IGMM is 1 − γ . Consequently, the IGMM probability den-
sity function takes the form:

p(xm | f, γ, σ ) = (1 − γ )

N∑

n=1

vmn p(xm |n) + γ p(xm |N + 1).

(6)

Considering the data points are independent and satisfy the
consistent distribution, the joint probability distribution of
thewhole data set X , namely, the likelihood function, is given
by:
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Φ(X |Y, f, γ, σ ) =
M∏

m=1

p(xm | f, γ, σ ). (7)

In order to enforce the smoothness of the GRBF, we define
the prior over f in the Tikhonov regularization framework
[14] as

p( f ) = e− λ
2 ‖ f ‖2H , (8)

where ‖ f ‖2H denotes the norm of f (y) in the Reproduction
Kernel Hilbert Space (RKHS). We choose the optimal form
of f , which can be represented as the linear combination of
kernels [23]

f (z) =
N∑

n=1

wnR(z, yn) = RW, (9)

whereR is a N × N kernel matrix withRns = e
− 1

2
‖yn−ys‖2

β2 ,
n, s = 1, 2, . . . , N , and β is an adjustment parameter. W =
(w1, w2, . . . , wN ) is a coefficient set.

Combining with the smoothness constraint, we can define
the negative log likelihood function as:

E(Θ) = −lnΦ(X |Y, f, γ, σ ) + λ

2
‖ f ‖2H

= −
M∑

m=1

ln((1 − γ )

N∑

n=1

vmn p(xm |n) + γ p(xm |N + 1))

+λ

2
‖ f ‖2H , (10)

where Θ = { f, γ, σ } includes a set of unknown parameters,
andλ is a trade-off parameter. These parameters are estimated
by solving the maximum a posteriori (MAP) problem, which
is equivalent to minimizing the negative log likelihood func-
tion in Eq. 10.

2.3 The EM algorithm

The well-known EM algorithm [8] provides a framework for
dealing with this MAP problem. It consists of two steps:
an expectation step (E-step) and a maximization step (M-
step). In the E-step, we compute the posteriori probability
of the mixture components using the Bayes theorem and the
fixed parameters, while the M-step updates the values of
parameters based on the current estimate of the posteriori
probability by minimizing the following objective function:

Q(Θ) = D

2
ln σ 2

M∑

m=1

N∑

n=1

pold(n|xm, Θ)

+ 1

2σ 2

M∑

m=1

N∑

n=1

[
pold(n|xm,Θ)‖xm − yn − f (yn)‖2

]

− ln(1 − γ )

M∑

m=1

N∑

n=1

pold(n|xm, Θ)

− ln γ

M∑

m=1

pold(N + 1|xm,Θ) + λ

2
‖ f ‖2H , (11)

where some terms independent ofΘ = { f, γ, σ } are omitted.
E-step: Denote P = [pold(n|xm,Θ)]N×M , where the

posteriori probability of themixture components can be com-
puted applying the Bayes theorem:

pold(n|xm,Θ) =
(1 − γ ) × vmn

(2πσ 2)
D
2
e− ‖xm−yn− f (yn )‖2

2σ2

(1 − γ )
∑N

l=1 vml p(xm |l) + γ /M
(12)

The posteriori probability for the outliers and noise is
defined as follows:

pold(N + 1|xm,Θ) = 1 −
∑N

n=1
pold(n|xm,Θ)

= γ

M(1 − γ )
∑N

l=1 vml p(xm |l) + γ

(13)

The posteriori probability pold(n|xm,Θ) is a soft match-
ing determination, and it indicates to what degree the point
yn corresponds to point xm .

M-step: We revise the parameter Θ = { f, γ, σ } by
minimizing the objective function Eq. 10. Taking partial
derivative of Q(Θ) with respect to σ and setting it to zero,
we can obtain

σ 2 =
∑M

m=1
∑N

n=1 p
old(n|xm,Θ)‖xm − yn − f (yn)‖2

D
∑M

m=1
∑N

n=1 p
old(n|xm,Θ)

.

(14)

Similarly, taking ∂Q(Θ)
∂γ

= 0, we can get

γ =
∑M

m=1 pold(N + 1|xm , Θ)
∑M

m=1 pold(N + 1|xm , Θ) + ∑M
m=1

∑N
n=1 pold(n|xm , Θ)

.

(15)

To solve the minimization with respect to f , we apply Eq. 9
to rewrite the objective function as:
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Q(Θ) = D

2
ln σ 2

M∑

m=1

N∑

n=1

pold(n|xm , Θ)

+ 1

2σ 2

M∑

m=1

N∑

n=1

[
pold(n|xm , Θ)‖xm − yn − f (yn)‖2

]

− ln(1 − γ )

M∑

m=1

N∑

n=1

pold(n|xm , Θ)

− ln γ

M∑

m=1

pold(N + 1|xm , Θ) + λ

2
tr(WTRW ). (16)

Let ∂Q(Θ)
∂R = 0 and R can be obtained from

(R + λσ 2(diag(P1))−1)W = (diag(P1))−1PX − Y,

(17)

where P = [pold(n|xm,Θ)]N×M , and 1 is a column vector
of all ones.

The proposed algorithm runs E-step and M-step itera-
tively until δ2 < δ2f inal , which is summarized in Algorithm
1.

Algorithm 1 Non-rigid point set registration using IGMM
Input:

The template point set: X , and the target point set: Y .
Output:

Transformation T and correspondence confidence P .
1: Begin

2: Initialize parameters: f (yn) = 0, σ 2 =
M∑

m=1

N∑
n=1

‖xm−yn‖2

DMN , 0 < γ < 1
is the initial outlier ratio and can be any real value.

3: Compute kernelmatrixRusing the definitionofRns = e
− 1

2
‖yn−ys ‖2

β2 .

4: Compute local shape context of the point set X according to Eq. 1.
5: Repeat
6: Compute the transformed point set T (Y ) according to Eq. 1.
7: Compute �mn according to Eqs. 2 and 3.
8: Compute vmn using Eq. 5.
9: E-step: Compute the posteriori probability matrix P =

[pold(n|xm ,Θ)]N×M according to Eq. 12, and solve the posteriori
probability for outliers and noise using Eq. 13.

10: M-step:

∣∣∣∣∣∣∣∣

(1) update σ 2 according to Eq. 14.
(2) update γ according to Eq. 15.
(3) update mapping f using Eqs. 9 and 17.
(4) Compute T (Y | f ) = Y + f (Y ) .

11: Until satisfy a termination condition: δ2 < δ2f inal .
12: Transformation T (Y | f ) = Y + f (Y ) is obtained, and correspon-

dence confidence is given by P .
13: return Transformation T and correspondence confidence P .

In our algorithm, all the parameters are set on the basis
of the experimental evaluations. The parameter α is utilized
to adjust the reliability of the probability measures, which
controls the weight of Gauss components and is set to 1. The

GRBF parameter β defines the model of the non-rigid trans-
formation, and we empirically set β to 1. The parameter λ

plays an important role in controlling smoothness regular-
ization, and λ is empirically set to 8. The parameter δ2f inal is

set to 10−8.

3 Experiments and analysis on synthetic data

In this section, to evaluate the performance of our proposed
algorithm with respect to deformation, noise, outliers and
occlusion, we compare our approach with six state-of-the-
art algorithms: GMMReg [16], AGMReg [18,19], CPD [22],
SC-TPS [24], RPM-L2E [32], and CA-LapGF [33] on the
Chui−Rangarajan synthetic data set as done in [14] and the
3D face data as employed in [22]. The experiments are con-
ducted in MATLAB R2014a, and tested on a Pentium Core
I7-6700 CPU with 8GB RAM.

3.1 Results on 2D point set registration

The 2D data set includes two different shape models: a f ish
and a Chinese character shape. The f ish shape consists of
96 points, and the Chinese character is a more complicated
model consisting of 108 points. For each model, four groups
of data sets are designed to assess the performance of reg-
istration methods in face of deformation, noise, outliers and
occlusion. When evaluating the robustness to test, the trans-
formation model is based on Gaussian radial basis functions
(GRBF), whose coefficients are satisfiedwith aGaussian dis-
tribution with zero mean and standard deviation that ranges
from 0.02 to 0.08. In the noise test, the positional noise is
defined as Gaussian noise with zero mean and standard devi-
ation ranges from 0 to 0.05. Both outliers and occlusion test
cases denote that some points of one set have no correspond-
ing point in the other point set. The outlier and occlusion
rate ranges from 0 to 2 and 0 to 0.5, respectively. For the
f ish and Chinese character shape, 100 samples are gener-
ated in each degradation level and there are 4000 samples in
the aggregate.

We estimate the registration error to evaluate the per-
formance of registration methods. The registration error is
defined as the mean squared distance between the corre-
sponding points after the registration, which is given as
follows:

Error =
√√√√ 1

Ntotal

Ntotal∑

k=1

(xk − T (yk))2, (18)

where Ntotal denotes the total number of true correspon-
dences, and xk corresponds to yk in the ground truth.
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Fig. 2 Registration examples
on the f ish point set. Notice
that we align the target point set
(blue circles) onto the template
point set (red ‘+’). The leftmost
column is the template point set
and target point set. From the
second column to the rightmost
column, the registration results
of GMMReg, RPM-L2E, CPD,
AGMReg, CA-LapGF, SC-TPS
and our method, respectively.
From top row to bottom row: the
deformation (0.08), noise (0.05),
outliers (2) and occlusion (0.5),
respectively

Point Sets GMMReg RPM-L2E CPD AGMReg CA-LapGF SC-TPS Our Method

3.1.1 Non-rigid f ish point set registration

The registration results on the f ish point set are illustrated
in Fig. 2, in face of the largest degree of degradations, such
as deformation level to 0.08, noise level to 0.05, outlier ratio
to 2 and occlusion ratio to 0.5. From Fig. 2 we can see the
GMMReg algorithm and our proposed method perform well
for non-rigid deformation. There is nowinnerwhen the target
point set is disturbed by the largest variance Gaussian noise.
The AGMReg method performs best in face of outliers, fol-
lowed by our proposed method. In the occlusion test, our
method gets superior registration results.

To further explore the performance of registration meth-
ods, quantitative comparative experiments on the f ish
dataset under four degradation scenarioswere conducted.We
use error bars of the registration results of all the 100 samples
to assess the registration performance of all algorithms. The
error bars depict the mean and standard deviation of the reg-
istration errors. We summarize the experimental results in
Fig. 3. According to Fig. 3a, we can see that our method
performs best due to adopting the robust local features.
Figure 3b shows the registration performance when adding
Gaussian noise, all algorithms except AGMReg can achieve
quite satisfactory results, and the proposed method gets the
best registration results. Figure 3c depicts the performance
for the f ish dataset with outliers. The best performance is
obtained by AGMReg, followed by our algorithm. Figure 3d
shows the registration results in the presence of increasing
levels of occlusion. Our algorithm and CA-LapGF perform
better due to applying local features. Figure 3e–h separately
denotes the average time consumed by the registration meth-

ods at different levels of deformation, noise, outliers and
occlusion.We can seeGMMReg andCA-LapGF spendmore
time in all four groups of tests; in the meanwhile, the CPD
algorithm costs less time, however, performed worse, see
Fig. 3c.

In summary, the registration rate of all methods decreases
with the degree of degradation increasing. Our algorithm per-
forms more desirably in general because of having applied
robust features to construct the IGMM. GMMReg performs
well in the deformation, noise and occlusion tests, but it
cannot capture the true distributions of the point sets with
outliers. The AGMReg method performs best in the outlier
test; however, it performsmuch poorer in the other three tests
and its registration rate fluctuates strongly. Because it is not
sufficient to assign point sets only capturing global distri-
butions without considering the local structure of the point
set. The CA-LapGF uses features and Laplacian Regularized
Gaussian Fields (LapGF) to solve the point set registration,
and it performs well in the outlier and occlusion tests; how-
ever, it costs much more time. The CPD method achieves
good performance in deformation, noise and occlusion tests
and spends less time than others, but the sensitivity to out-
liers makes it perform poorly in the outliers test. Our method
is more time-consuming than CPD, that is because we apply
local feature similarity to construct the IGMM. In addition,
we iteratively estimate the outlier ratio, which allows the pro-
posed algorithm to obtain better results than the CPDmethod
in the outliers test. The SC-TPS and RPM-L2E algorithms
consistently perform well in the presence of deformation,
noise and occlusion because of the robustness of shape con-
text; however, they are vulnerable to outliers. In general, our
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Fig. 4 Registration examples
on the Chinese character point
set. Notice that we align the
target point set (blue circles)
onto the template point set (red
‘+’). The leftmost column is the
template point set and target
point set. From the second
column to the rightmost column,
the registration results of
GMMReg, RPM-L2E, CPD,
AGMReg, CA-LapGF, SC-TPS
and our method, respectively.
From top row to bottom row: the
deformation (0.08), noise (0.05),
outliers (2) and occlusion (0.5),
respectively
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method obtains better registration results in all degradation
experiments.

3.1.2 Non-rigid the Chinese character point set
registration

The experimental results on the Chinese character point set
are shown in Fig. 4 which shows four test modes, with vary-
ing levels of degradation applied. We set the deformation
degree to 0.08, noise level to 0.05, outlier ratio to 2 and
occlusion ratio to 0.5. Different from the f ish shape, points
of the Chinese character are far away from each other, that
is to say, it is not well clustered. In the deformation test,
GMMReg, AGMReg and our method perform better than
the other four algorithms. Noise is a challenge for all meth-
ods, and none of the competing methods obtain satisfactory
registration results when the noise ratio is very large. The
AGMReg algorithm performs best, followed by our method
and RPM-L2E; however, when there are missing points in
the target point set, our method outperforms the other tested
approaches.

In the following experiments, we test the performance of
the registrationmethods on theChinese character under four
degradation scenarios, where we generated 100 samples for
each degradation level. The quantitative evaluation results
are depicted in Fig. 5. In Figure 5a, we can see that the
average error of all approaches gets larger as the deformation
level is increasing. The error of our algorithm increasesmuch
slower than the others. Figure 5b shows that all algorithms
except AGMReg can get a good registration performance
with the noise level ranging from 0 to 0.05. Our proposed
method performs slightly better than SC-TPS, RPM-L2E,
CA-LapGF and GMMReg. Figure 5c evaluates the regis-

tration performance of all algorithms against outliers. The
AGMReg algorithm gets best experimental results, followed
by our method. In Fig. 5d, all algorithms besides AGMReg
can get satisfactory results under occlusion scenarios, and our
proposed method performs best. From Fig. 5e–h, we show
the average time consumed by the registrationmethods under
different degradation. Due to more points and more compli-
cated structure relative to f ish shape, the time consumed on
the Chinese character point set registration increases faster
than on the f ish dataset. GMMReg and CA-LapGF need
more time to accomplish the registration; however, the CPD
algorithm costs the least time.

Relatively speaking, our proposed algorithm performs
much better under these large degradations. The GMMReg,
SC-TPS, RPM-L2E and CPD perform well in deformation,
noise and occlusion tests; however, none of them can get
good registration results with respect to outliers. When the
target point set contains outliers, the distribution of point
sets is asymmetrical, so the GMMReg is inapplicable in this
case. Both SC-TPS and RPM-L2E unite shape context to
achieve the registration, but they are not robust to outliers.
The CPD algorithm cannot perform better in the outliers
scenarios due to the unknown outlier ratio. In contrast, the
AGMReg approach performs best in the case of outliers,
but gets poorer results in the other three degradations. CA-
LapGF performs well under noise, outliers and occlusion;
however, it is sensitive to the deformation of the point sets.
In addition, CA-LapGF is muchmore time-consuming under
all experiments. In general, our proposed algorithm obtains
better assignments over all degradations in the experiments.

In summary, the overall trend of error bars on theChinese
character is similar to the results of the f ish set registration,
especially in the aspect of the noise experiment. However,
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Table 1 Average time
consumed of registration
methods

Time(s) Algorithms

Degradation GMMReg RPM-L2E CPD AGMReg CA-LapGF SC-TPS Our method

Deformation 97.8126 63.5080 2.2464 131.1188 436.4908 14.3053 14.5081

Noise 97.3290 55.5520 1.2324 128.6228 442.3564 15.7873 17.8153

Outliers 116.6731 123.7088 3.4320 139.1373 433.9792 41.0283 108.5767

Occlusion 58.8592 141.5865 2.5428 77.4857 257.6201 35.7086 168.74

the registration errors of all tested methods decrease slightly
faster compared to the f ish point set, because the Chinese
character point set is not well clustered, and its structure is
more complex.

3.2 Results on 3D face point set registration

We test the registration methods on the 3D face point set
in this experiment. The 3D face data set includes two point
sets, and there is a non-rigid deformation between these two
point sets (template point set and target point set). Each 3D
face data set consists of 392 points. We construct three point
pairs with respect to noise, outliers and occlusion on basis
of the original 3D face data structure, respectively. In the
noise test, we added positional noise to the coordinate of
each point from target point set. In the outlier test and occlu-
sion test, we randomly increase and reduce points in the
target point set, respectively. Figure 6 shows experimental
results of several registration methods. GMMReg, AGM-
Reg and our proposed approach outperform other methods
in the deformation scenario. In the noise test, our algorithm
and CPD obtain better registration results. The AGMReg
approach gives the best assignment with respect to outliers,
followed by our method. When the target point set contains
missing points, the proposed algorithm performs better than
the other tested approaches. Table 1 gives the average time
consumed of all registration algorithms. In Table 1, one can
see our proposed approach is more time-consuming than SC-
TPS and CPD; however, in general, the proposed method is
acceptant and available to deal with 3D point set registra-
tion.

4 Experiments and analysis on real-world image
data

In this section, we evaluate the proposed approach via eight
groups of real-world images. These images are from the
Oxford affine covariant data sets provided by Mikolajczyk
et al. [34], which are bark, bike, boat , gra f , trees, leuven,
ubc and wall sequences, respectively, and shown in Fig. 6.
Each sequence contains six frames of images. The registra-
tion image pairs are constructed from the 1st frame to the

2nd, 3rd, 4th, 5th, 6th frame. There is varying amounts of
blur, and light, and difference in the ratio of JPEG compres-
sion, scale, and rotation between the image pairs. The degree
of degradations is gradually increasing as the increasing of
the frame. To construct the template and target point sets, we
firstly extract the SIFT [35] feature points from each image
pairs and then combine the BBF (Best bin first) algorithm
[36] with the Random sample consensus (RANSAC) strat-
egy [37] to construct initial correspondences. Finally, we
randomly select some points from these initial correspon-
dences. In bike, trees, leuven, and ubc tests, the template
and target point set include 200 points, respectively. In bark,
boat , gra f , andwall tests, we randomly choose 100, 75, 55,
and 30 points, respectively. (The selected number of points
is based on the number of initial correspondences.)

We select the largest degradation between image pairs,
that is to say, the 1st and 6th frame images of each sequence,
to verify the applicability and robustness of our proposed
method. The matching results are depicted in Fig. 7. We
can see our proposed algorithm is available to real-word
images registration.We next assign the 1st frame to other five
frames to test the performance of the registration methods.
The SC-TPS, GMMReg and AGMReg algorithm perform
much poorer on our data sets so that we cannot properly
depict the curve of registration error. The constructed tem-
plate and target point sets are employed to test RPM-L2E,
CA-LapGF, CPD and the proposed method. The perfor-
mance of the registration algorithms are displayed in Fig. 8.
According to the experimental result, we can see that the CA-
LapGF algorithm obtains poorer results on the eight group
of datasets, and our proposed algorithm performs a slightly
better than CPD and RPM-L2E in most cases. In the bark
and boat test, the registration error of all methods is much
larger due to varying scale and rotation between image pairs.
Because there are larger change of viewpoint in the gra f
datasets, registration approaches cannot obtain better results.
However, on the wall dataset with varying viewpoint, the
registration error is lower due to the structure of the wall
dataset. According to the bikes and trees test, we can see
that registration methods are robust to blur in the images.
Figure 9e, g shows that when there are varying light condi-
tions and degrees of JPEG compression between the image
pairs, our proposed algorithm still performs well. The pro-

123



A robust non-rigid point set registration method based on inhomogeneous Gaussian mixture models 1411

Fig. 7 Examples of the Oxford
affine covariant regions datasets.
From a–h, there are bark, bike,
boat , gra f , trees, leuven, ubc
and wall, respectively. Each
sequence has five image pairs
from 1 and 2 to 1 and 6

Fig. 8 The matching results of
our proposed method on the 1st
and 6th frame of eight sequence
of images. a bark (44 out of
100), b bike (184 out of 200), c
boat (71 out of 75), d gra f (45
out of 55), e trees (184 out of
200), f leuven (184 out of 200),
g ubc (168 out of 200) and h
wall (30 out of 30)

posed approach outperforms other methods on most tested
image pairs.

5 Conclusion and future work

In this paper, we propose a robust non-rigid point set regis-
tration method based on Inhomogeneous Gaussian mixture
models (IGMM), which differs from many traditional reg-
istration methods based on the Gaussian model. First, since
the local relationship among neighboring points is mostly
well preserved under non-rigid transformations, we apply a
robust neighborhood structural descriptor, local shape con-
text to describe the two point sets, and compute the matching
scores of local descriptors. Then, we calculate the feature
similarity on the basis of the matching measure. According
to the feature similarity, each Gaussian mixture component

is assigned a different weight, which can more easily make
correspondence points form a assignment, while many tradi-
tional registration methods are based on the Gaussian model
using a single weight parameter. Finally, we presented the
necessary proofs in the domain of regularization theory and
formulated the problem as a likelihood maximization prob-
lem, which we solve by updating transformation parameters
and the outlier ratio using theEMalgorithm.Extensive exper-
imental results on synthetic and real-world image data sets
illustrate that our proposedmethod outperforms several state-
the-art algorithms.

However, there are also some noticeable aspects to expand
this work in the future. We utilize the local shape context
to define the weight of each Gaussian mixture component,
the process is always iterated, so the proposed algorithm
is slightly time-consuming. Therefore, it would be interest-
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ing to improve the computation efficiency of our proposed
method in the future.
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ciate editor and the reviewers for their time spending and the helpful
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