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Abstract We introduce a novel approach to support fast
and efficient lossy compression of arbitrary animation
sequences ideally suited for real-time scenarios, such as
streaming and content creation applications, where input
is not known a priori and is dynamically generated. The
presented method exploits temporal coherence by altering
the principal component analysis (PCA) procedure from a
batch- to an adaptive-basis aiming to simultaneously sup-
port three important objectives: fast compression times,
reduced memory requirements and high-quality reproduc-
tion results. A dynamic compression pipeline is presented
that can efficiently approximate the k-largest PCA bases
based on the previous iteration (frame block) at a signifi-
cantly lower complexity than directly computing the singular
value decomposition. To avoid errors when a fixed number of
basis vectors are used for all frame blocks, a flexible solution
that automatically identifies the optimal subspace size for
each one is also offered. An extensive experimental study is
finally offered, showing that the proposed methods are supe-
rior in terms of performance as compared to several direct
PCA-based schemes while, at the same time, achieves plau-
sible reconstruction output despite the constraints posed by
arbitrarily complex animated scenarios.
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1 Introduction

With the rapid advances in high-performance computing,
scanning operations and content creation tools, the out-
put data are expanding rapidly generating massive datasets.
While this can be mitigated by applying compression tech-
niques to the data being archived or transferred, the tremen-
dous computing resources required bring tough challenges
to be solved. Recently, there has been increasing interest
on acquiring, processing, storing and transmitting 3D ani-
matedmeshes facilitating several real-time applications (e.g.,
Microsoft Holoportation, an immersive telepresence sys-
tem).

Throughout the years, numerous approaches have been
proposed improving more or less some of the key anima-
tion compression characteristics [16]: encoding–decoding
requirements, reconstruction quality and compression rates.
Without loss of generality, these methods can be classified
either as local- or global-based, depending on the framewin-
dow analysis taken for compressing the animation sequence.
The main benefit of the global approaches is an improved
compression rate by analyzing the overall motion coherence,
whereas the local ones focus on local frame-to-frame transi-
tions allowing low-latency streaming.

Skinning as well as principal component analysis (PCA)
can be considered as the most well-known global methods
for providing efficient compact representations of rigid and
highly deformable animations, respectively. Though a large
variety of different strategies have been introduced in both
skinning [8] and PCA [16], all of them suffer from exces-
sive computational requirements, strongly dependent on the
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Fig. 1 Overview of our animation compression method. Assuming
sequential arrival of the animation data (top), the dictionary is dynam-
ically updated for each cluster (block of 10 frames) by employing

adaptive orthogonal iterations (AOI). The reconstructed results of the
Handstand animation confirm that AOI achieves similar quality in 25×
faster times when compared to a direct SVD-based solution (bottom)

geometry size and the total animation length. While for non-
interactive applications, where animation is known a priori,
the compression choice can easily be determined solely based
on the underlyingmotion, new challenges rise when attempt-
ing to support unknown arriving geometry (see Fig. 2).

In this work, we introduce a novel out-of-core adaptive
approach capable of approximating efficiently the PCA-
based dictionary at a significantly lower computational
complexity than directly applying singular value decom-
position (SVD) as illustrated in Fig. 1. Inspired by the
observation that only small deformation variations will nor-
mally occur between consecutive poses [32], we split the
animation sequence into uniform frame blocks and perform
subspace tracking by processing each incoming block at
a time. By exploiting temporal coherence, we are capable
of efficiently estimating the dictionary of the current frame
batch using as input the precomputed dictionary of the pre-
vious batch [4]. To this end, we present a general iterative
method to perform orthonormalization by exploring several
orthogonal iterations variants [24]. In cases of high motion
change between frame blocks, the optimal subspace size k
can be automatically and dynamically adjusted to consis-
tently reconstruct each incoming block of animation data.
Our method can be successfully applied in cases where the
animated data are handled as separate geometry clusters [22]
as well as for exploiting both spatial [1] and temporal corre-
lations [27]. An extensive experimental evaluation study on a
wide range of animations considering a large spectrumof set-
tings and configurations is finally offered showing the notable
improvements in processing times (up to 60×) as compared
to prior artwithout sacrificing the final reconstruction quality.

2 Related work

Animation compression schemes aim to provide a compact
representation of the original animation, without affecting
the perceived amount of distortion during reconstruction.
Assuming constant connectivity (which can be encoded in an

Fig. 2 Selected snapshots of (left) flag, (middle) ocean and (right)
airflow dynamic simulations [12]

extremely efficient way [16], the sequence consists of a geo-
metric evolution of the vertices of the initial mesh over time.
A straightforward approach for compressing the animated
geometry can be derived by applying one of the numerous
available static mesh compression methods [3,13,14,18,25]
to each one of the individual frames. Although such an
approach would result in an efficient exploitation of the
spatial coherence, it completely ignores the temporal one,
missing a crucial factor to achieve higher compression
ratios [9].

A large variety of animation compression algorithms has
been introduced the last few years in the literature [16]. One
can classify them into two core groups according to whether
the timecoherence is locally or globally analyzed.Despite the
computationally fast behavior of the local approaches (e.g.,
wavelets [19] and predictive coding methods [23]), for the
remainder of this paper we will focus on global compression
schemes (Fig. 2).
PCA-based approaches. Generally, these can be classified
according to where PCA is used to exploit spatial and/or
temporal coherence of the input data, the matrix representa-
tion of the sequence’s geometry. Alexa and Müller [1] were
the first to employ PCA to fit a low-dimension subspace to
the animation dataset and express each frame as a linear com-
bination of the largest eigenvectors (EigenShapes) that spans
the selected subspace. By exploiting temporal coherence,
Karni and Gotsman [9] advanced this method by performing
linear prediction coding on the extracted spatial PCA coef-
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ficients. Luo et al. have further achieved better compression
ratio and computation times by aggregating similar frames
into temporal clusters and compress them separately [15].
Contrary to the streaming nature of our method, in this
approach the frames belonging to the same cluster may not
be contiguous.

Conversely, several authors [22,27] suggested to apply
PCA on the temporal space (EigenTrajectories); the main
benefit is that it involves the decomposition of a smaller
covariance matrix, since the number of frames is usually
less than the number of vertices. To capture more efficiently
local similarity characteristics, the authors in [2,20,22] sug-
gested segmenting themesh into deformation-aware clusters,
which are then compressed independently. An adaptive com-
pression allocation procedure is also offered, assigning more
PCA coefficients to clusters that undergo extreme defor-
mations [2]. To achieve better compression ratio, several
algorithms were introduced to code (i) the PCA bases via
principal components [22] and non-least squares optimal
linear/accelerated movement [28] as well as (ii) the PCA
coefficients by local predictor coding schemes such as the
parallelogram rule [27], neighborhood average and radial
basis functions [29] and Laplacian coordinates [26]. These
methods can enhance their final approximation by represent-
ing the residual motion compensation errors via temporal
DCT-based (discrete cosine transform) [17] or PCA-based
corrections [11]. Before storing or transmitting, quantiza-
tion (uniformly [7] or not [28]) is finally performed to encode
the floating point data. Figure 3 provides a generic diagram
summarizing the stage flow which one may follow during a
PCA-based compression pipeline.

Subspace tracking approaches. Unfortunately, computing
SVD (the standard direct approach to estimate PCA), can
be extremely memory-demanding and time-consuming for
large-scale animation problems (specifically, O(m3) for a
matrix of m × m size). On the other hand, subspace track-
ing algorithms are fast alternatives relying on the execution
of iterative schemes for evaluating the desired eigenvectors
per incoming block of floating point data [4]. These alterna-
tives schemes can be classified into low (O(mk2)) and high
(O(m2k)) complexity, where k(� m) denotes the number
of principal eigenvectors. The best performance among the
high complexity class is achieved by the Lanczos Iterations
(LI) [33], while the primary representative of the other class
is based on the Orthogonal Iterations (OI) [24]. Although
the LI method requires less iterations for evaluating the sub-
space of a symmetric matrix, the complexity of each one is
O(m2k). On the other hand, the OI alternative can result in
very fast solutions when the initial input subspace is close
to the subspace of interest, as well as the size of the sub-
space remains at small levels [21]. The effectiveness of OI
is attributed to the fact that both matrix multiplications and

Fig. 3 High-level PCA-based compression framework. We revise
accordingly the PCA computation stage providing notable speed bene-
fits without altering the general pipeline

QR factorizations have been highly optimized for maximum
efficiency on modern serial and parallel architectures. These
properties make the OI approach more attractive for real-
time applications. To the best of our knowledge, subspace
tracking algorithms have never been applied to the anima-
tion compression problem, despite their wide success on a
large range of filtering applications.

3 Overview of our method

Apart from the high-quality reconstruction outputwhen com-
pressing skeletal (skinning-based) and highly deformable
objects (PCA-based), these methods assume that (i) all
frames of the animation sequence are already known to the
encoder, an unsuitable requirement for interactive scenar-
ios; (ii) the maximum animation length lasts a few seconds
(assuming real-time rendering at 30fps); as well as (iii) the
geometry size is upper-bounded to a fixed number of trian-
gles, avoiding memory overflows and performance delays.

We introduce a general, fast and lossy compression
approach suited when the animated data are either dynami-
cally produced or too large to fit into main memory at once.
From a high-level point of view, the basic structure of our
framework is very similar to that of the aforementionedmeth-
ods, altering only the encoding stage from offline to online,
leaving the rest unchanged including connectivity compres-
sion, geometry clustering, dictionary coding andquantization
(see Fig. 3). In this work, the animation sequence is divided
into an uniform block of frames corresponding to disjoint
temporal intervals, which are then encoded independently
one from another by performing adaptive (online) PCA-
based compression (in either the spatial or the temporal
domain). Assuming low dictionary variance between succes-
sive frame blocks, we successfully apply subspace tracking
via adaptive orthogonal iterations (AOIs) significantly reduc-
ing the processing requirements needed if the conventional
PCA schemes are alternatively utilized.When quality consis-
tency of reconstructions is of utmost importance, the optimal
subspace size k can dynamically be adjusted in an iterative
manner. The entire pipeline is illustrated in Fig. 4 and dis-
cussed in further detail in the following sections.
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Fig. 4 Our adaptive animation compression pipeline. Temporal, and
optionally spatial, clustering is initially employed to support the encod-
ing of sequentially arriving animation frames (left). For each incoming
block of frames, the dictionary is estimated by readjusting the subspaces

computed at the previous block via adaptive orthogonal iterations (mid-
dle). High-quality reconstructions are finally computed by efficiently
combining the estimated dictionary and feature vectors (right)

3.1 Preliminaries on PCA-based compression

The central idea of principal component analysis is to reduce
the dimensionality of a dataset D consisting of a large num-
ber of interrelated variables without sacrificing the variation
present in the dataset. This is achieved by transforming to a
new set of variables, the principal components, which are
uncorrelated, and which are ordered so that the first few
retain most of the variation present in all of the original vari-
ables [5].

The input is a series of f consecutive static, point or tri-
angular, meshes P1, . . . ,P f , namely poses. Each pose Pi

with n vertices can be represented by two different sets
Pi = (Vi ,Fi ) corresponding to the vertices Vi and the
indexed facesFi . In our case, all poses have the same connec-
tivity Fi = F , yet different geometry Vi . So, the animation
data matrix D can be defined as:

D =
⎡
⎢⎣
p11, p12, . . . , p1 j , . . . , p1n

...
...

. . .
...

. . .
...

p f 1, p f 2, . . . , p f j , . . . , p f n

⎤
⎥⎦ ∈ �3 f ×n,

(1)

where pi j = [
xi j , yi j , zi j

]T are the x, y, z Euclidean coordi-
nates of the vertex position p j in pose Pi .

The classic PCA-based approaches provide efficient rep-
resentations in either the spatial [1] or the temporal space [22]
by suggesting to evaluate the autocorrelation matrix A in the
domain with the smaller size:

A =
{

1
e · DDT ∈ �e×e if f � n (temporal)
1
n · DTD ∈ �n×n otherwise (spatial)

, (2)

where e = 3 f . For the sake of simplicity, we will focus
on the temporal case. After constructing the autocorrelation

matrix (Eq. (2)), the direct SVD is applied to A leading to a
factorization of the form:

A = UΣUT (3)

where U = [u1, . . . ,ue], ui ∈ �e×1 and UT are called
the left- and right-singular vectors, respectively. The matrix
Σ = diag(λi ), λi ∈ � contains the singular values of A:
λi ≥ λ j > 0, ∀i > j ≥ r = rank(A). The encoding
is performed by projecting the trajectories of each vertex
to the subspace dictionary defined by the k-eigenvectors
E = [u1, . . . ,uk] ∈ �e×k that correspond to the k-largest
eigenvalues [λ1, . . . , λk], creating a feature vectors matrix
F:

F = ETD ∈ �k×n, where k ≤ r. (4)

The compressed frames are finally decoded by multiplying
the feature vectors with the dictionary:

D̂ = EF ∈ �e×n (5)

3.2 Adaptive processing via direct SVD

The most computational and memory-demanding opera-
tion of the previously described compression method is
the SVD-based dictionary estimation. However, assuming
that the dynamic data are processed in sequential manner
(because it is either generated or streamed), a naive encod-
ing solution is to temporally cluster the animation [15] into
consecutive subsequences {S1,S2, . . .} of frame block sizes
{d1, d2, . . .} and then directly perform SVD on each sub-
sequence Si = {Py+1, . . . ,Py+di }, y = ∑i−1

j=1 d j . For
simplicity reasons, we subdivide the time space into uni-
form batches: di = d,∀i > 0. In mathematical terms, the
animation matrix D can be rewritten as a concatenation of
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sub-matrices Di which we assume that are available sequen-
tially:

D = [ DT
1 DT

2 . . . ]T , where

Di =
⎡
⎢⎣
p(i−1)d+1,1, . . . , p(i−1)d+1,n

...
. . .

...

pid,1, . . . , pid,n

⎤
⎥⎦ ∈ �3d×n (6)

3.3 Adaptive processing via orthogonal iterations

By exploiting subspace tracking, we introduce an efficient
way to adaptively estimate the dictionary at a lower cost as
compared to the direct evaluation of SVD for each incom-
ing sequence Si . In this section, we initially present the
orthogonal iteration method (Sect. 3.3.1) followed by the
analytic description of our adaptive scheme to the animation
compression problem, capable of readjusting the dictionary
of previous subsequence Si−1 in an iterative way. More
specifically, we offer two alternative adaptive orthogonal
iteration (AOI) schemes: the Bandwidth-consistent (BAOI)
that allows the user to determine the compression efficiency
by keeping fixed the dictionary size for the entire anima-
tion (Sect. 3.3.2) as well as the Quality-consistent (QAOI)
that identifies the optimal subspace size required for achiev-
ing an user-defined acceptable reconstruction quality goal
(Sect. 3.3.3).

3.3.1 Orthogonal iterations (OIs)

The orthogonal iterations [24] is an iterative procedure that
can be applied to compute the singular vectors corresponding
to the k dominant singular values of a symmetric, nonnega-
tive definite matrix and can be summarized in the following
lemma [5]:

Lemma 1 Consider a symmetric, positive definite matrix
M ∈ �n×n with λ j > 0 and u j , 1 ≤ j ≤ n be its nonzero
singular values and corresponding singular vectors, respec-
tively. Consider the sequence of matrices {E(t)} ∈ �n×k ,
defined in the iteration t as

E(t) = o_norm(ME(t − 1) ), t = 1, 2, . . . (7)

where o_norm function stands for the orthonormalization
procedure. Then, provided that the initial matrix ET(0) is
not singular results at limt→∞ E(t) = [u1, . . . ,uk].Note
that the convergence rate of this function depends on the
σk = |λk/λk+1| factor.

Algorithm 1: BAOI update process
1 E(0) ← Ei−1;
2 for t ← 1 to tmax do
3 E(t) ← o_norm(Az

iE(t − 1));
4 end
5 Ei ← E(t);

3.3.2 Bandwidth-consistent AOI (BAOI)

In order to derive a low complexity compression scheme,
we exploit the two attractive properties of the OI: (i) com-
putational efficiency as well as (ii) fast convergence when
the initialization is close to the subspace of interest. To this
end, we suggest executing a single orthogonal iteration per
incoming subsequence Si using as initial input the subspace
Ei−1 that corresponds to the previous subsequence Si−1.
More specifically, whenwe acquire the data blockDi , we can
replaceM in Eq. (7) with the symmetric data autocorrelation
matrixAi , leading to the followingmethod for estimating the
subspace of interest Ei = o_norm(AiEi−1). Depending on
the choice of Ai , we can obtain alternative subspace track-
ing methods. The simplest and most efficient selection is the
block estimate of the autocorrelation matrix,

Ai = DiDT
i + δ · I3d (8)

where δ is a small scalar value that is used to ensure that Ai

is nonnegative definite and Is is the identity matrix of size s.
A common way to increase the estimation accuracy of the

presented scheme is by executing more than one orthogonal
iterations tmax per incoming block of animated dataDi , using
a fixed matrix Ai . Contrary to the direct SVD approach, our
method can benefit from the convergence properties of OI by
substituting the matrix Ai with A

z
i , where z > 1. This action

increases the convergence speed of the method from σk to
σ z
k . Taking into account these observations, we can conclude

in Algorithm 1.
To preserve orthonormality and initialize the subspace to

the direct SVD subspace, it is important that the initial esti-
mate E1 is orthonormal. For that reason, the initial subspace
is estimated by applying direct SVDvia Eq. (3), while the fol-
lowing subspaces i = 2, . . . are adjusted using Algorithm 1.
A summary of the proposed technique is highlighted with
pink in Algorithm 3.

3.3.3 Quality-consistent AOI (QAOI)

So farwehave been assumed that a fixed, either insufficient or
redundant, number k of components per frame block is used,
neglecting the fact that themotion behaviormay significantly
vary during the whole animation sequence. To this end, we
present a dynamic scheme that automatically identifies the
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optimal subspace size ki for “error consistently” compressing
each incoming frameblockSi basedon theprevious subspace
size ki−1 and two user-defined low- and high-quality thresh-
olds εlow, εhigh (instead of adjusting tmax), thus allowing the
user to easily trade reconstruction quality with speedup. The
idea is to repeatedly increase or decrease ki−1 factor with
the number of iterations t , i.e., ki = ki−1 ± t, with k0 = k,
until the value of an error metric e(t) lies within the goal
quality range

(
εlow, εhigh

)
. Note that if we, instead, split the

animation into non-uniform frame blocks (while keeping the
subspace size fixed), it will potentially introduce unneces-
sary delays attributed to the packetization of a large number
of frames.

In practical scenarios, it is reasonable to assume that the
feature vectors Fi of each block Di reside in subspaces Ei

of different sizes. The subspace size ki of the incoming
data block Di = [

di1 , . . . ,din
]
, di j ∈ �3d×1, should be

carefully selected so that the relevant animation data block
characteristics are identified with the minimum loss of infor-
mation. To quantify the loss of information at each iteration
t , we suggest using the l2-norm of the following mean resid-
ual error r(t) = ∑n

j=1

(
di j − E(t)ET(t)di j

)
. When moving

from a high to low motion complexity, the incoming frame
block Si requires less than ki−1 principal eigenvectors to
be sufficiently reconstructed. In this case, the subspace size
ki is iteratively decreased by 1 by simply selecting the first
ki−1 − 1 columns of E(t) until the goal quality is achieved
‖r(t)‖2 > εlow. On the other hand, inspired by the incre-
mental PCA, we can simply add one normalized column
in the estimated subspace E(t) = [

E(t) · (r(t)/ ‖r(t)‖2)
]

and then perform the orthonormalization stage. The proposed
dynamic scheme can be easily integrated in Algorithm 3 (see
blue color) by replacing Algorithm 1 with 2.
Orthonormalization. There are a number of different choices
that can be used for the orthonormalization of the estimated
subspace. The most widely adopted are the Householder
Reflections (HR), Gram-Schmidt (GS) and Modified Gram-
Schmidt (MGS) methods [6]. While all variants exhibit
different properties related to the numerical stability and
computational complexity, without loss of generality, we
used HR for the orthonormalization stage.

4 Results and discussion

Wepresent an experimental analysis of our subspace tracking
approach as compared to the direct application of PCA in an
adaptive setup focusing on encoding performance and decod-
ing robustness (Sect. 4.2) of different animation sequences
under a broad set of configuration parameters (Sect. 4.1).
A short discussion is finally offered describing on how
to select a compression variant from the given repertoire
(Sect. 4.3).

Algorithm 2: QAOI update process
1 E(0) ← Ei−1; ki ← (i > 0) ? ki−1 : k;
2 for t ← 1 to ∞ do
3 E(t) ← o_norm(Az

iE(t − 1));
4 r(t) ← ∑n

j=1

(
di j − E(t)ET(t)di j

) ; if |r(t)| < εlow then

5 E(t) ←
[
E(t) r(t)

|r(t)|
]
; ki ← ki + 1;

6 else if |r(t)| > εhigh then
7 E(t) ← [

e1 . . . eki
] ; ki ← ki − 1;

8 else
9 break;

10 end
11 end
12 Ei ← E(t)

Algorithm 3: BAOI/QAOI encoding process
Function: Encoder (Di ,Ei−1, k, z, tmax/εlow, εhigh)

Input : Current block of data Di , dictionary of previ-
ous block Ei−1, power number z, orthogonal itera-
tions tmax/errors εlow, εhigh

Output : Dictionary Ei and feature vector matrix Fi
1 Estimate autocorrelation matrix Ai via Eq. (8);
2 if i == 1 then
3 Estimate initial dictionary E1 via Eq. (3);
4 else
5 Update Ei using Ei−1 and ki−1 via Alg. 1/2;
6 Orthonormalization via HR, GS or MGS.
7 end
8 Estimate feature vectors matrix Fi via Eq. (4);
9 return {Ei ,Fi };

10 // where ‘text’ and ‘text’ defines the bandwidth- and
quality-consistent AOI implementations, respectively.

4.1 Simulation setup

To provide an objective comparison between the tested solu-
tions, we follow the general pipeline stages described in
Section 3 and illustrated in Fig. 4 using a series of 3D
dynamic point clouds and triangular meshes with fixed con-
nectivity, that represent a wide range of rigid and highly
deformable motions (see Table 1 and video).We assume that
the animation poses are not known ahead in time and are
generated and processed sequentially. To that end, we divide
the animation into uniform blocks of consecutive frames
or namely subsequences {Si } (Sect. 3.2) that are processed
individually. In addition, our framework supports also the
segmentation and processing of spatial clusters allowing a
parallel adaptive implementation of very dense animated
meshes. METIS [10], an efficient topological partitioning
approach was used that uniformly partitions a mesh based
on its connectivity. For each data block, compact representa-
tions can be computed by approximating the k-largest PCA
bases in spatial or temporal space via

SVD: Jacobi singular value decomposition
(Sect. 3.2). Note that experiments
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Table 1 Extensive comparison in terms of quality and performance of the SVD and BAOI for a variety of compression configuration setups in a
highly motion-divergent collection of dynamic sequences

Animation Vertices Frames Block Bases Rate Error (STED) × 10−2 Performance (s)

n f d k bpvf SVD BAOI BAOI(2) SVD BAOI BAOI(2)

Name [Temporal space]

Tablecloth 4225 240 30 15 6.35 13.608 13.721 13.652 0.152 0.05 (2.71×) 0.06 (2.45×)

60 30 6.39 13.142 13.321 13.211 0.464 0.09 (4.73×) 0.12 (3.93×)

Flag 2704 1000 125 50 5.62 26.211 26.935 26.438 13.26 0.69 (19.22×) 1.08 (12.28×)

250 50 3.20 27.450 28.069 27.641 74.89 1.47 (50.98×) 2.62 (28.58×)

Tsunami 4225 1250 125 35 3.75 9.6370 9.6381 9.6376 27.11 1.28 (21.18×) 1.81 (14.98×)

250 70 4.10 8.6660 8.6736 8.6663 140.10 2.58 (54.30×) 3.88 (36.11×)

Nameclusters [Spatial space]

Handstand40 10,002 160 40 4 4.96 18.404 19.269 18.966 196.5 3.24 (60.60×) 6.38 (30.80×)

100 40 4 5.79 16.154 16.656 16.359 23.84 0.84 (28.48×) 1.71 (13.92×)

Camel100 21,887 50 10 2 9.33 13.665 14.824 13.849 325.0 10.9 (29.76×) 20.9 (15.57×)

200 10 2 9.65 13.649 14.762 14.037 65.90 4.36 (15.11×) 7.44 (8.86×)

Elephant200 42,321 48 24 4 7.93 10.983 10.907 10.900 157.2 5.08 (30.93×) 9.57 (16.43×)

400 24 4 8.61 9.7720 9.7860 9.7810 33.11 1.76 (18.81×) 3.39 (9.76×)

The minor reconstruction differences between the testing methods are significantly reduced (with a small speedup reduction cost) by performing
an extra orthogonal iteration
The best speed up gains are highlighted in bold

were also tested with the truncated
SVD resulting to similar observa-
tions.

BAOIz(tmax): bandwidth-consistent adaptive orthog-
onal iterations on theAz matrix (Sect.
3.3.2). Note that the default values for
BAOI parameters are z = 1, tmax = 1
unless specified otherwise, meaning
that BAOI corresponds to BAOI1(1).

QAOI
(
εlow, εhigh

)
: quality-consistent adaptive orthogo-

nal iterations (Sect. 3.3.3) until goal
reconstructionquality resides between(
εlowεhigh

)
.

IPCA: Incremental PCA. It identifies the best
subspace size for achieving a user-
defined quality.

For simplicity reasons, uniform quantization [7] is per-
formed on the generated dictionary (qd = 14bits) and
feature vectors (q f = 12bits).
Encoding performance. We measure the performance in
terms of milliseconds (ms) for executing only the dictionary
estimation process (without including the initialization SVD
step), since the rest stages remain the same for all variants
under study (see Fig. 4). The experiments were performed
on an Intel Core i7 4790 @3.6GHz CPU with 8GB RAM.
Reconstruction quality. The evaluation of the distortion
amount between the original and reconstructed animation
is traditionally performed by vertex-based error metrics such
as the well-established KG error metric [9] which is defined

as KG = 100 · ||D−D̂||F||D−E(D)||F , where || · ||F denotes the
Frobenius norm and E(D) is a matrix whose columns con-
sist of the average vertex positions for all frames. On the
other hand, STED error metric has been shown to correlate
well with perceived distortion by measuring spatiotempo-
ral edge differences [30]. The overall error is evaluated as
a hypotenuse of two parts: spatial ES and temporal ET

errors using a weighting constant w to relate them STED
=

√
ES

2 + w2 · ET
2. In thiswork,we have used bothmetrics

to measure distortion related to absolute via KG (Figs. 1, 6,
7, 8, 10) as well as relative changes via STED (Table 1 and
video) of the vertex positions.
Compression efficiency. Data rate is measured in bits per
vertex per frame (bpvf) encapsulating the mesh connectiv-
ity, the feature vectors matrix and the dictionary coefficients
required for reconstructing the original dataset at the decoder.

4.2 Experimental study

Impact of spatiotemporal correlations. Figure 5 illustrates
a reconstructed frame using two state-of-the-art static mesh
compression approaches, MBL [13] and OD3GC [18], as
compared to the SVDandBAOI approaches.Observe that the
exploitation ofPCAsignificantly outperforms the application
of static compression approaches on a frame-to-frame basis
in terms of both reconstruction accuracy and execution time.
Impact of frame block size (d). Figure 6 illustrates how alter-
ing the time subdivision length d = {50, 250} affects the
reconstruction accuracy as well as the total processing time
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Fig. 5 Comparison of PCA-based approaches with static mesh com-
pression methods at Samba animation sequence

Fig. 6 Approximation and performance evaluation for the Flag ani-
mation sequence for different compression ratios using various frame
block sizes

when encoding, under a wide compression ratio range (bpvf
= 2, . . . , 12), the Flag animation sequence that consists of
1000 frames. First of all, it is highly evident how the recon-
struction quality of BAOI converges to the one of the SVD
when the number of OI is slightly increased. Furthermore,
the block size d should be carefully selected when focusing
on the final reconstruction quality since updating the dictio-
naries less (d = 250) or more (d = 50) frequently does
not guarantee better approximation output. In terms of per-
formance, we observe the superiority of BAOI for all sizes
when compared to the SVDmethod evenwhenmore than two
OIs are employed. Note that while updating the dictionaries
less frequently (d = 250) results to a higher performance
gain (21×–52×), the total encoding time in each case is pro-
portionally higher (following a linear behavior) than the one
performed with a smaller block size (d = 50). Similar con-
clusions can also be derived from Table 1 (Temporal Space).
Impact of iterations/multiplications (tmax, z). Figure 6 aswell
as Table 1 shows how the BAOI closes the gap and finally
reaches, in high precision, the levels of reconstruction quality
(in both KG and STED metrics) derived by the SVD when
increasing the number of OI for a wide range of compression
configurations and animations. We further observe that the
speedup of BAOI is exponentially decreased whenmoving to

Fig. 7 Heatmap visualization differences of KG between SVD and
BAOI for Tablecloth (top), Flag (middle) and Camel Collapse poses
(bottom). Insets highlight how the severe approximation artifacts are
mitigated using one extra OI
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Fig. 8 Approximation as well as time and compression ratio (in brack-
ets) for various k using different spatial clusterings on the Handstand
animation

higher OI. As we expected, BAOIz is faster than BAOI(tmax)
when tmax = z > 1, since a matrix multiplication requires
less computations time than performing one OI. Heatmap
visualizations are also offered showing the distortion allevi-
ation when one extra OI is used (Fig. 7).
Impact of partitioning (c): Figure 8 shows the impact on
compression quality and performance when uniform geom-
etry clustering the Handstand animation into c = {40, 100}
parts. First of all, it is clearly shown that the more compo-
nents mesh is partitioned into, the less distortion artifacts
arise (see also spatial space scenarios in Table 1). However,
this comes at the cost of sacrificing compression efficiency,
since we store the same number of features (k = {3, . . . , 7})
for more sub-meshes. On the other hand, it should be noted
that processing small independent parts reduces significantly
the computational complexity of the reconstruction, allowing
at the same time a parallel compression implementation (not
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Fig. 9 QAOI (top) and BAOI (bottom) produce high-quality visual
reproduction despite the extreme temporal incoherence between frame
blocks in two particle simulations

performed here). Last but not least, the segmentation must
not reach high levels in order to maintain the performance
gain of BAOI.
Impact of frame incoherence: Figure 9 shows the rich recon-
struction quality when QAOI and BAOI (d = 200) are
employed, respectively, on highly inconsistent point cloud
animation generated from (a) the transient analysis of the
particles behavior in a patient-specific 3D lung model recon-
structed from CT scans ( f = 215) [12] and (b) morphing
from one letter into another forming the word “2017” ( f =
600). Despite the high motion variance of animated parti-
cles, performing dictionary updates with QAOI and BAOI do
not impose any noticeable perceptual visual error, generating
in the end plausible global illuminated image results with a
huge performance speedup (up to 18.64×) as compared to
the direct SVD approach.
Impact of error thresholds (εlow, εhigh). Figure 8 shows that
theQAOI schemeallows theuser to determine the reconstruc-
tion quality (by altering the error bounds) of the Handstand
animation, but by deteriorating the compression efficiency
and slightly increasing the execution time as compared to the
BAOI approach. However, it still achieves up to 10× lower
execution times as compared to the SVD approach. Simi-
lar conclusions are also drawn from Fig. 10 by observing
the per frame normalized square error of the reconstructed
Tablecloth animation ( f = 240, d = 40, k = 6). While
BAOI scheme exhibits the fastest execution time and the best
compression efficiency, it suffers from high variability in the
reconstruction error. On the other hand, QAOI provides a
stable reconstruction accuracy (almost identical when com-
pared to the IPCA) that can easily be adjusted by the defined
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Fig. 10 Observe how fast QAOI reaches the levels of reconstruction
quality of IPCA for the entire Tablecloth animation

thresholds. However, this comes with a slight increase in the
execution time (more OI) as well as a significant increase in
the final compression rate (dynamic k).

4.3 Discussion and limitations

The thorough experimental study on a vast collection of
3D dynamic meshes that represent a wide range of anima-
tions (ranging from rigid motions to complex simulations,
see Table 1 and video) showed that the subspace tracking
approaches allow the robust estimation of dictionaries at sig-
nificantly lower execution times compared to the direct SVD
implementations. In general, the BAOI scheme focuses on
fast-streaming scenarios, while QAOI approach aims at pro-
viding progressively high reconstruction accuracy. Despite
the superiority of BAOI when compared to the direct SVD,
the initial subspace size should be carefully selected in order
to simultaneously achieve the highest reconstruction quality
and fastest compression times (Fig. 6). Experiments showed
that plausible reconstructed animations can be generated
by employing either tmax = 1 and z = 2 or tmax = 2.
The execution of more tmax, z increases the computational
complexity without affecting noticeably the reconstruction
quality (Fig. 6). Finally, the approximation artifacts that
occur in a single frame block may slightly increased and
propagated when moving to the subsequent ones (Fig. 9).
To address the latter issue, we suggest to either re-initialize
the subspace of interest using the SVD or execute an QAOI
update, when the decoded meshes are detected to drift too
far from the original ones.

5 Conclusions

We have introduced two novel approaches to support fast
and efficient compression of fully dynamic scenarios with
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an undefined motion pattern and unknown topology modifi-
cation behavior. In the heart of our pipeline lies an adaptive
PCA-based dictionary estimation stage designed to simul-
taneously maintain three important criteria: fast encoding
times, plausible decoding results and out-of-core behavior.
While this stage is general and independent of the underlying
compression framework, an extensive analysis has demon-
strated the performance superiority of our online variant
compared to prior compression solutions, while the recon-
struction quality is maintained in high level of detail. Despite
the tremendous progress on the landscape of the dynamic
compression field, we believe that our approach provides
a novel insight at a key area with renewed research inter-
est, where high potential for novel improvements such as
dynamic clustering [15,31] is feasible in the near future.
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