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Abstract We propose a mathematical expression for the
optimal distribution of the number of samples in multiple
importance sampling (MIS) and also give heuristics that
work well in practice. The MIS balance heuristic is based on
weighting several sampling techniques into a single estima-
tor, and it is equal toMonte Carlo integration using a mixture
of distributions. The MIS balance heuristic has been used
since its invention almost exclusively with an equal number
of samples from each technique. We introduce the sampling
costs and adapt the formulae to workwell with them.We also
show the relationship between the MIS balance heuristic and
the linear combination of these techniques, and that MIS
balance heuristic minimum variance is always less or equal
than the minimum variance of the independent techniques.
Finally, we give one-dimensional and two-dimensional func-
tion examples, including an environment map illumination
computation with occlusion.
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1 Introduction

Since its introduction by Veach and Guibas [23], the multiple
importance sampling (MIS) technique has been widely used
in computer graphics, particularly in rendering. MIS is based
on combining several sampling techniques into a single esti-
mator. Veach proved that from the several MIS techniques
he presented, the balance heuristic, which he showed is the
same as the classic Monte Carlo estimator using a mixture
of techniques, is optimal in the sense of minimum variance.
He used an equal count of samples for each technique, and
the balance heuristic was almost exclusively used thereafter
as a mixture of distributions with equal weights.

The use of different counts of samples in the balance
heuristic has been raised so far in very few papers. Thismight
be because Veach himself discouraged this possibility in his
thesis (Theorem 9.5 [22]). He shows that the variance of the
balance heuristic with an equal number of samples is less
than or equal to n times the variance of any other MIS esti-
mator with the same number of samples distributed in any
other way. But observe that, even for the most simple case of
n = 2, we could theoretically improve by up to 100%. How-
ever, the sampling costs were not considered in the theorem.

The question whether a count of samples other than equal
count can improve the MIS variance appears in few papers.
Lu et al. [16] use aTaylor second order approximation around
the weight 1/2 for environment map illumination computa-
tion, combining the techniques of sampling the BRDF and
the environment map. Yu-Chi Lai et al. [15] used adaptive
weights in combination with population Monte Carlo. In
Csonka et al. [4], the cost of samplingwas also taken into con-
sideration when minimizing the variance of the combination
of stochastic iteration and bidirectional path tracing. How-
ever, none of these papers exploits that the balance heuristic
is a mixture of distributions. Havran and Sbert [11] exploited
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this fact to study the optimal combination for the particular
case of a product of functions. We advance on their work in
many aspects, by showing that their study can be extended to
any function, by shedding light on the relationship between
the linear combination of estimators and MIS, and by pro-
viding proofs for it. Recently, Sbert et al. [20] analyzed the
variances of one-sample and multi-sample MIS.

As for adaptive schemes inspired by MIS, the review arti-
cle by Owen and Zhou [18] surveys the principles in mixture
andmultiple importance sampling at that time.More recently,
Douc et al. [5] derived sufficient convergence conditions for
adaptive mixtures and also iterative formulae for the optimal
weights [6]. Cornuet et al. [3] present optimal recycling of
past simulations in iterative adaptiveMISalgorithms (applied
to final gathering by Tokuyoshi et al. [21]). This work was
extended by Marin et al. [17]. Elvira et al. [7] proposed the
use of the gradient to accelerate convergence. A recent work
by Hachisuka et al. [9] uses Markov Chain Monte Carlo to
distribute different numbers of samples among the different
techniques.

Our work differs from the adaptive MIS schemes above.
We will obtain for Monte Carlo integration of general func-
tions with a balance heuristic a mathematical expression that
the different weights have to fulfill for optimality, and the
heuristic technique to compute the weights close to the opti-
mal ones. In other words, we give a recipe of how many
samples to take according to each strategy to minimize vari-
ance. We also take into account the cost of each sampling
technique. As we cannot isolate the weights in the result-
ing formula, we outline a procedure to obtain their optimal
values. As this procedure is combinatorial on the number of
techniques used, we introduce a sound heuristic approxima-
tion based on the optimal linear combination of two or more
estimators with known variance, supposing that all estima-
tors are unbiased. We also show the relationship of the MIS
technique with the linear combination of the independent
techniques, and that the minimum variance for MIS is upper
bounded by the variance of theminimum variance technique.

2 Importance sampling

In this section, we recall first the idea of importance sampling
and then we study the linear combination of estimators. The
reader can consult classic references on Monte Carlo such
as [12,19].

2.1 Monte Carlo integration and importance sampling

Suppose we have to solve the definite integral of a function
f (x) on domain D, I = ∫

D f (x)dx . We factor f (x) =
f (x)
p(x) p(x), where p(x) �= 0 when f (x) �= 0

I =
∫

D
f (x)dx =

∫

D

f (x)

p(x)
p(x)dx . (1)

If p(x) ≥ 0 and
∫
D p(x)dx = 1, then p(x) can be consid-

ered as a probability density function (abbreviated pdf), and
the integral Eq. 1 is then the expected value of the random
variable f (x)

p(x) with pdf p(x). An unbiased primary estima-
tor I1 for the mean (which is the value of integral I ) of this
random variable is:

I ≈ I1 = f (x1)

p(x1)
, (2)

where x1 is obtained sampling the pdf p(x), and the unbi-
asedness means that the expected value of this estimator is
the value of the integral, that is, E[I1] = I . The variance of
this estimator, V [I1], is given by

V [I1] = E

[(
f (x)

p(x)

)2
]

− E2
[
f (x)

p(x)

]

=
∫

D

( f (x)

p(x)

)2
p(x)dx −

∫

D

f (x)

p(x)
p(x)dx

=
∫

D

f (x)2

p(x)
dx − I 2. (3)

Averaging N independent primary estimators (obtained
by sampling N independent values x1, x2, . . . , xN from
p(x)), we obtain a new unbiased estimator (secondary esti-
mator) IN

I ≈ IN = 1

N

∑

k

f (xk)

p(xk)
(4)

with variance

V [IN ] = 1

N
V [I1] = 1

N

(∫

D

f (x)2

p(x)
dx − I 2

)

. (5)

Obviously, V [I1] depends upon p(x), or the pdf, that we
are using. The minimum variance corresponds to p(x) =
| f (x)|

I , which is the absolute value of the normalized integrand
function [12]. As the value of I is unknown, a heuristic rule
is to take a pdf that mimics the integrand. This is known as
importance sampling.

2.2 Linear combination of estimators

Suppose we have M independent primary unbiased estima-
tors {Ii,1} of I = ∫

f (x)dx , 1 ≤ i ≤ M, E
[
Ii,1

] = I ,
and want to distribute N samples among them, assigning ni
samples to each of them,

∑M
i=1 ni = N . Any convex com-

bination of {Ii,ni },
∑M

i=1 wi Ii,ni , wi ≥ 0,
∑M

i=1 wi = 1, is
also an unbiased estimator of I , i.e., by the properties of the
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expected value, E
[∑M

i=1 wi Ii,ni

]
= ∑M

i=1 wi E
[
Ii,ni

] = I .

And by the properties of variance, its variance is:

v = V

[
M∑

i=1

wi Ii,ni

]

=
M∑

i=1

w2
i

ni
V

[
Ii,1

]
. (6)

2.2.1 Fixed weights

When we fix the wi values, then using Lagrange multipli-
ers we can obtain the values ni for minimum variance. We
derivate the following objective function, where

∑M
i=1 ni =

N is the constraint and vi = V [Ii,1]:

Λ(n, λ) =
M∑

i=1

w2
i

ni
vi + λ

(
M∑

i=1

ni − N

)

, (7)

and we obtain the optimal values

ni = N · wi · √
vi

∑M
k=1 wk

√
vk

, (8)

and optimal variance

M∑

k=1

w2
k
vk

nk
=

M∑

k=1

wk

√
vk

(∑
l wl

√
vl

)

N
=

(∑M
k=1 wk

√
vk

)2

N
.

(9)

If we find the weightswi that minimize Eq. 9, the only, trivial
solution, is that all variances are equal, v = vk = vi for any
i and k, with variance value v/N .

2.2.2 Fixed number of samples

If the nk values are known, using Lagrange multipliers with
constraint

∑M
i=1 wi = 1 and objective function

Λ(w, λ) =
M∑

i=1

w2
i

ni
vi + λ

(
M∑

i=1

wi − 1

)

, (10)

we find that the optimal combination is:

wk =
nk
vk∑M

k=1
nk
vk

. (11)

Observe that in general, for M estimators,
∑M

k=1
nk
vk

is the
inverse of the harmonic mean (defined as
H({xi }) = M∑M

i=1 1/xi
) of the nk

vk
values times M , as the har-

monic mean H({ vk
nk

}) is equal to:

H ({vk/nk}) = M
∑M

k=1
nk
vk

. (12)

Thus, for optimal weights wk we get the formula:

wk =
H

({
vk
nk

})
nk

Mvk
. (13)

Using these values in Eq. 6, we obtain the minimum value
for the variance:

vmin =
M∑

k=1

w2
k
vk

nk
=

M∑

k=1

(
H

({
vk
nk

}))2
n2k

M2v2k

vk

nk

=
(
H

({
vk
nk

}))2

M

M∑

k=1

1

M

nk
vk

=
(
H

({
vk
nk

}))2

M

1

H
({

vk
nk

}) =
H

({
vk
nk

})

M
. (14)

See Graybill and Deal [8] for the two estimators case. We
can minimize Eq. 14 for a fixed budget of samples, i.e.,∑M

k=1 nk = N fixed, but the result is simply to sample only
the estimator with less variance.

Let us consider now two particular cases. The first is when
the count of samples is equal for all estimators, i.e., nk =
N/M . In this case, the variance in Eq. 14 becomes

H
({

vk
nk

})

M
= H ({Mvk/N })

M
= H ({vk})

N
. (15)

The second is when the count of samples is inversely propor-
tional to the variance of each estimator, i.e., nk = H({vk })N

Mvk
.

In that case, the variance in Eq. 14 becomes

H
({

vk
nk

})

M
= H(

{
Mv2k/H ({vk}) N

}
)

M
= H

({
v2k

})

H ({vk}) N .

(16)

But from power mean monotonicity in the exponent [13],

we can obtain that
H({v2k })
H({vk }) ≤ H({vk}), as H({vk}) corre-

sponds to a power mean with exponent −1 while
√
H({v2k })

to exponent −2. Thus, the strategy of distributing the count
of samples inversely proportional to the variance of each esti-
mator is always better than the strategy of assigning an equal
count of samples.

If we optimize at the same time wk and nk , there is only
the trivial solution when for all k, vk = v.

The conclusions so far are that if you have a fixedweighted
combination, use Eq. 8. If you have a fixed count of samples
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for each estimator, use Eq. 11. If you know in advance which
is the most efficient estimator, then just sample this one. If
not, you canuse batches of samples to estimate the variance of
the different estimators and then combine them using Eq. 11.

3 Multiple importance sampling with optimal
weights

Veach and Guibas [23] introduced the multiple importance
sampling estimator, which makes it possible to combine
different sampling techniques in a novel way. The optimal
heuristic MIS case was when the weights were proportional
to the count of samples, a technique they named the balance
heuristic. Given M sampling techniques (i.e., pdfs) pk(x), if
we sample nk samples from each,

∑M
k=1 nk = N , the balance

heuristic estimate for I = ∫
f (x)dx is given by the sum

F = 1

N

N∑

l=1

f (xl)
∑M

k=1 αk pk(xl)
, with αk = nk

N
. (17)

As Veach observed (see Veach’s thesis [22], section
9.2.2.1), the balance heuristic estimate corresponds to a stan-
dard Monte Carlo importance sampling estimator, where the
pdf p(x) is given by a mixture of distributions:

p(x) =
M∑

k=1

αk pk(x),with αk ≥ 0,
M∑

k=1

αk = 1,

∫
pk(x)dx = 1, pk(x) ≥ 0, ∀k ∈ {1, M}. (18)

This corresponds to the estimator: F(x) = f (x)/p(x)where
x is distributed according to p(x).

We will analyze next the variance of the balance heuristic,
or equivalently, the variance when using as the importance
sampling function a mixture of distributions. Our interest is
in obtaining the weights αk that give the minimum variance.
These weights determine the count of samples to be taken
for each technique.

3.1 Optimal weights for equal sample cost

Observe that μ = I = ∫
f (x)dx is the expected value

of F(x) = f (x)
∑M

k=1 αk pk (x)
according to pdf p(x) p(x) =

∑M
k=1 αk pk(x), i.e., μ = E[F(x)]. Observe also that F(x)

depends on {αk}. Also, for all M sampling strategies,

μk =
∫

f (x)pk(x)
∑M

l=1 αl pl(x)
dx = Ek[F(x)] (19)

is the expected value of F(x) according to pk(x). Observe
that μ = ∑M

k=1 αkμk .

The variance V [F(x)] can be written in several ways:

V [F(x)] = E[F2(x)] − (E[F(x)])2

=
∫ (

f (x)
∑M

k=1 αk pk(x)

)2( M∑

k=1

αk pk(x)

)

dx−μ2

=
∫

f (x)2
∑M

k=1 αk pk(x)
dx − μ2

=
M∑

k=1

αk

∫ (
f (x)

∑M
k=1 αk pk(x)

)2

pk(x)dx − μ2

=
M∑

k=1

αk Ek[F2(x)] − μ2

=
M∑

k=1

αk(Vk[F(x)] + μ2
k) − μ2, (20)

where by Vk[F(x)] we mean the variance of F(x) when
sampling according to pk(x):

Vk[F(x)] = Ek

[
F2(x)

]
− (Ek[F(x)])2

=
∫ (

f (x)
∑M

l=1 αl pl(x)

)2

pk(x)dx − μ2
k . (21)

We want to find now the set of {αk} that minimizes
the variance of the estimator F(x), subject to the con-
straint

∑M
k=1 αk = 1. We will use the Lagrange multipliers

method. The Lagrangian function is Λ(α, λ) = V [F(x)] +
λ(

∑M
k=1 αk − 1). Thus, for all j from 1 to M :

∂Λ (α, λ)

∂α j
=

∂
(
V [F(x)] + λ

(∑M
k=1 αk − 1

))

∂α j

= ∂V [F(x)]

∂α j
+ λ = 0. (22)

We have

∂V [F(x)]
∂α j

=
∂

(∫ (
f 2(x)

∑M
k=1 αk pk (x)

)

dx − μ2
)

∂α j

=
∫

f 2(x)
∂

∂α j

(
1

∑M
k=1 αk pk(x)

)

dx

= −
∫

f 2(x)p j (x)
(∑M

k=1 αk pk(x)
)2 dx

= −E j

[
F2(x)

]
. (23)
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Thus,

λ = E j

[
F2(x)

]
. (24)

This means that the optimal combination of αk is reached
when all λ values are equal, i.e., when for all i, j

Ei

[
F2(x)

]
= E j

[
F2(x)

]
. (25)

Using Eq. 20, the minimum variance is:

V [F(x)] =
M∑

k=1

αk Ek[F2(x)] − μ2

=
M∑

k=1

αkλ − μ2 = λ − μ2. (26)

On the other hand, Eq. 26 gives us the value of λ:

λ = V [F(x)] + μ2 = E
[
F2(x)

]
. (27)

Thus, for all j ,

E j

[
F2(x)

]
= E

[
F2(x)

]
. (28)

Equation 25 (or equivalently Eq. 28) gives the necessary con-
dition for {αk} to be a critical point. Douc et al. [6] stated, in
the context of population Monte Carlo, the convexity of the
variance; thus, this critical point has to be a global minimum.

3.1.1 Discussion

The Lagrange multiplier method works by trying to equate
the gradients of the function to be minimized, which in our
case are ∂V [F(x)]

∂α j
= −E j [F2(x)], with the gradient of the

constraint
∂

∑M
j=1 α j−1
∂α j

, which is constant; thus, in our case it

tries to equate all the gradients E j [F2(x)]. These gradients
can equate within the domain, where for all j , α j > 0, in
which case Eq. 28 holds for all j , and there is a local (and
global) minimum, or otherwise there is no local minimum
within the domain, and the global minimum is at the border,
when for some j , α j = 0. In that latter case, the gradients
which correspond to α j > 0 still equate and obey Eq. 28.
This is because we can consider the problem reduced to the
nonzero α j , which thus has a global minimum within the
reduced domain and thus obeys Eq. 28. See Fig. 1a, b for the
case M = 2.

Observe also from Fig. 1 that the convexity of variance
V [F(x)] ensures that its minimum will be always less or
equal than the minimum of the variances of the independent

α1 + α2 = 1

v2

v1

min

α1 + α2 = 1

v2 = min

v1

Fig. 1 At the left, the minimum is taken within the domain α1 + α2 =
1. At the right, no local minimum exists within the domain, and the
global minimum is taken at the border. v1, v2 are the variances for each
technique in turn, in Eq. 35

techniques. This makes valuable any strategy to approximate
the minimum.

3.1.2 Combinatorial strategy

A strategy to approximate the optimal αk values in general
would run along the following lines. First, for each j , sample
n j samples from p j (x). In this way, we can estimate, for all
combinations of αk and with the same samples, the λ values
in Eq. 24, using the estimator

E j

[
F2(x)

]
≈ 1

n j

n j∑

l=1

F2(x j
l ), (29)

where

F(x j
l ) = f (x j

l )
∑M

k=1 αk pk(x
j
l )

. (30)

The optimal αk values would be the ones that make all
these values the most similar. Observe that for each j you
need to take the n j samples only once. This strategy could
be organized by taking batches of samples to improve on the
{αk} gradually.

3.2 Optimal weights for non-equal sample cost

The optimal αk values considered before do not take into
account the different sampling costs for each pdf pk(x).
Let ck be the cost for one sample from technique k. The
average cost per sample is then c̄ = ∑M

k=1 ckαk . The
optimal αk values will come now from minimizing the
inverse of efficiency, which is defined as cost times vari-
ance, subject to the constraint

∑M
k=1 αk = 1, i.e., Λ(α, λ) =

c̄V [F(x)]+λ(
∑M

k=1 αk −1). Using again the Lagrangemul-
tiplier method, we obtain for all j ,

λ = c̄E j [F2(x)] − c j V [F(x)] (31)

123
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By multiplying Eq. 31 by α j and summing over j , and using
Eq. 20, we can obtain the value of λ:

λ =
M∑

j=1

α jλ =
M∑

j=1

(
c̄α j E j [F2(x)] − α j c j V [F(x)]

)

= c̄E[F2(x)] − c̄V [F(x)] = c̄μ2. (32)

As λ = c̄μ2 = c̄(E[F2(x)]−V [F(x)]) we can write Eq. 31
as

c̄E[F2(x)] = c̄E j [F2(x)] + (c̄ − c j )V [F(x)]. (33)

When all costs are equal, c̄ = c j for all j , Eq. 33 reduces
to Eq. 28.

To minimize the variance for a given cost budget and thus
to maximize the efficiency for all j , the right-hand side for
different index j in Eq. 31 have to be the same. Observe
expected values appearing in Eq. 31 can be estimated in the
same way as before for Eq. 24, by sampling n j samples for
all j from p j (x) pdf. We can include the cost in a batching
strategy to approximate the optimal αk weights.

3.3 Heuristic for weights

The question arises now whether, without recourse to the
brute force batching procedure or to some slow iterative
strategy, there is some heuristic that would give suboptimal
values. We outline the adaptive algorithm in Appendix C in
the supplementary material. We have seen in Sect. 2.2 that
in the linear case, the strategy of distributing the samples
inversely proportional to the variance of each estimator is
always better than the strategy of assigning an equal count
of samples to each estimator. Thus, we will consider the αk

values inversely proportional to the variances of the estima-
tors taking as pdf each pk(x) in turn, respectively; that is, we
compute αk as follows:

αk = H({vk})
Mvk

, (34)

where vk , introduced in Sect. 2.2, is the variance of the
estimator of I , f (x)

pk (x)
, when doing importance sampling

according to pk(x), i.e.,

vk =
∫

f 2(x)

pk(x)
dx − I 2. (35)

Here we considered the estimators to be unbiased. This hap-
pens for estimator k if, whenever f (x) �= 0, then pk(x) �= 0.
As a particular case, if we take f (x) = Πk pk(x), then all
the estimators are unbiased. Observe from Eq. 34 that the
less the variance of a technique is, the more we sample from

that technique, remember from Eq. 17 that the count of sam-
ples is proportional to αk . Trivially, for any pair {k, j}, if
vk �= 0, v j �= 0, then αk/α j = vk/v j . Thus, if all vk are
equal, so are all αk .

Let us examine the limiting case, when a variance vk is
zero. For this to happen, pk(x) = f (x)/I , as then doing
importance sampling with pdf pk(x) the integrand will be
constant, and variance vk will be zero. In that case, no other
variance can be zero (supposing pi (x) �= p j (x) for i �= j)
and taking the limits in Eq. 34 for vk → 0,αk = 1,α j �=k = 0.

The other limiting case, when some variance(s) vm are
high with respect to the other ones, taking the limits in Eq. 34
for vm → ∞ we obtain αm = 0.

3.3.1 Comparing bounds for equal count of sampling and
new heuristic

Weshowhere thatwe can find tighter bounds for our heuristic
than for equal count of samples. We start from the inequality
between weighted harmonic and arithmetic means [2]. For
any two sets of positive values {bk} and {αk} (∑M

k=1 αk = 1),
it holds that:

1
∑

k
αk
bk

≤
∑

k

αkbk, (36)

Then, taking bk = f 2(x)
pk (x)

, we get:

1
∑M

k=1
αk
f 2(x)
pk (x)

≤
M∑

k=1

αk
f 2(x)

pk(x)
. (37)

And using the expression for the variance Eq. 20, we obtain
the bound for V [F(x)]:

V [F(x)] =
∫

1
∑M

k=1
αk
f 2(x)
pk (x)

dx − μ2

≤
M∑

k=1

αk

(∫
f 2(x)

pk(x)
dx − μ2

)

=
M∑

k=1

αkvk . (38)

A first observation is that, by the rearrangement inequality
[10], given a fixed set αk , the minimum bound in Eq. 38 will
be obtained when the αk and the vk are paired in inverse
order, i.e., αi ≤ α j ⇔ vi ≥ v j , i.e., αk is decreasing on vk .

For equal count of samples, αk = 1/M for all k in Eq. 38,
we have that

∑M
k=1 αkvk = 1

M

∑M
k=1 vk , i.e., the arithmetic

mean of {vk}.
For the new heuristic, αk = H({vk })

Mvk
,

∑M
k=1 αkvk =

∑M
k=1

H({vi })
Mvk

vk = H({vk}), harmonic mean of {vk}.
As the harmonic mean is always less than or equal the

arithmetic mean, i.e.,
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H({vk}) ≤ 1

M

M∑

k=1

vk (39)

we can guarantee that using αk ∝ 1
vk

we have always a lower

bound for the variance than using αk = 1
M .

The question about how much better is the bound using
αk ∝ 1

vk
than using αk = 1

M is the same as the one about
howmuch distance there is between harmonic and arithmetic
mean. Both means are equal if and only if all values {vk} are
equal. And the more unequal the {vk} values are, the more
dissimilar are the means. Observe that, by the properties of
harmonic mean, H({vk}) ≤ Mmink{vk} while the behavior
of arithmetic mean is driven by maxk{vk}. The bigger the
difference between maxk{vk} and mink{vk}, the bigger the
difference between the means.

Observe finally that although we can guarantee a lower
bound, we cannot guarantee that using the new heuristic
we always obtain a better result. As an example, con-
sider the trivial case f (x) ∝ ∑M

k=1 αk pk(x), with p(x) =
∑M

k=1 αk pk(x), where V [F(x)] = 0, while with the new
heuristic V [F(x)] > 0.

3.3.2 Extension of the new heuristic to include cost of
sampling

If we want to include the cost ck of importance sampling, it
seems natural to extend the heuristic in Eq. 35:

αk ∝ 1

ck
(∫ f 2(x)

pk (x)
dx − I 2

) (40)

and thus

αk = H({ckvk})
Mckvk

. (41)

As the variances are not usually known in advance, they have
to be estimated using some batch of samples.

4 Linear combination versus MIS

The question arises about which kind of combination to use
when we have several techniques at hand, either linear com-
bination in Sect. 2.2 orMIS in Sect. 3. If some techniques are
biased, such as in reusing paths techniques [1], linear combi-
nation of estimators will be biased. But if it holds that when
f (x) > 0 then p(x) > 0,MIS will produce an unbiased esti-
mator. If all techniques are unbiased, we can use both kinds
of estimators. We know from Sect. 2.2 that the variance for
the linear combination of unbiased estimators is greater or
equal than mink{vk}. On the other hand, we have seen in the

discussion in Sect. 3.1 that the minimum MIS variance will
be always less or equal than mink{vk}. Using MIS pays off
if we have a good strategy to approximate this minimum.
Also, when for all k, vk > 0, using the MIS estimator to
estimate f (x) ∝ ∑M

k=1 αk pk(x) we can obtain zero vari-
ance with p(x) ∝ f (x), while it is not possible with linear
combination.

Let us see a relationship between the variances for MIS
estimator and linear combination of estimators. Observe that
the second member of the inequality Eq. 38 is the variance
of the linear combination of estimators when the weights are
taken as proportional to the count of samples. Effectively,
given theM estimators eachwith variance vk and nk samples,
by taking in Eq. 6 wk = αk = nk/N , where N = ∑M

k=1 nk ,

1

N 2

M∑

k=1

n2k
vk

nk
= 1

N

M∑

k=1

αkvk, (42)

which normalized to N = 1 becomes
∑M

k=1 αkvk . Thus,
Eq. 38 tells us that the variance of MIS estimator using the
values {αk} is less than the variance of the linear combination
of estimators when the weights are proportional to the count
of samples, i.e., wk = αk .

5 Results

We have tested the proposed MIS algorithm on one- and
two-dimensional functions. We keep the analysis as simple
as possible and restrict numerical evaluation to the imple-
mentation of the environment map illumination.

5.1 Simple functions in R1

In domain R1, we show an example with a general func-
tion f (x) = x2 sin2(x)+ (3x + 1) cos2(x) sampled by three

independent functions p1(x) = x+1
2.692 , p2(x) = x2−x/π+1

3.203 ,
and p3(x) = sin(x) with domain 〈1/3π, 2/3π〉. The func-
tions depiction, the detailed computation of variance and
efficiency is in Appendix A in the supplementary material.
The maximum theoretical gain in the efficiency improve-
ment for equal costs of sampling from the three functions is
+265%, when compared to the equal count and equal cost of
sampling. For C++ implementation with sampling batches,
we get an efficiency improvement of +224% for 500 samples
taken.

For unequal cost of sampling, the gain in efficiency can
drop or increase in dependence on the actual cost of sampling.
We show here the decrease in gain from +265% for unequal
sample cost (c1 = 1, c2 = 1.6, c3 = 1.07) to +151%, since
sampling according to p2(x) is the most efficient. For C++
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implementationwith samplingbatches, the relative efficiency
improvement is +120% for 500 samples taken.

5.2 Analytical test in R2

The first test in R2 is the analytical derivation of formulas in
Mathematica and corresponds to the illumination of an object
with a Lafortune–Phong BRDF model with an environment
map simplified to the function R(θ, φ) = cos(θ) assuming
full visibility, described in Appendix B in the supplementary
material. For this setting, the maximum theoretical gain in
efficiency of the adaptive algorithm is by +138% for equal
costs of sampling from both functions. For uneven sam-
pling costs, where the ratio 1:4.8 was measured from C++
implementation of the algorithm when the environment map
is represented by a 1 MPixel image (the cost of sampling
from the environment map is 4.8 times less than the cost of
sampling from the BRDF), the maximum theoretical gain
achieved in sampling efficiency is +702%.

5.3 Numerical test in R2

The second test in R2 was numerical and implemented in
C++ for environment map illumination using a broad range
of BRDF values. The computed images were ray traced
(primary and shadow rays) and sampling is computed inde-
pendently for each pixel with a different set of random
numbers. To make sampling more difficult, we used the
occlusion grid around the object, unlike [11], where the full
visibility was considered. The occlusion grid is a sphere
positioned with center in the object and texture defining the
occlusion geometry. For the sake of getting the visual results
across the whole image, the occlusion sphere is not visible
from the camera and it is used only for shadow rays.

Environment maps. We collected 58 environment maps
(EM) represented by HDR images. First we normalized all
EMs to unit power and then we computed the variance of the
normalized EM. We selected 25 EM with different variance
providing thewhole rangeof variancevalues in 6magnitudes.

The 25 EMwere then used for the initial rendering of images
as described above.

BRDF setting. For the BRDF, we used the physically cor-
rected Lafortune–Phong BRDF model [14] that allows for
analytical importance sampling. It was used 4 times with a
fixed setting over the whole object and once with the BRDF
varying over the geometry. The first setting of the BRDF
model was: ρd = 0.5, ρs = 0.5, n = 1. The second set-
ting of the BRDF model was: ρd = 0.5, ρs = 0.5, n = 10.
The third setting of the BRDF model was: ρd = 0.1, ρs =
0.9, n = 10. The fourth setting of the BRDF model was:
ρd = 0.1, ρs = 0.9, n = 100. The fifth setting of the BRDF
was varying the BRDF model over the surface by changing
the exponent and ratio between diffuse albedo ρd and spec-
ular albedo ρs along a texture square, while the total albedo
of the BRDF is set to one (i.e., ρs + ρd = 1). The diffuse
albedo ρdiff is interpolated in axis y on a square by function
ρdiff(y) = (1 − y)2 for range y ∈ 〈0, 1〉, while the specular
albedo is ρspec = 1−ρdiff . For the specular exponent, we use
the mapping in texture for coordinate x ∈ 〈0, 1〉 by formula

n(x) = 10 + 90x
1
4 that gives the range 〈10, 100〉.

Geometry and Viewpoint. We used a sphere as geometry
viewed from two view points, which allowed to show sub-
stantial differences in BRDF variation.

Occluder setting. To set the occlusion grid, we used three
different occlusion factors (0.1, 0.2, and 0.3) and four dif-
ferent frequencies for our tests (4 × 4, 6 × 6, 8 × 8, and
10 × 10 blocking grid on the sphere), in total 12 occluder
grid settings. Due to the lack of space we show here only 4
occluders in Fig. 2.

We used 2 combinations viewpoints for a single object,
5 different settings of BRDF, in total 25 EM and 12 occlu-
sion grids. We have used all 2 × 5 × 25 × 12 = 3000 test
cases and rendered them with BRDF.cos(θ) sampling and
EM sampling, using 100 samples per pixel. We then selected
8 representative cases with different noise in pairs of images
rendered by the two methods to show the properties of the
sampling algorithms. The images computed for 1000 sam-
ples for 8 test scenes are shown in Fig. 3. The variances of
the EMs for the 8 representative cases are given in Table 1.

Fig. 2 Four out of eight occlusion masks used in our tests as tex-
tures put on a sphere (white windows in the texture have approximately
the same area when mapped on the sphere surface located around the

object). The black color corresponds to the occluded part of the tex-
ture, and the white color represents the un-occluded part of the texture
through which a 3D object is lit from infinity from the environment map
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Fig. 3 Rendered images for 200 samples per pixel for the 8 representative cases and MIS with balance heuristic α1 = α2 = 0.5

Table 1 Setting of the 8 test scenes used with scene identification (first
column), identification of BRDF setting for images computed (second
column), variance computed from the environment map used after the
normalization to unit power (third column), (1) image MSE for sam-
pling from the environment map (fourth column), (2) image MSE for
sampling from BRDF.cos(θ) (fifth column), and the ratio of the two
previous columns (sixth column). The resolution of the environment
maps used varied from 1024×512 to 4096×2048

Scene fr V[EM] MSE MSE Ratio
ID type [−] (1) (2) MSE1

MSE2

1 1 140.4 0.164 3142.7 0.0000521

2 1 1.229 0.184 30.59 0.00603

3 1 0.372 0.142 7.843 0.0181

4 2 1.092 0.381 9.776 0.0389

5 4 18.56 3.097 74.14 0.0418

6 5 0.0411 54.62 0.2412 226.0

7 5 0.0109 65.30 0.0765 853.4

8 5 0.00176 41.67 0.0118 3541.0

Testing methodology. We have tested the methods for
moderate count of samples from 100 to 1500 to get visi-
ble differences in noise and evaluated the mean square error
(MSE corresponding to variance, averaged over all pixels).
The reference images were computed with 400,000 samples
by the balanced heuristic with fixed weights α = 0.5. The
MSE results are summarized in Table 1 as log–log graphs.
For adaptive sampling algorithms, we have set the number
of samples in the pilot stage to 20% for which half of sam-
ples were taken according to the BRDF and the second half
according to the EM. The computation was then organized
in eight additional stages, each 10% of all samples. At the

end of each stage, it was decided how to distribute samples
in the next one using in Eqs. 34 and 41.

Our adaptive sampling algorithm decreases the variance
both against standard MIS with an equal count of samples
and also against the technique by Lu et al. [16].We computed
two combinatorial solutions given a fixed count of N samples
for a range of α ∈ 〈0.1, 0.9〉. This corresponds to the need
for a pilot sampling stage with 20% of the samples. The first
one minimizes the variance from N samples using Eq. 17 by
searching for the best α. The second one finds the optimal
value of α to equalize λ values in Eq. 24 using N samples.

To comment in detail on the results for all 8 test scenes is
difficult. Our balance heuristic with heuristic weights was
always better than standard balance heuristic with equal
weights andmostly better than the algorithmbyLu et al. [16].
The selected test cases have a wide range of initial MSE val-
ues. The combinatorial algorithms that are the best in theory
are not always better than adaptive ones. A reason is that the
evaluation is carried out pixel by pixel and we compute the
averages of MSE for the whole image.

The computation overhead of our technique with batches,
needed to adapt the samples distribution during the com-
putation, was less than 2% in all cases; the computation of
variances and means in the sampling scheme together with
computing the distribution of samples in the next stage of
sampling presents a negligible overhead. The cost of sam-
pling from the BRDF and the EM was almost equal in our
tests (costBRDF = 0.8costEM), as we stored the precom-
puted lights to an array in preprocessing and randomized
their selection during sampling. The equal cost of sampling
from both strategies is the worst case for our scheme, but still
we achieve an improvement over equally distributed samples
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Fig. 4 Scene 1 to 8, graphs with MSE for all 9 sampling methods in
terms of MSE for 100,200,500,1000,1500 samples. The axis x is the
number of samples, axis y shows MSE, both axes have logarithmic
scale. The convention for importance sampling (IS) methods in graphs
is: 1—environment map IS, 2—BRDF.cos θ IS, 3—optimal linear com-
bination between environment map IS and BRDF.cos θ IS (Eq. 13),
4—balance heuristic with equal weights α1 = α2 = 0.5, 5—adaptive

balance heuristic by Lu et al. [16], 6—balance heuristic with heuristic
weights (Eq. 34), 7—balance heuristic with unequal weights, combi-
natorial search, minimal variance of Eq. 17 for each pixel, 8—optimal
balance heuristic MIS scheme (Eq. 24), 9—balance heuristic MIS with
heuristic weights and considering cost (Eq. 41, the total cost the same
as for the balance heuristic with equal weights)

(fixed α = 0.5). Without storing precomputed light to array
then costEM = 4.8costBRDF achieved even higher efficiency
improvement.

5.4 Discussion and limitations

Other adaptive sampling schemes with MIS are possible, but
our proposed scheme requires little additional memory and
almost no computational overhead, and it is accurate with
respect to the presented theory.The improvement of sampling
efficiency for other applications of this sampling scheme is
potentially even higher if the sampling costs between the
functions differ.

The proposed adaptive technique requires to estimate the
variances. This is only a small cost overhead, although to
estimate them reliably a low count of samples such as 10 or
20 cannot be used. This is the same as in Lu et al. [16], where
the minimum number of samples in the pilot stage was set
to 64, or as in other adaptive techniques [3,5,17]. The charts
show that the crossover points where the adaptive methods
start to be more efficient vary widely between 100 and 1500
samples, for scenes 5 and 7 crossover points are past 1500
samples (Fig. 4).

6 Conclusion and future work

In this paper, we have analyzed themultiple importance sam-
pling estimatorwith the balance heuristicweights. Exploiting
that the balance heuristic is importance sampling with a mix-
ture of densities, we have givenmathematical expressions for
the variance of the MIS estimator, for the optimal weights,

i.e., the distribution of sampling that optimizes the variance,
a batch procedure to approximate them, and finally a heuris-
tic formula to approximate directly the optimal weights. We
have also considered the cost of sampling in our formulation,
when we optimize the efficiency of the estimator. We have
demonstrated our algorithm with numerical experiments on
functions in R1 and in R2 for a problem of local illumi-
nation computation of a 3D object covered by a spatially
varying BRDF and lit by an environment map with the pres-
ence of occluders. We have shown more than doubling of
the sampling efficiency to the standard non-adaptive MIS
algorithm for an equal sample cost for R1 case and various
improvements for the R2 case. As a future work, our pro-
posed sampling method could be tested in other rendering
algorithms, for example, in many-light methods.
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