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Abstract The segmentation of a point cloud is one of
the key technologies for three-dimensional reconstruction,
and the segmentation from three-dimensional views can
facilitate reverse engineering. In this paper, we propose a
self-adaptive segmentation algorithm, which can address
challenges related to the region-growing algorithm, such as
inconsistent or excessive segmentation. Our algorithm con-
sists of two main steps: automatic selection of seed points
according to extracted features and segmentation of the
points using an improved region-growing algorithm. The
benefits of our approach are the ability to select seed points
without user intervention and the reduction of the influence
of noise. We demonstrate the robustness and effectiveness of
our algorithm on different point cloud models and the results
show that the segmentation accuracy rate achieves 96%.
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1 Introduction

With the increasing use of computer graphics technology
in conjunction with agricultural knowledge, research on
the morphological structure and physiological function of
objects is entering a digital and visual stage. Digital con-
tent creation using real-world data has gained a great deal of
attention over the past decades [1]. Segmentation is necessary
in reverse engineering, where models are reconstructed from
points acquired on the surface of the object by laser scanners.
Additionally, agricultural and forestry plants have different
structures with respect to their leaves, branches, and fruits.
Thus, different parts of the models need to adopt different
modeling methods to guarantee the precision and effectivity
of the reconstruction. Segmenting the point cloud of different
structures effectively is one of the key technologies for high-
precision reconstruction of reverse engineering and is also
useful in other applications, such as three-dimensional (3D)
city modeling, feature recognition, geometry compression,
and industrial site modeling [10]. We propose an algorithm
for segmenting an unorganized set of points of a 3D object
and dividing the points into several proper subsets with simi-
lar attributes,whichmainly include distance, density, normal,
and curvature.

2 Related work

In current reverse engineering, a point cloud is typically
divided into regions with similar topological structures
to facilitate surface reconstruction. Existing segmentation
methods mainly include edge-based segmentation, surface-
based segmentation, and a combination of these two
methods.
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660 Y. Fan et al.

In edge-based segmentation, the boundary line connected
by boundary points is the fundamental base for the segmen-
tation. Wang et al. [24] proposed a segmentation algorithm
for point cloud models of buildings. Their algorithm extracts
buildings according to the boundary of the point cloud mod-
els. The boundary corresponds to discontinuities in depth or
height, and therefore distinguishes one building from other
buildings and objects on the ground. However, this method
is very sensitive to noise. Dai et al. [7] developed a segmen-
tation method for a point cloud distributed in the principal
direction of tree models. The algorithm calculates the princi-
pal curvature and direction of the points from the tree point
cloud models and uses this information to define an energy
function. It then determines the segmentation of the leaves
and branches according to the defined energy function and
obtains the final segmentation results by separating the leaves
and branches. The algorithm has a high operating efficiency,
but its application is limited to tree models. Guillaume et al.
[13] calculated the curvature tensor-based triangle mesh and
used it to segment points into surface patches. Then, they
adjusted the boundaries to obtain the segmentation of patch
edges.

Surface-based segmentation uses local surface attributes
as a similarity measure and merges the points with similar
attributes [21]. It can also provide information with abstract
expressions, which is useful for expression and analysis [17].
This method usually performs better than edge-based seg-
mentation. Richtsfeld et al. [22] proposed a segmentation
method using radial reflection to estimate model shapes. The
algorithmmainly extracts the model shapes of surfaces. Rab-
bani et al. [21] proposed a constraint-based segmentation
algorithm that can extract smooth regions in point cloudmod-
els. However, its segmentation results depend heavily on the
parameter settings. Yamauchi et al. [25] proposed mesh seg-
mentation with a mean shift algorithm. It is based on normal
clustering using an adaptive mean shift algorithm and per-
forms segmentation using the region-growing algorithm. The
authors algorithm was originally proposed for the segmenta-
tion of images [6].

The mixed method involves combining methods based on
edges and surfaces. Zhang et al. [28] used a statistical method
to extract feature lines; however, it is affected by noise and
sampling quality. Lari [16] proposed a segmentation algo-
rithm that can quickly extract linear features in the point
cloud data instead of segmenting the entire point cloud data,
which leads to some limitations regarding the segmentation
result. Zhana et al. [27] proposed a segmentation algorithm
based on a color model to segment buildings, but this algo-
rithm cannot be applied to point cloud models that do not
contain color information, thereby greatly limiting its appli-
cation potential. Dorninger et al. [9] proposed a point cloud
segmentation algorithmbased on parametric space. The algo-
rithm clusters point cloud data in the space defined by the

parameterization of the point cloud. However, this method
is difficult to apply to unorganized point cloud data models.
Gomes et al. [12] used 3Dmoving fovea to process parts of a
scene using different levels of resolution. This approach can
be used to identify objects in a point cloud. Gelfand et al.
[11] presented shape segmentation using local slippage anal-
ysis. The shapes are defined as symmetric, which includes
cylinders, planes, spheres, and surfaces of revolution. The
method merges initial surfaces and is sensitive to the size of
patches. In [18], Marshall et al. proposed an improved least-
squares fitting algorithm, which can segment the primitives
(cylinders, spheres, and cones) from range data. In [17], Li
et al. presented an improved algorithm to fit primitives using
global relations, which can be obtained through constrained
minimization. Pu et al. [20] performed building segmenta-
tion and extracted features using surface growing according
to direction and size derived from convex hulls. Ochmann et
al. [19] filtered out clutter outside the building, which was
caused by mirrors and windows. This method obtains point
labeling of a buildings room and is also homogeneous within
each room. Kaick et al. [15] proposed a shape segmentation
algorithm, which can optimize decomposition based on char-
acterization according to the expected geometry of a shape.
Demir et al. [8] used similarities to segment and detect the
shape of a point cloud.

2.1 Overview and contributions

The aforementioned point cloud segmentation methods are
mostly used for point cloud models or 2.5-dimensional
depth images in specific application scenarios. Many of the
methods involve a large number of parameters that have a
substantial influence on the final segmentation result. We
compare number of parameters in Table 1. These segmen-
tation algorithms encounter many limitations when applied
to unorganized 3D point cloud data. 3D scanners capture
unorganized point cloud data, which makes it difficult to
determine the topological relationship between points. The
feature information corresponding to different parts is vastly
different, and it is difficult for these algorithms to obtain an
ideal segmentation result.

To address the aforementioned issues, we propose a self-
adaptive point cloud segmentation algorithm to effectively
segment different unordered point cloud data and lay a foun-
dation for the 3D high-precision reconstruction.

The complete segmentation algorithm is provided inAlgo-
rithm 1. It is mainly divided into two steps: select seed points
and segment the points. The first step mainly consists of the
calculation of representativeness and diversity values. The
second step mainly consists of the calculation of constraints.
The calculations are described in detail in Sects. 3 and 4,
respectively.
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Table 1 Comparison on number of parameters with current state of art

Author The type of method Number of parameter Detail

Wang et al. [24] Edge-based segmentation 4 1. Number of neighboring points

2. Distance

3. Search radius

4. Correlation dimension

Dai et al. [7] Edge-based segmentation 4 1. Number of neighboring points

2. Residual error

3. Angle threshold

4. Cluster size

Guillaume et al. [13] Edge-based segmentation 3 1. Number of neighboring points

2. Curvature threshold

3. Region threshold

Rabbani et al. [21] surface-based segmentation 3 1. Number of neighboring points

2. Residual threshold

3. Angle threshold

Yamauchi et al. [25] Surface-based segmentation 3 1. Number of charts

2. Normal bandwidth size

3. Geometry bandwidth size

Zhang et al. [28] Mixed method 4 1. Number of neighboring points

2. Normal angle

3. Cumulative probability

4. Size of the supporting local neighborhood

Lari et al. [16] Mixed method 3 1. Number of charts

2. Distance between collinear points

3. Angle between the line and the plane

Algorithm 1 Self-adaptive segmentation method for a point
cloud
Inputs: Unorganized set of points U = {pi }i∈I ⊂ R3; neighbor-

finding function Ω().
1: Calculate the initial neighborhood size and the points whose total

distance is minimum (See Eqs. (1)–(2)).
2: while(Ω(x).size) is changed do
3: Calculate neighborhood size α (See Eq. (3)).
4: end while
5: for i = 1 to U.size do
6: Calculate density ρ

Rep
i (See Eq. (4)).

7: end for
8: Sort the points in descending order
9: for j = 1 to U.size do
10: Calculate distance δDivj (See Eqs. (5)–(6)).

11: Calculate attribute value spAttj
12: end for
13: Get seed list SL
14: Get the normal and point connectivity (See Sect. 4)
15: Segment the point cloud on the basis of list SL (See Algorithm 2

and Sect. 4)

To summarize, our contributions are as follows:

– Our point cloud segmentation algorithm automatically
selects seed points without user intervention, thereby

suitably expressing similarity and guaranteeing the con-
sistency of the segmentation results.

– The algorithm can confirm the number of seed points
automatically instead of requiring user interaction. Our
algorithm enhances its adaptability by using an automatic
calculation.

– The algorithm can also rearrange the location of a noised
point, thereby reducing the effect of noise.

– We consider the connectivity of points and use a semi-
automatic region-growing algorithm by reducing the
number of parameters, thereby balancing between the
degree of under- and over-segmentation.

3 Seed point calculation

In reverse engineering, mass research is a bottom-upmethod,
which starts from the seed points and uses the region-growing
algorithm. One problem for this method is the difficulty of
selecting seed points. Thus, we present an algorithm that can
automatically select seed points, which have a high density
compared to its surrounding neighbors with lower density
and a large diversity with other seed points [23].
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Fig. 1 Point mp has the total minimum distance Fig. 2 Neighbors of a point

Fig. 3 Identify seed points and illustrate their location in datasets:
a the decision of seed points in the aggregation dataset, colored points
represent the seed points; b identify the location of seed points in the

aggregation dataset; c present the seed points in the flame dataset; d the
location of seed points in the flame dataset
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Fig. 4 Results of normal
estimation: a a sphere model
with noise, b adjusted result of
noise, c PCA normal estimation,
d nonlinear least-squares normal
estimation

3.1 Feature calculation

3.1.1 Representativeness values calculation

Representativeness can be measured by a point that has a
higher density than its neighbors. There has been extensive
research on density calculation, but most works require arti-
ficial parameters to set the radius. To reduce user intervention
and enhance adaptability, the implementation of an automatic
process is necessary.

The input is an unorganized set of points U = {pi }i∈I ⊂
R3. A bounding box that has the minimal area and encloses
all the points can be constructed. Then, we can obtain the
initial neighborhood size as follows:

α0 = distd
3
√
N

(1)

where distd is the diagonal length of the inputU ’s bounding
box and N is the number of points in U . Additionally, it is
necessary to compute a point mp ∈ U (see Fig. 1), which
has the total minimum distance to a set of points. It can be
obtained as follows:

mp = argmin
∑

i∈I
||mp − pi || (2)

According to the initial neighborhood size and point mp,
the neighborhood size can be computed automatically. It is
adapted during iteration processing and can be described as
follows:

αi = αi−1 + �L

�L = 1

K

∑
pi∈Nhbdmp

θ ||mp − pi ||ϕ(nmp,npi )npi∑
pi∈Nhbdmp

θ ||mp − pi ||ϕ(nmp,npi )

(3)

where || · || is the L2-norm, n is the normal vector of a point,
K is the number of points in Nhbd, and Nhbdmp = {pi |pi ∈
U ∧ ||mp − pi || < αi } under a neighborhood size αi ; that
is, the points can be obtained from fixed distance neighbors
(FDNs). For a given point and the neighborhood size αi , the
FDNs select all the points within the area (Fig. 2). For an
FDN search, the number of neighbors K changes according
to the density. Theweight and spatial functions are defined by

θ (r) = e−r2/(α/2)2 , ϕ(n,ni ) = e
−

(
1−nT ni )

1−cos(nT ni )

)

.

Equation (3) is calculated by iterating until the value of
K is constant. The computation of the radius is suitable for
different models and enhances adaptability.

After neighborhood size α has been obtained, the repre-
sentativeness value, that is, the density of each point inU , is
defined as
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Fig. 5 Extended evaluation of
our method on different objects

ρ
Rep
i = 1 +

∑

j∈I\{i}
θ

(||pi − p j ||
)

(4)

To avoid excessive segmentation, we sort all the data
points in descending order according to density.

3.1.2 Diversity values calculation

To ensure the diversity of the seed points, the diversity can
be measured by computing the minimum distance between
point pi and other points with densities that are higher than
that of point pi [23]. We define the diverse distance as
follows:

δDivi = minj<i ||pi − p j || (5)

For the point with the highest density, it can be noted that

δDivi = max
i �= j

||pi − p j || (6)

The diversity values are similar to those obtained using the
maximummarginal relevance algorithm [2], which is used to
remove points that are similar to those already selected. The
maximum marginal relevance algorithm compares a point
with selected points, whereas we compare a point with all
other points, thus our algorithm has higher global diversity.
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Fig. 6 Results obtained by the different methods of segmenting a sin-
gle object: a segmentation of [21];b segmentation of [23]; c ourmethod:
eight seed points are selected, the representativeness and diversity val-

ues are shown in (d); d the decision of seed points in two dimension,
the color of seed point corresponds to the color of seed area in (c)

3.2 Automatic selection of seed points

As mentioned previously, the seed point is characterized by
a higher density than its neighbors and by a relatively large
distance from points with other higher densities to ensure the
stability of this process. Therefore, we determine it using the
following formula:

spAtti = log ρ
Rep
i + log δDivi (7)

We use the aggregation and flame datasets to evaluate the
performance of selecting seed points in two dimensions, as
shown in Fig. 3. Clearly, the algorithm tends to find seed
points that are both dense and a large distance from other
seed points. Next, we sort the points in descending order
according to the value of sp. Then we generate the set of
seed points SL .

For the region-growing process, we select one point in SL
as a seed point in the sequence. Until the seed point operation
is complete, the subsequent points are selected as seed points
individually. Our algorithm can thus adaptively select seed
points and automatically set the number of seed points. It
can address the problem of inconsistent segmentation results
caused by the random selection of seed points.

4 Segmentation

After seed point selection, a semiautomatic region-growing
algorithm is used for segmentation. The region-growing
algorithm is a surface-based method and involves cluster-
ing points with similar attributes into the same region with
respect to the seed points.
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Fig. 7 Comparison of the plant model segmentation results using the three algorithms: a segmentation of [21]; b segmentation of [23]; c our
method: five seed points are selected; d the decision of seed points in two dimension

In the region-growing process, another difficulty is deter-
mining whether the point should be added in a given region
because the decision is susceptible to noise. To address this
difficulty, we consider the connectivity of points and use an
improved normal as a constraint.

4.1 Estimation of normal

Traditionally, the normal is equivalent to the normal of the
least-squares plane of the point and its neighborhood. Using
principal component analysis (PCA) [9] to estimate the nor-
mal produces poor approximations because of the existence
of surface discontinuities and noise. Surface discontinuities
are mainly caused by equally weighting the incorrect contri-
butions of points [3]. Thus, we use an improved constrained
nonlinear least-squares algorithm to adaptively determine the
weight of each point contribution, which can be expressed as
follows:

argmin
n

1

2

K∑

k=1

e−λ(oTk n)
2

(oTk n)2

s.t.||n||2 = 1

λ = K

N

(8)

where ok = pk − p, pk is the neighbors of point p, n
represents the normal vector and weighting e−λ(oTk n) can
adaptively deflate the contribution of the high orthogonal-
ity mismatch defined by λ.

If the input point cloud has severe noise, we rearrange the
location of the noised point. We use the following to obtain
the location of adjustment:

argmin
p̃,n

1

2

k∑

i=1

e−λ((pk− p̃)T n)
2((

pk − p̃
)Tn

)2
(9)

where p̃ is the adjusted location. Figure 4a, b shows the
adjustment of noise by which we can reduce the influence
of noise. We apply PCA and Eq. (9) to the mimosa model,
which is provided in [14]. The results are shown in Fig. 4.
Comparing Fig. 4c, d, we observe the improvement of the
algorithm in the estimation of the normal.

4.2 Point connectivity

Tomeasure connectivity, the adjacencymatrix is constructed,
which is obtained from the surface curvature estimation that
describes the connectivity for the unorganized set of points.
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A self-adaptive segmentation method for a point cloud 667

Fig. 8 Results obtained by the different methods when segmenting a single object frommultiple objects: a–c [21,23], and our method, respectively:
six seed points are selected; d the decision of seed points in two dimension

Table 2 Results of segmentation

Model Compared to our method Results

Rabbani et al. [21] Rodriguez et.al [23]

Mimosa Figure 6a parts 1–2 versus Figure 6c part 1 Figure 6b parts 1–2 versus Figure 6c part 3 Over-segmentation

Figure 6a part 3 Figure 6c parts 1–2 Figure 6b part 3 Figure 6c parts 1–2 Under-segmentation

Plant Figure 7a part 1 Figure 7c part 1 Figure 7b part 1 Figure 7c part 1 Over-segmentation

Figure 7a part 2 Figure 7c part 2 Figure 7b part 2 Figure 7c part 2 Under-segmentation

Maize Figure 8a part 1 Figure 8c part 1 Figure 8b part 1 Figure 8c part 1 Over-segmentation

Figure 8a part 2 Figure 8c part 2 Figure 8b part 2 Figure 8c part 3 Under-segmentation

Table 3 The detail of point cloud model

S/N Model Data size Rabbani et al. [21] Rodriguez et al. [23] Our method

Parameter Parameter Parameter

1 Mimosa 40,551 K = 50, ς = 0.152, σ = 0.1159 dc = 0.015, Num = 8 σ = 0.1159

2 Plant 23,096 K = 30, ς = 0.166, σ = 0.146 dc = 0.1456, Num = 7 σ = 0.146

3 Maize 23,320 K = 30, ς = 0.45, σ = 0.40 dc = 0.16, Num = 6 σ = 0.40

Based on FDN information and the curvature, an adja-
cency matrix SA is built, and the matrix is symmetric. If pi ,
p j are connected, SAi, j = 1, otherwise SAi, j = 0. Consid-

ering connectivity, we assume that if points pi , p j are FDNs
of each other and the curvature is less than themean curvature
in FDNs, then SAi, j = 1.
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Fig. 9 Segmented the models
with different levels of Gaussian
Noise. a 0.3% noise; b 0.6%
noise; c, d are the segmentation
results with noise

We now consider computing the curvature using the
method of moment-based surface analysis, which is robust
to noise [5]. For a surface M and neighborhood ball B with
neighborhood size α, the zero moment of point p can be
defined as

M0
α(p) :=

∫

Bα(p)∩M
pdp (10)

and the first moments as

M1
α(p) :=

∫

Bα(p)∩M

(
p − M1

α(p)
)

⊗
(
p − M0

α(p)
)
dp

=
∫

Bα(p)∩M
p ⊗ pdp − M0

α(p) ⊗ M0
α(p) (11)

where q⊗w := (qiw j )i, j=1,2,3. Because of the definition of
amoment-based surface via local integration, thesemoments
are robust to noise. Additionally, the curvature at point p can
be computed using the zero and first moments shift:

ς = G

( ||M0
α(p) − p||λmin

αλmax

)
(12)

where ς is the curvature, λmin and λmax are the eigenvalues
at point p in the first moment M , G = 1

α+K 2 with neighbor-
hood size α obtained from Eq. (3), and K is the number of
neighbors.

4.3 Region growing

The basic purpose of the segmentation algorithm is to subdi-
vide the points into meaningful subsets with high similarity,
while avoiding over- and under-segmentation. The details of
the segmentation steps are provided in Algorithm 2, and the
implementation process is further described below.

We denote the current seed region by Sc, and the global
segment list by RL . A seed is chosen from the set of seed
points SL .

The implementation process is as follows:

1. Select the first data point seed1 in SL as the initial current
seed point and insert it into the current seed region Sc.

2. Obtain the neighbors of the current seed point that satisfy
cos(|〈βpl , βseed〉|) < σ . The neighbor will be added to
the current region Rc. σ represents the threshold of the
normal. As σ → 1, we have fewer segments, and in

123



A self-adaptive segmentation method for a point cloud 669

Fig. 10 Segmented the point
cloud using different strengths
σ . a σ = 0.02, b σ = 0.1159, c
σ = 0.4, d σ = 0.04, e
σ = 0.146, f σ = 0.32

Algorithm 2 Point cloud segmentation
Inputs: Unorganized set of points U = {pi }i∈I ⊂ R3 ;

Seed List SL = {seed1, seed2, . . . , seedn}; neighbor-finding func-
tion Ω(); Symmetric adjacency matrix SA.

Initialize: Region List RL = ∅, Available points list A ← U
1: while {A} is not empty do

Current region {Rc} ← ∅, Current seeds {Sc} ← the seed point
from SL

2: for i = 0 to Sc.size() do
3: Find the neighbors of the current seed point

{Nbhd} ← Ω(Sc[i])
4: for j = 0 to Nbhd.size() do
5: Current neighbor pl ← Nbhd j
6: if pl ∈ A and cos(|〈βpl , βseed〉|) < σ then
7: Remove pl from {A}

pl ← {Rc}
8: if SA(seed, pl ) = 1 then
9: pl → Sc
10: end if
11: end if
12: end for
13: end for
14: Add current region to the segment list Rc → RL
15: end while

the extreme case, all the points belong to one segment.
Similarly, as σ → 0, we have more segments, and in
the extreme case, each point belongs to one segment.
Thus, σ provides a balance between over- and under-
segmentation.

3. If the points are connected, add the neighbor to the current
seed region Sc and remove it from SL .

4. Delete the current seed point in seed region Sc and
remove the data point from U .

5. Select the next data point in the current seed region Sc
as the current seed point, return to Step (2), and execute
until the seed region Sc is null.

6. Save Rc in the segment list RL . Select the next data point
in SL as the current seed point, return to Step (1), and end
the segmentation when all the points are segmented.

Fig. 11 Segmented indoor scene with multiple models

5 Results and analysis

We conducted experiments on various models. Figure 5
presents segmentation results of models in [15] and [4]. It
is noted that the algorithm is robust when applied to these
models and preserves the connectivity of the point cloud.

5.1 Results comparison

To evaluate the segmented results of our proposed algorithm,
we conduct three experiments to compare it with the segmen-
tation algorithms of Rabbani et al. [21] and Rodriguez et al.
[23].

The segmented results are shown in Figs. 6, 7 and 8.
Table 2 compares segmented results obtained by three meth-
ods. In Figs. 6, 7 and 8, it can be seen that [21] and [23]
excessively segmented single leaves and insufficiently seg-
mented the connection parts of the stems and leaves. In
Figs. 6, 7 and 8c, we can observe that each part of the
model has a seed point, which has a higher density and is far
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Fig. 12 Comparison with WCSeg [15] on Princeton Segmentation Benchmark [4]. a WCSeg [15] versus our method, b WCSeg [15] versus our
method, c Rand index, d Hamming distance, e Consistency error, f Cut discrepancy
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A self-adaptive segmentation method for a point cloud 671

from the other seed points. Moreover, the algorithm effec-
tively distinguished between stems and leaves. It obtained
accurate segmentation results and avoided over- and under-
segmentation problems. Figures 6, 7 and 8d show that the
seed points have a high density and an obvious division from
the other seed points. The result demonstrates that the seed
points are reasonable and effective.

In [21], three parameters need to be set: the number of
neighbors K , curvature threshold ς , and normal threshold
σ . In [23], two parameters need to be set: cutoff distance dc
and cluster number Num. In our method, only one parameter
needs to be set: normal threshold σ . For the experiments,
Table 3 provides the necessary data.

5.2 Robust test

We added different levels of Gaussian noise to the models to
evaluate the robustness of our approach. Noise of 0.3% and
0.6% were added to the models. The resulting segments are
shown in Fig. 9.

We segmented the point cloud using different strengths.
Figure 10 illustrates the effect ofσ . The results are ordered by
over-segmentation, segment well, and under-segmentation,
respectively. It is clear that σ provides a balance between
over- and under-segmentation.

Although the focus of our algorithm is the segmentation of
a single point cloud model into meaningful subsets, we also
show inFig. 11 a test that applied our algorithm to sceneswith
multiple models. In the test, we segmented an indoor scene.
We can observe that if the model has obvious differences in
parts and structures, our method can segment it effectively.

5.3 Quantitative evaluation

We quantitatively evaluate our algorithm with the well-
known Princeton Segmentation Benchmark of Chen et al.
[4].

In Fig. 12, we compare to the approximate convex anal-
ysis (WCSeg) algorithm [15], which can characterize a part
as a collection of weakly convex components. As shown in
Fig. 12a, comparedwithWCSeg, our algorithmhasmore seg-
ments in wings, as our algorithm determines the weight of
each point contributionwhile computing normal. In Fig. 12b,
our algorithmhas fewer segments on the bodyof theDinosaur
model, as we consider the connectivity of points.

To use the benchmark, we transform themeshes into point
cloud and map the segmentation results back to the meshes.
Figures 12c–f showacomparisonof the algorithms according
to the various measures of the benchmark, which reveal the
corresponding properties of our method in different aspects,
including fewer decomposition parts (d), good segment con-
sistency (e), and similar cut boundaries (f). In Fig. 12c, the
Rand index measures a likelihood assessment on state-of-

Fig. 13 Segmented point cloud with a limitation

the-art methods. The Rand index of our algorithm is low,
WCSeg is better than ours, since these semantic segments
labeled by humans are generally convex, the WCSeg is more
suitable for decomposing models semantically.

6 Conclusion and limitation

(1) Our self-adaptive point cloud segmentation algorithm
automatically selects seed points and guarantees the
consistency of the segmentation results. The algorithm
reduces both the setting of parameters and the effect
of noise, which can enhance the adaptability of the
algorithm. The only user-specified parameter required
by our method provides a balance between over- and
under-segmentation. According to the test results, our
algorithm effectively segmented the point cloud and
achieved a segmentation rate of up to 96%.

(2) However, the algorithm demonstrated better segmenta-
tion results for models with obvious differences in parts
and structures, and exhibited a certain limitation formod-
els with similar structures; the limitation can be seen in
Fig. 13.
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