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Abstract Advanced sensor technology has allowed us to
acquire three-dimensional (3D) information from a scene
using a low-cost RGB-D sensor such as Kinect. Although
this sensor can recover the 3D structure of a scene, it can-
not distinguish a target object from the background. In view
of this, we incorporate an interactive 3D segmentation algo-
rithmwith awell-knownKinect scene reconstruction system,
the KinectFusion, to effectively extract an object from the
scene, and hence obtain a 3D point cloud of the object. With
this system, a user can freelymove theKinect sensor to recon-
struct the scene and then select the foreground/background
seeds from the reconstructedpoint cloud.The systemcan take
over the following tasks to complete the 3D reconstruction
of the selected object. The advantage of this system is that
users need not select the foreground/background seeds very
carefully, which greatly reduces the operational complex-
ity. Moreover, previous segmentation results are inherited to
the next phase as new foreground/background seeds, which
minimizes the required user intervention. With a simple seed
selection, the point cloud of the selected object can be grad-
ually recovered when a user moves the sensor to different
viewpoints. Several experiments were conducted, and the
results confirmed the effectiveness of the proposed system.
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1 Introduction

The popularity of the Kinect sensor has triggeredmany inter-
esting applications that are not limited to skeleton extraction
for games. Because it is a depth sensor, it can generate
continuous depth images of a scene and is thus able to recon-
struct the 3D structure of the scene based on the obtained
depth information. In the field of 3D reconstruction, Kinect
reconstruction is neither the most accurate nor the cheap-
est. Its accuracy cannot be compared with that of expensive
laser-based approaches such as 3D laser scanners and range
finders. Its cost is also higher than that of Structure from
Motion (SfM) techniques. However, it provides a solution
for amateur users who want to reconstruct a 3D model of
an object with acceptable accuracy at an affordable price.
Kinect can produce dense and more accurate 3D reconstruc-
tion than SfM with a much lower price than laser-based
devices.

Although Kinect can be used to recover the 3D struc-
ture of a scene, directly employing the raw measurements
of Kinect in reconstruction leads to poor results. The raw
measurements are quite noisy, and a sophisticated approach
is necessary to overcome this problem. For example, Song
et al. [36] developed an approach to measure the confi-
dence values of depth measurements from Kinect sensor.
With the confidence value, the reconstruction accuracy may
be further improved. Of the approaches for Kinect recon-
struction, KinectFusion [20,27] provides excellent scene
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reconstruction in real time. It solves the problem of noisy
measurements by first applying a bilateral filter [37] to
the depth images to remove measurement outliers. Subse-
quently, a truncated signed distanced function (TSDF) is
maintained on a volumetric space to average or smooth
the obtained depth information. This effectively reduces the
influence of noisy depth information, leading to smooth and
satisfactory surface reconstruction. Although KinectFusion
can provide a good 3D reconstruction of a scene, it can-
not distinguish a target object from the others present. To
achieve this, a 3D point segmentation algorithm is also nec-
essary.

Similar to image segmentation, automatic 3D scene seg-
mentation or understanding is a very difficult issue. Instead
of full automation, if our goal is to extract the 3D model
of an object in a scene, then interactive segmentation pro-
vides a feasible approach to achieve this goal. With the help
of user operations, we can select and delete the points in
the background, preserving the points on the target objects
for subsequent model creation. However, deleting points in
3D space is a tedious work, especially for complex back-
grounds. This work is even more labor intensive compared
with background removal in image segmentation since we
need to choose suitable viewpoints to select 3D points in the
foreground or background.

In view of this, we integrate a user-friendly interactive
segmentation algorithm with a Kinect reconstruction tech-
nique to complete an object 3Dmodel reconstruction system,
aiming to maximally reduce the required user intervention in
themodel reconstruction.We employKinectFusion for scene
reconstructionbecause of its real-time andhigh-accuracy sur-
face reconstruction. In 3D object segmentation, we employ
Lazy Snapping [21], an graph-cut segmentation algorithm
that was originally developed for images and that has been
proved to work well in 2D image segmentation, to reduce the
required user effort in separating the foreground and back-
ground.

Lazy Snapping is a graph-based approach, and its advan-
tages lie in the easy selection of the foreground and back-
ground seeds. Users need to only roughly select the seeds
of the foreground and background. The algorithm can com-
plete the remaining segmentation tasks. It avoids the tedious
work of interactive segmentation at the boundary of fore-
ground/background, and hence its user operation is simple
and friendly. The upper row of Fig. 1 illustrates this point.
By simply drawing on the image to select the foreground
(red line) and background (blue line) seeds, the foreground
can be easily extracted. If the 3D point cloud can be seg-
mented in a similar way, as shown in the bottom row of Fig.
1, the task of extracting target object is greatly simplified.
Another advantage of employing this seed-based approach
is that the segmentation results at the previous time instant
can be inherited to the next time instant as the new seeds,

thus further reducing the user intervention in seed selection.
Users need only to perform seed selection once or a few
times if the user continuously moves the Kinect sensor in
space.

However, to apply Lazy Snappingwe need to define nodes
and edges in this graph-based algorithm. Two mechanisms
were developed in our system: a point-based mechanism
and a cell-based mechanism. In the point-based approach,
each 3D point serves as a node in the graph. Edge defi-
nition is not straightforward, as we need to find adjacent
nodes, which is not as easy in 3D space in comparison with
the image segmentation case where the surrounding pixels
are just the adjacent nodes. To find the adjacent nodes, we
employ a Kd-tree search scheme on the reconstructed point
cloud to improve the search efficiency. Moreover, since the
point cloud in KinectFusion is generated with respect to
the camera coordinate system, we need to align the point
cloud generated from each time instant so that we can prop-
agate the segmentation results from time to time. In our
system, we solve this issue by applying an iterative clos-
est point (ICP) algorithm [42] to align the current point
cloud with the new point cloud generated by KinectFusion.
Although the point-based approach requiresmore processing
in edge definition and point cloud alignment, it can pro-
duce a more dense and complete point cloud for the target
object.

In contrast with the point-based approach, the cell-based
approach defines nodes based on the cells of the TSDF. Thus,
edge definition in the cell-based approach is much simpler
since the TSDF cells have explicit adjacent relations, simi-
lar to an image. Moreover, since each cell is defined with a
globally defined world coordinate system, cell alignment is
also unnecessary. Thus, the cell-based approach is more effi-
cient than the point-based approach. However, because each
cell has a volumetric space, its space resolution is smaller
than that of the point-based approach. To produce a denser
point cloud, a ray-casting approach needs to be applied to
the cell-based segmentation results. The results of apply-
ing the two approaches on 3D object model reconstruction
will be discussed and compared in our experimental sec-
tion.

Another issue of combining KinectFusion with Lazy
Snapping is the computational efficiency since Lazy Snap-
ping cannot be used in real time. To preserve the real-time
feature of KinectFusion, we implement Lazy Snapping
in another thread so that KinectFusion can still operate
smoothly. The segmentation results will be reflected to the
main thread when Lazy Snapping finishes its task. Subse-
quently, the need seeds are transferred to Lazy Snapping
to activate the next segmentation process. With the above
implementations, our system operates as follows. First, a
user moves the Kinect to acquire the 3D information of
the scene. Next, the user selects the foreground and back-

123



Reconstructing three-dimensional models of objects using a Kinect sensor 1509

Fig. 1 Graph-cut image
segmentation and 3D point
cloud segmentation. From the
left to the right are the input
data, seed selection, and final
segmentation

ground seeds from the scene and then the system extracts
the 3D data of the object from the scene. Subsequently, the
user moves the Kinect to acquire more data. Meanwhile,
previously extracted 3Dpoints serve as the new seeds for sub-
sequent segmentation. Thus, after the first segmentation, the
system automatically segments the object when the Kinect
acquires more data. In this way, the model of an object is
dynamically updated and we gradually obtain a complete
model of the object.

To facilitate the operation of the proposed system, an
ArduinomodulewithBlueToothXBee is also included in this
system to replace traditional mouse operations. The Arduino
module is attached to the Kinect sensor to allow users to
move the sensor and simultaneously select the foreground
and background seeds by clicking the buttons on the Arduino
board. This further improves the usability of the proposed
system since the users need not simultaneously operate the
mouse and the Kinect.

In summary, the major contribution of this paper is
that we incorporate the KinectFusion and Lazy Snapping
to develop a real-time and interactive object 3D model
reconstruction system. Two mechanisms for graph construc-
tion, the point- and cell-based approaches are devised, and
their performance is evaluated. An Arduino module with
BlueTooth XBee is also included in the system to facil-
itate the operation of the system. With these features, a
user can hold the Kinect to quickly reconstruct the 3D
model of a target object with little user operations. In
the following sections, we will describe our system in
detail.

The remainder of this paper is organized as follows. In
the following, a related work is presented to further address
the position of our system with respect to other researches.
In Sect. 3, the framework of our system is introduced. Later,
the key points of KinectFusion are described. An interac-
tive segmentation algorithm is also discussed in this section.
Section 4 presents the experimental results of applying our
system in 3D object model reconstruction for several cases.
Finally, we conclude in Sect. 5.

2 Related work

Creating 3D models of objects plays a very important role
for a variety of 3D-based applications such as virtual real-
ity (VR), augmented reality (AR), games, and animation.
Approaches for creating 3D object models can be roughly
categorized into two types:modeling using powerful 3D soft-
ware such as 3DsMax orMaya and reconstructing the object
model using specially designed instruments such as 3D scan-
ners.

Although 3Ds Max and Maya have the advantage of cre-
ating models that do not exist in the real world, they are
typically very expensive and require specialized skills to
operate them. They cannot be applied by non-expert users
to create a simple model of an existing object for simple
applications. From this viewpoint, the approach for recon-
structing a model using an instrument is easier and more
straightforward.

Generally, the approaches for sensing 3D information can
be classified as active and passive. Active method indicates
that we reconstruct the 3D structure of a scene by actively
measuring the 3D information of an object. 3D laser scanners
and time-of-flight techniques [19] are representatives of an
activemethodwhere a laser beam or LED light is emitted and
projected onto the object to acquire 3D data. Typically, 3D
laser scanners can produce very accurate 3D measurements,
but they are also very expensive devices. In comparison with
active approaches, passive approaches achieve 3D recon-
struction by the light reflected from an object.

Typical passive approaches include binocular stereo [5,
9,14], photometric stereo [8,18], structure from motion
[29,34], and shape from contour [43] or shape from sil-
houette [10,33]. In general, passive approaches require more
sophisticated algorithms to produce satisfactory reconstruc-
tion results. For example, Sahillioğlu andYemez [33] develop
a coarse-to-fine surface reconstruction system based onmesh
deformation. The system can produce watertight surface
models of complex objects from the silhouette of the object
and range data. Dibra et al. [10] introduced a method for
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human body shape estimation from the silhouette. This
approach employs the very hot convolutional neural networks
to achieve the task. Sometimes, the passive approach may
require some manual operations to achieve better results and
this leads to interactive modeling. For instance, VideoTrace
[39] is an image-based interactive modeling approach. In
this system, a user must go through the image sequence and
draw some polygons on the image to indicate the faces of an
object. Later, the 3D positions of points on the polygons are
determined and the polygonal mesh representing the object
is recovered. PhotoSketch [41] is another image-based inter-
active modeling system that can be used create the model of
a building from urban scenes.

Recently, because of the popularity of Kinect sensors in
the field of gaming, 3D reconstruction using a Kinect sensor
has received much attention. Kinect is actually a structured
light approach [1,15,30], which actively projects a specific
pattern onto the environment and then obtains depth data
by analyzing the deformation of the pattern in the captured
image. There are two cameras in a Kinect sensor: an ordinary
RGB camera and an infrared camera. The infrared camera
can capture the image composed of a number of dots pro-
jected by the Kinect infrared projector. By comparing the
captured infrared image with a benchmark, a depth image
of the scene is generated and hence Kinect is an RGB-D
sensor. Because of the low-cost and moderate accuracy of
Kinect, some researchers tried to exploit it in various com-
puter vision applications. Han et al. [16] gave a review about
using Kinect in the fields of object tracking and recognition,
human activity analysis, hand gesture analysis, and indoor
3D mapping and indicated the merits of using RGB-D sen-
sor such as Kinect in these fields. In particular, this paper also
addressed several works relevant to KinectFusion, including
the comparison of KinectFusion with high-end ground truth
generation techniques [25], the adaption of KinectFusion to
more realistic situations such as large lighting variations
[23,24], allowing camera roam free [31], and unbounded
environment [40]. Recently, Kinect is also employed in the
field of underwater 3Dmapping to replace expensive LIDAR
technology [2].

Kinect can also be applied in the SLAM applications
[11–13,17]. Engelhard et al. [13] used a Kinect sensor to
implement a real-time visual SLAM. This approach is devel-
oped on the basis of SURF features [3]. A number of SURF
features are detected andmatched in the image sequence, and
a 3D feature map is created from these features. The feature
map is later used in camera tracking via an ICP algorithm
[42]. Finally, a complete 3D model of the scene is recon-
structed.

Endres et al. [12] developed a SLAM system and evalu-
ated the accuracy, robustness, and processing time for three
feature detection techniques, namely SIFT [22], SURF, and

ORB [32], and concluded that their system can robustly
tackle difficult data in common indoor environments.

Henry et al. [17] utilized the depth and color information
provided by a Kinect sensor to develop an RGB-D ICP algo-
rithm. This algorithm uses SIFT for feature detection and
matching and employs GPU to improve computational effi-
ciency. The detected features are first filtered by a RANSAC
algorithm to remove outliers. Later, an initial translation and
rotation between the features in each frame are estimated and
refined by the ICP algorithm to acquire more accurate cam-
era tracking. Finally, a complete 3D model of the scene is
constructed. Du et al. [11] later enhanced the algorithm by
including a concept called visibility conflicts. This technique
can tackle some visual errors so as to improve the stability of
the RGB-D ICP algorithm. Moreover, Du et al.’s system has
the functionality of self-checking, which can remind users
which parts of the reconstructed 3D data are incomplete or
have errors, allowing the users to enhance data acquisition
for those parts.

Unlike previous approaches that use color and depth data
for 3D reconstruction, Newcombe et al. [27] developed a tool
called KinectFusion, which employs only the depth data for
3D scene reconstruction. The reason for using only the depth
data is that image color is easily influenced by ambient light
and is therefore less robust than depth data. In KinectFusion,
the space is partitioned into a number of cells and a truncated
signed distance function (TSDF) is assigned for each cell.
The TSDF records the distance from the surface of an object
to the cell; thus, the surface of the scene can be estimated by
the zero level set of the function. KinectFusion employs the
GPU to process the depth data in parallel and can achieve
real-time 3D reconstruction of the scene.

Song et al. [35] also developed a system for scene surface
reconstruction using a Kinect sensor. However, this system
is quite similar to KinectFusion. Both employ volumetric
representation and TSDF for surface reconstruction.

Previous approaches can all be used to reconstruct the
3D model of a scene. However, they cannot distinguish an
object in the scene from other objects. That is, if we want to
reconstruct the 3Dmodel of an object in the scene, we need to
segment the reconstructed scene to extract the desired object.
Izadi et al. [20] provided a simple approach to extract the 3D
model of a specific object in a scene on the basis of Kinect-
Fusion. Their idea is based on detecting the difference in the
reconstructed 3D scenemodel at different times.Hence, if we
want to acquire the 3Dmodel of an object, we can remove the
object after the scene has been reconstructed. By comparing
the difference between the scene before and after removing
the object, the piece of 3D information for this object can be
extracted.

The above approach is straightforward, but it cannot be
applied to stationary objects or if we want to reconstruct
only a portion of an object. Chen et al. [6] proposed a simple
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mechanism to extract an object from a reconstructed surface
based on a Kinect sensor. They employed a maximum and a
minimum threshold distance to separate the object from the
background. When the distance between the reconstructed
point and the camera exceeds the threshold range, the point
is automatically cut to preserve the target object. Because the
depth image from Kinect is noisy, the reconstructed point
cloud may contain some holes, which leads to large trian-
gles when converting to a polygonal mesh model. Moreover,
the recovered polygonalmeshmodelmay have sharp features
and an unsmooth surface. Chen et al. applied a bicubic spline
function to smoothen the model. Actually, point cloud seg-
mentation is not the major concern of Chen et al.’s research.
Their system may require some trial and error to adjust the
thresholds so that the target object can be well extracted. It
also needs to very carefully set up the viewpoints to remove
the background points especially at vicinity where the fore-
ground and the background surfaces meet. Moreover, this
approach may not work well if an object has concave shape.
Figure 2 shows an example of point cloud extraction using the
min/max thresholds. Obviously, if the thresholds or the view-
points are not well set, the extracted point cloud may have
holes or the background pointsmay not bewell removed such
as the points in the table in Fig. 2.

Another approach that is suitable for automatic indoor
scene 3D reconstruction and understanding was proposed
by Chen et al. [7]. This system was developed based on
automatic semantic modeling, where the 3D scene is first
reconstructed using a Kinect sensor and then the system
extracts objects in the scene by comparing them with models
in a database. The spatial relationship between each object
is calculated and is exploited to create a more accurate scene
structure. Finally, a semantic 3D model is recovered for
the scene. However, because model creation is achieved by
comparing the reconstructed surface with existing models,
the system is not suitable for objects that are not in the
database. Moreover, the extracted model is the most sim-
ilar object in the database, not the physical object itself.
Morana [26] devised another system for 3D scene reconstruc-
tion using Kinect. Unlike Chen et al.’s approach, Morana
employed superquadrics to model the objects and hence
model matching is replaced by parameter optimization of
superquadrics. Because of the feature of superquadrics com-
position, this system is not applicable to objectswith irregular
shapes.

The software Skanect allows users to reconstruct a model
using a Kinect sensor. However, this software requires users
to manually cut the undesired part and thus is more suitable
for objects with clean backgrounds. For complex back-
grounds, users need to carefully change the viewpoints and
select the surface that is not part of the target object, and
hence the operation is sometimes tedious. Compared with
the previous approaches, our system can create the model of

a target object with acceptable accuracy and fewer user inter-
ventions and is therefore more user-friendly. SemanticPaint
[38] is an amazing interactive 3D scene reconstruction and
understanding technique.Bycombiningdifferent techniques,
including KinectFusion, online learning, speech recognition,
andmeanfield inference, this systemcandistinguishdifferent
objects from the reconstructed scene in real time. Actually,
because this system is developed based on an online deci-
sion forest training, it may lead to false labeling for objects
with similar shapes. Hence, it sometimes requires interac-
tive corrections to amend the false labeling. In addition, the
system requires a user to reach out and touch the object to
initialize the labeling of a new object; thus, it may not be
friendly for remote or untouchable objects. In contrast to
interactive systems, Pan and Taubin [28] developed a fully
automatic system for point cloud segmentation. However, the
point cloud is frommulti-view reconstruction and the system
assumed that the target object is at the center of the input
images. In addition, the system cannot be run in real time.
Compared with previous approaches, our approach is a real-
time system and becausewe focus on target object extraction,
we do not have the issue of false labeling. Moreover, because
we select foreground/background seeds from the screen, we
do not need to physically touch the target object. We sum-
marize the advantage/disadvantage of previous approaches
in Table 1 for comparison.

3 Proposed system

The system diagram of our system is depicted in Fig. 3. The
entire process is divided into two parts. The first part is scene
reconstruction.Here, the 3D information of the scene, includ-
ing the objectwewant to reconstruct, is constructed. This part
is mainly based on KinectFusion [27].

The second part of our system is object extraction. Here,
we apply an interactive segmentation algorithm, Lazy Snap-
ping [21], to extract the 3D data of the desired object. Note
that the KinectFusion is run in the GPU and therefore can
achieve real-time 3D scene reconstruction. On the other
hand, Lazy Snapping requires some user operations to select
the foreground and background seeds. In addition, it can-
not operate in real time. To avoid destroying the real-time
characteristic of KinectFusion, the entire process of object
extraction is run in a different thread and the results are
updated each time a segmentation is completed.

As discussed in Sect. 1, we have two schemes for selecting
the nodes for Lazy Snapping segmentation: the point- and the
cell-based approaches. For the cell-based approach, the 3D
positions of the TSDF cells are directly used to construct the
graph, while for the point-based approach, we employ the
reconstructed 3D points that are generated by a predicting
surface process as the nodes of segmentation. This point is

123



1512 C.-H. Teng et al.

Fig. 2 Point cloud
segmentation using our system
and the approach of min/max
thresholds for two different
conditions. a One of the input
RGB images. b Extracted point
cloud (the statue) using our
system. c, d The extracted point
cloud using min/max thresholds.
The point cloud may contain
holes or background points if the
viewpoints and the thresholds
are not carefully chosen

Table 1 A summary of related point cloud segmentation techniques

Techniques Advantages Disadvantages

Chen et al. [6] Real time Need to carefully adjust viewpoints and the min/max
thresholds to extract the foreground

Chen et al. [7] Automatic semantic modeling Need to match the objects with those in a database

Morana [26] Automatic modeling Only suitable for the objects with superquadric shapes

Pan and Taubin [28] Automatic segmentation Offline process, objects should be at the center of images

SemanticPaint [38] Real time, user-friendly for room-scale
3D scene reconstruction and labeling

Need to touch the objects, sometimes the objects with
similar appearance may be falsely labeled

Proposed system Real time, user-friendly for target object
3D reconstruction

Only suitable for small-scale objects

Fig. 3 System diagram of the
proposed system

addressed in Fig. 3, which shows one branch from the mod-
ule of ‘’Maintain the TSDF” and another branch from the
“Predict the Surface”. Although we plot the two branches
in the diagram simultaneously, one of them is sufficient to
complete the segmentation task, depending on the method
used.

Although our system requires user interaction in select-
ing the foreground/ background seeds, this process need not
be activated each time we perform the segmentation. Pre-
viously obtained segmentation results can serve as the new
foreground and background seeds to continuously update the
segmentation results. This point is illustrated by the feed-
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Fig. 4 Some intermediate
results of proposed system. a
The input color image. b The
corresponding depth image. c
The computed 3D points from
the depth image. d Surface
predicted by KinectFusion. e
Foreground (green points) and
background (red points) seed
selection. f Final point cloud
segmentation

back path from the final module of object extraction to the
first module of seed selection in Fig. 3.With this mechanism,
the points on the object can be gradually reconstructed when
we move the sensor around the object after the initial seed
selection.

To further understand the overall process, we have shown
some intermediate results in Fig. 4. Figure 4a, b shows
one frame of input RGB and depth image. Figure 4c is the
computed point cloud from the current depth image. The
predicted surface of KinectFusion is displayed in Fig. 4d.
Figure 4e, f is the results of seed selection and final point
cloud segmentation. In the following, the procedures of scene
reconstruction and object extraction of our system are dis-
cussed in detail.

3.1 Scene reconstruction

Our scene reconstruction is finished by KinectFusion. The
basic idea of KinectFusion is to maintain a TSDF on a vol-
umetric space. To obtain the TSDF, the space is partitioned
into a number of cells with each cell recording a TSDF value.
This is illustrated in Fig. 5, where the 3D space is simplified
to a planar diagram for concept illustration. The surface of an
object is located at the zero level set of theTSDF.To construct
and maintain the TSDF, several steps as depicted in Fig. 3
are employed to process the depth data generated by Kinect.
These steps are described in the following subsections.

3.1.1 Computing 3D points and normals

When the Kinect sensor generates the depth data for a scene,
the data are processed to update the TSDF values. The first
step to achieve this is to transform the depth data into a num-
ber of 3D points and the associated normals. These 3D points
and normals can be used to estimate the camera pose of the
current frame.

Fig. 5 A 2D illustration of the TSDF. The red curve represents the
position of a surface

Let Rk(u) denote the depth data generated by Kinect at
time k. Rk(u) is actually a depth image where u = (u, v)

denotes the image coordinates. In general, the depth data
Rk(u) are noisy. In KinectFusion, the data are processed by
a bilateral filter [37] to obtain a clean depth data Dk(u) as
follows:

Dk(u) = 1

Wp

∑

q∈U
NσS (‖u − q‖2)

·Nσr (‖Rk(u) − Rk(q)‖2)Rk(q) (1)

whereU represents the set of all image coordinates, Nσ (t) =
exp(−t2σ−2), ‖x‖2 indicates the L2-norm of x, and Wp is
a normalization term. A bilateral filter is similar to a Gaus-
sian filter, but the data with large deviations are weighted
by another Gaussian function to remove the influence of the
outliers.

With Dk(u), the 3D interpretation of each pixel in Dk(u)

can be obtained by

Vk(u) = Dk(u)K−1u̇ (2)

where u̇ is the homogeneous coordinate representation of u
andK is the camera calibration matrix of Kinect. The idea of
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Fig. 6 An example of point
cloud generated by Kinect. a
The input depth image. b, c The
point cloud generated by Kinect
from different viewpoints. d The
surface generated by
KinectFusion

(2) is that we can employ the inversematrix ofK to transform
a point from image coordinates to camera coordinates and the
point becomes a 3D point in the camera coordinate system
after multiplying the depth of this point. Because the depth
data are actually images, we can immediately find the normal
associated with each 3D point by the formula

Nk(u) = Nor [(Vk(u + 1, v) − Vk(u, v))

×(Vk(u, v + 1) − Vk(u, v))] (3)

where Nor(x) = x/‖x‖2, which represents vector normal-
ization. The 3D points and the normals are used in the
subsequent step for estimating the camera pose. Figure 6
shows an example of computing point cloud from a depth
image. The generated point cloud will be used in the subse-
quent module for camera pose estimation.

3.1.2 Estimating the camera pose

Camera pose estimation is a critical step in KinectFusion as
we need this information to update the TSDF values from
the current depth data. In KinectFusion, camera tracking is
achieved by exploiting the camera pose of the previous frame.
First, a set of 3D points is estimated from the TSDF using the
camera pose of the previous frame. The process for gener-
ating 3D points from the TSDF is called surface prediction.
KinectFusion assumes that the camera ismoved slowly; thus,
the camera poses for two adjacent frames will not differ too
much. Hence, by utilizing an ICP algorithm on the predicted
3D points and the measured 3D points, the camera pose of
the current frame can be estimated.

3.1.3 Maintaining the TSDF

When the camera pose of the current frame is estimated, the
TSDF values can be updated using the current depth data.
For each cell p in space, the TSDF value is computed by the
following equations:

FRk (p) = �(λ−1‖tg,k − p‖2 − Rk(x)) (4)

λ = ‖K−1ẋ‖2 (5)

x =
⌊
π(KT−1

g,kp)
⌋

(6)

�(η) =
{
min(1, η/μ)sgn(η), if η ≥ −μ

null, otherwise
(7)

where Tg,k represents a transformation between the camera
coordinate system of Kinect at time k to the world coordinate
system, i.e., ifpc is a point in the camera coordinate system, it
can be transformed to the world coordinate system by pw =
Tg,kpc. Tg,k is a 4 × 4 matrix with the following form:

Tg,k =
[
Rg,k tg,k
0 1

]
(8)

where Rg,k and tg,k are the estimated camera rotation and
translation in world coordinate system, i.e., the camera pose
of Kinect at time k.

In (6), π represents the process of image projection and
the notation �� indicates the selection of the nearest integer
point. Equation (6) indicates that for any point p in space,
we first transform it from the world coordinate system to the
camera coordinate system of the current frame by using the
estimated camera pose and then project it onto the image
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Fig. 7 Predicting the parameter t = t∗ of a point on a surface (red
line)

plane to obtain x. Hence, x is actually the imaged point of p
by the Kinect at time k. Substituting x into the depth image
Rk , we can obtain the depth value at the direction top. Finally,
in (4), ‖tg,k − p‖2 indicates the distance of p to the center
of the camera and hence λ−1‖tg,k − p‖2 is just the depth
distance of p to the camera. By subtracting λ−1‖tg,k − p‖2
and Rk(x), and putting the result into a truncated function
�(η) in (7), the TSDF value at a point p for the depth data
Rk(u) is obtained.

FRk (p) in (4) is just the TSDF values estimated from the
depth data at time k. The data are then used to fuse with the
previous TSDF to obtain a newTSDF at time k. The update is
achieved by linearly combining the previously accumulating
TSDF with the current TSDF, as follows:

Fk(p) = Wk−1(p)Fk−1(p) + WRk (p)FRk (p)

Wk−1(p) + WRk (p)
(9)

Wk(p) = Wk−1(p) + WRk (p) (10)

where WRk (p) ∝ cos θ/Rk(x) and θ is the angle between
the surface normal and the ray from the camera center to p.
This weight indicates that if the surface faces the camera, the
depth value is more reliable.

3.1.4 Predicting the surface

The surface of the scene can be estimated from the TSDF if
the TSDF is correctly maintained and updated. The predicted
surface can be used in camera pose estimation for new frames
and in subsequent object segmentation and extraction. The
procedure for estimating the surface from the TSDF is illus-
trated in Fig. 7. The basic idea for surface prediction is ray
casting. Given the camera pose of a frame, for each pixel
in the image, a ray is emitted from the center of the camera
passing through the pixel and then the surface is determined
by finding the zero level set of the TSDF. Specifically, we
can step along the ray until a zero crossing is detected. As

shown in Fig. 7, the parameter t∗ for Fk = 0 is determined
by the following equation:

t ′

�t
= 0 − F+

t

F+
t+�t − F+

t
⇒ t∗ = t + t ′ = t − �t F+

t

F+
t+�t − F+

t

(11)

where F+
t and F+

t+�t denote the TSDF values at t and t+�t .
These values can be estimated by linear interpolation of the
TSDF at the grid points. After estimating t∗, we then use the
equation t∗Tg,kK−1ẋ to obtain a 3D point on the surface. In
this way, an accurate 3D point cloud for the surface in the
scene can be reconstructed. An example of predicted surface
from TSDF values is illustrated in Fig. 4d.

3.2 Object extraction

After obtaining a point cloud of the scene, we then extract
the points on the object whose 3D model we want to cre-
ate. Our point segmentation algorithm is based on Lazy
Snapping, which is an interactive segmentation algorithm.
Some foreground and background seeds are first selected,
and then each 3D point is treated as a node of a graph.
Subsequently, the edges of the graph are defined by link-
ing each 3D point with its neighboring points. Finally, the
graph is cut to separate the foreground andbackgroundnodes.
The procedures for selecting foreground/background seeds,
establishing neighboring relations between points, and seg-
menting foreground/background points are described in the
following subsections.

3.2.1 Selecting foreground and background seeds

Lazy Snapping is primarily designed for image segmenta-
tion; thus, the selection of the foreground and background
seeds in the original LazySnapping is straightforward.Auser
can select the seeds by drawing them on the image directly.
However, in 3D space, the process of selecting foreground
and background seeds is more difficult. In our system, we
achieve this by selecting a pair of 3D points in space. Then,
the points inside the cuboid defined by this pair of points are
selected as our foreground or background seeds. Although
this approach is not as straightforward as the image case, we
can still obtain satisfactory results if an appropriate viewpoint
is chosen and multiple pairs of points are manually selected.
Figure 4e shows an example of our foreground/background
seed selection.

3.2.2 Establishing neighboring relations

Our system provides two approaches for defining the nodes
in a graph. For the cell-based approach, the center point of
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each cell is defined as a node of the graph and the neighboring
nodes and the edges between them can be directly obtained
from the structure of the TSDF cells, just as in the 2D image
case. For the point-based approach, the task is somewhat
more complex as the reconstructed 3D points may be scat-
tered in the 3D space. Searching the nearest points using a
brute force approach is very time-consuming, as we typi-

Fig. 8 Our Kinect with the Arduino and BlueTooth XBee module

cally have tens of thousands of points; thus, we need a more
efficient method to find neighboring nodes. In our system,
we employ a Kd-tree to improve the searching efficiency for
finding the nearest points. We use the 6 nearest points to
define the edges of a node, and the weight for each edge is
defined in the next subsection.

3.2.3 Segmenting the foreground and background

Our 3D point segmentation is equivalent to minimizing the
following cost function:

E =
∑

i∈V
E1(xi ) + λ

∑

(i, j)∈	

E2(xi , x j ) (12)

where V and 	 represent the set of nodes and edges in the
graph, respectively. The symbol λ is a parameter controlling
the relative significance of the two summation terms, and
xi denotes the segmentation result of the i th node. xi = 1

Fig. 9 Examples of
reconstructed surfaces using
KinectFusion

Fig. 10 Example
reconstruction of a backpack.
The upper row a–c) shows the
results of the point-based
approach and the bottom row
d–f displays the results of the
cell-based approach. a and d are
the reconstructed point clouds; b
and e show the selected
foreground (green)/background
(red) seeds; c and f are the final
segmentation results
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Fig. 11 a One of the backpack
images. b Reconstructed points
for the backpack using the
cell-based approach. c
Reconstructed points using the
ray-casting algorithm from the
results of the cell-based
segmentation

Table 2 Comparison of the point- and cell-based approaches for the
reconstruction of a backpack as an example

Number of points

Point based Cell based

Total points 20909 12155

Foreground seeds 714 700

Background seeds 798 803

Processing time (s)

Point based Cell based

Search neighboring points 0.078 0.015

Segment foreground/background 0.156 0.125

indicates that the point is a foreground point, while xi = 0
indicates that the point is a background point.

The function E1(xi ) is the cost for the i th point to be
classified as a foreground or background point. Its value
is given by the color difference between the node and the
foreground/background seeds [21]. The function E2(xi , x j )
measures the cost of adjacent nodes, i.e., the weight of an
edge. Its value is defined by the color difference between

adjacent nodes.After the constructionof the graph and setting
of theweights of the edges, the graph is cut by amin-cut/max-
flow algorithm [4] to obtain an optimal segmentation.

3.2.4 Filtering the Segmentation Results

Sometimes, after segmentation some isolated clusters of
points may be generated. These points can be easily filtered
out by checking their distance to the majority of the fore-
ground points. If a cluster of points is far from the majority
of the foreground points, these points are filtered out. After
the filtering process, the points on the foreground object are
well extracted and can be used to serve as the seeds of the
next segmentation.

4 Experimental results

To confirm the feasibility of the proposed system, we have
tried to reconstruct 3D models of several objects using our
system.Our system is run on a desktop computerwith an Intel
Core i7-2600 CPU, 4GB memory, and a Nvidia GTX 560
graphics card. The graphics card is necessary since Kinect-

Fig. 12 Example
reconstruction of a statue. The
upper row a–c shows the results
of the point-based approach, and
the bottom row d–f displays the
results of the cell-based
approach. a and d are the
reconstructed point clouds; b
and e show the selected
foreground (green)/background
(red) seeds; c and f are the final
segmentation results
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Fig. 13 a One of the statue
images. b Reconstructed points
for the statue using the
cell-based approach. c
Reconstructed points using the
ray-casting algorithm from the
results of the cell-based
segmentation

Fig. 14 Example
reconstruction of a bear. The
upper row a–c shows the results
of the point-based approach, and
the bottom row d–f displays the
results of the cell-based
approach. a and d are the
reconstructed point clouds; b
and e show the selected
foreground (green)/background
(red) seeds; c and f are the final
segmentation results

Fig. 15 a One of the bear
images. b Reconstructed points
for the bear using the cell-based
approach. c Reconstructed
points using the ray-casting
algorithm from the results of the
cell-based segmentation

Fusion is run in the GPU to achieve real-time performance.
To facilitate the operation of selecting the foreground and
background seeds, we have bound an Arduino module with
a BlueTooth XBee on the Kinect (see Fig. 8) to replace the
function of a mouse. With this Arduino module, users do not
need to go back to the desktop, but instead directly move
the Kinect in order to control the movement of the window
center, which serves as the cursor, and then press the button
on the Arduino to achieve the seed selection.

In our system, we use 512 × 512 × 512 TSDF cells for
scene reconstruction. Figure 9 shows the reconstructed sur-
faces for several scenes using KinectFusion. Obviously, the
number of cells results in a trade-off between the resolution
of the reconstructed surface and the required memory. The
occupied space is 1.5× 1.5× 1.5 m, about 75 cm in front of

theKinect. This indicates that our systemhas a size limitation
for reconstructed scenes. The object to be reconstructed can-
not be too large and should be placed about 1m in front of the
Kinect sensor. This point is also illustrated in Fig. 9, where
the black background indicates that the object is outside the
volume of the TSDF cells.

Figure 10 shows an example of application of our sys-
tem to extract the 3D point cloud of a backpack. Here,
we show both the results of the point-based and cell-based
approaches for comparison. From this figure, we can observe
that the point-based approach can produce denser points
than the cell-based approach. As discussed in the previous
sections, the cell-based approach extracts the object based
on the TSDF cells; thus, each point in Fig. 10d–f repre-
sents one cell. Hence, the number of reconstructed points

123



Reconstructing three-dimensional models of objects using a Kinect sensor 1519

Fig. 16 Example
reconstruction of a chair. The
upper row a–c shows the results
of the point-based approach, and
the bottom row d–f displays the
results of the cell-based
approach. a and d are the
reconstructed point clouds; b
and e show the selected
foreground (green)/background
(red) seeds; c and f are the final
segmentation results

Fig. 17 a One of the chair
images. b Reconstructed points
for the chair using the cell-based
approach. c Reconstructed
points using the ray-casting
algorithm from the results of the
cell-based segmentation

depends on the number of created cells. On the other hand,
the point-based approach generates a point cloud using ray
casting and then combines points frame by frame using the
ICP algorithm. Therefore, it can typically produce more
points, since several rays may intersect the same TSDF cell
and thus produce more points for a cell. Nevertheless, the
cell-based approach can also produce dense points if a post-
ray-casting process is applied to the identified cells. This
point is illustrated in Fig. 11, which shows a source image,
the extracted cell points for the backpack, and a dense point
reconstruction after applying the ray-casting algorithmon the
segmented cells. Comparing Figs. 10c and 11c, we can see
that after this post-processing the segmentation result of the
cell-based approach is comparable to that of the point-based
approach.

Although the point-based approach can recover more
points during the segmentation process, it requires more
computational time in searching for adjacent nodes. Table
2 shows the number of reconstructed points, the number of
selected foreground/background seeds, and the required time
for searching for neighboring points and the segmentation
process. In this example, the selected numbers of seeds for the
point- and cell-based approaches are very close, thus reduc-
ing their effects on the comparison of timing. From this table,

Table 3 Comparison of the point- and cell-based approaches for the
reconstruction of a statue as an example

Number of points

Point based Cell based

Total points 53737 42850

Foreground seeds 319 301

Background seeds 3170 3070

Processing time (s)

Point based Cell based

Search neighboring points 0.226 0.03

Segment foreground/background 0.955 0.337

the advantages of the cell-based approach are illustrated (i.e.,
it has more efficient neighboring node identification and
faster foreground extraction). The major reason for the high
efficiency of the cell-based approach in identifying neighbor-
ing nodes comes from the regular arrangement of the TSDF
cells. This indicates that the cell-based approach does not
need any complex searching process, such as the Kd-tree
used in the point-based approach. For the process of seg-
menting the foreground and background, since the cell-based
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Table 4 Comparison of the point- and cell-based approaches for the
reconstruction of a bear as an example

Number of points

Point based Cell based

Total points 61862 28730

Foreground seeds 263 340

Background seeds 3004 2995

Processing time (s)

Point based Cell based

Search neighboring points 0.218 0.032

Segment foreground/background 0.405 0.125

Table 5 Comparison of the point- and cell-based approaches for the
reconstruction of a chair as an example

Number of points

Point based Cell based

Total points 97994 74915

Foreground seeds 1112 832

Background seeds 2890 2749

Processing time (s)

Point based Cell based

Search neighboring points 0.387 0.029

Segment foreground/background 0.797 0.587

approach typically recovers fewer points than the point-based
approach, it is definitely faster than the point-based approach.

To further evaluate the effectiveness of the proposed sys-
tem, more experiments were conducted. The results are

shown in Figs. 12, 13, 14, 15, 16, 17 and Tables 3, 4, 5.
These examples include a statue, a Teddy bear, and a chair
with a quite complex background. From these examples, we
can draw similar conclusions as from the backpack case. Our
system can create the 3D structure of the scene and success-
fully extract the 3D point cloud of the target object. The
selection of the foreground and background seeds is also
simple. We only need to roughly select several small regions
in the background and foreground areas. The system can
take over the remaining task to complete the object extrac-
tion.

Another feature of the proposed system is progressive
reconstruction and segmentation. The result of the initial
segmentation can serve as the seeds for subsequent segmen-
tation. Thus, whenwemove the Kinect around the object, the
segmentation process will be repeatedly activated to recover
a more complete point cloud. Figure 18 shows the interme-
diate segmentation results for the statue example. As we
can see, the point cloud of the statue is gradually recon-
structed, including the points on the front and back surfaces
of the statue. Figure 19 shows another example of progres-
sive reconstruction where a more complete point cloud can
be further observed.

After recovering points on the objects, we can then gen-
erate a polygonal mesh model for the objects. Figure 20
shows two examples of polygonal mesh creation using the
point clouds generated by our system. Here, we employed
the greedy triangulation algorithm from Point Cloud Library
(PCL) to achieve the task. Because of the simplicity of
this algorithm, there are some small holes on the recovered
polygonal mesh model. Nevertheless, the model is still quite
complete and we think that with a more sophisticated mesh

Fig. 18 Progressive
reconstruction of a statue
example

123



Reconstructing three-dimensional models of objects using a Kinect sensor 1521

Fig. 19 Another example of a
progressive reconstruction. a
Initial reconstruction of a bear.
b, c More complete point cloud
for the object can be
progressively reconstructed
when we move the sensor
around the object

Fig. 20 Polygonal mesh models for a backpack and a chair

creation algorithm, the small holes on the model can be filled
to generate a more accurate model.

5 Conclusion

In this paper, we presented an interactive 3D model recon-
struction system based on a commercial RGB-D sensor. This
system is designed based on a well-performing scene surface
recovery algorithm and an interactive segmentation method
to achieve real-time object reconstruction. By collecting
depth information and averaging them in TSDF cells, the
system can effectively eliminate the influence of noisy depth
data and hence produce satisfactory surface reconstruction.
By exploiting the power of a graph-cut segmentation algo-
rithm, our system does not require users to carefully select
the foreground and background seeds, and thus maximally
reduces the required user effort.

Tomaintain the real-time characteristics, the segmentation
process is implemented in another thread and the 3D struc-
ture of the target object can be progressively reconstructed
when a user moves the sensor around the object. In addition,
in this paper we also presented two approaches for segmenta-
tion graph creation, i.e., the point- and cell-based approaches.
Both have advantages and some experiments were conducted
to compare their performance. These experiments also con-
firmed the feasibility and effectiveness of our system for
object 3D reconstruction. The 3D models of several objects
were reconstructed with acceptable accuracy.

Currently, our system has the drawback of size limitation,
i.e., it cannot be applied on the objects with size greater than
1.5m3 because of the setup of the TSDF volume. Thus, our

future work is to relieve the size limitation by exploiting a
more efficient data structure to store the sparse TSDF cells.
However, this implies that we require an efficient method to
find the adjacent TSDF cells. That is, we need to incorpo-
rate the mechanism of finding adjacent points in point-based
approach with the cell-based approach to achieve sparse
TSDF cell processing.We hope that by this approach, we can
achieve large object 3D reconstruction. In addition, the sen-
sor we used is the first-generation Kinect sensor. We believe
that the reconstructed result may be further improved with
the next-generation Kinect sensor.
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