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Abstract We present an efficient method for generating
coherent multi-layer landscapes. We use a dictionary built
from exemplars to synthesize high-resolution fully fea-
tured terrains from input low-resolution elevation data. Our
example-based method consists in analyzing real-world ter-
rain examples and learning the procedural rules directly from
these inputs.We take into account not only the elevationof the
terrain, but also additional layers such as the slope, orienta-
tion, drainage area, the density and distribution of vegetation,
and the soil type. By increasing the variety of terrain exem-
plars, our method allows the user to synthesize and control
different types of landscapes and biomes, such as temperate
or rain forests, arid deserts and mountains.

Keywords Coherent multi-layer landscapes · Dictionary
matching · Example-based modeling

1 Introduction

Generating large-scale realistic landscapes with a high level
of detail is a perennial challenge in Computer Graphics.With
the increasing demand for virtual worlds, there is a growing
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need for automatic techniques that generate large-scale ter-
rains covered with vegetation at a very high resolution.

Procedural modeling, which aims at generating com-
plex geometric models from simple generative rules, has
undergone tremendous developments over the past decade.
However, several limitations make it difficult to create these
rules explicitly. In particular, generating geomorphologi-
cally consistent terrains featuring a vast variety of landforms
remains a difficult task. The problem becomes even more
challenging when considering the generation of layered ter-
rains or landscapes, i.e., models defined by different types
of layered information such as terrain elevation, sand and
rock thickness, vegetation type and density, or humidity.
Our work comes from the observation that those parame-
ters are strongly correlated and can be modeled as layers
inter-influencing each other. This inter-dependency makes
the design of coherent, biologically and physically plausible
generative rules even more difficult.

Traditionally, the standard workflow consists in first syn-
thesizing the terrain, eroding itwith procedural or simulation-
based algorithms to generate sediment layers, and finally
using ecosystem simulations to generate the vegetation. The
originality of our method is to generate the different data
layers using a joint synthesis approach, taking simultane-
ously into account the correlated elevation of the terrain,
the distribution of vegetation density, soil type, slope and
orientation. Our method generates large-scale multi-layer
landscapes with a high degree of realism and coherence
between the different layers. By adopting an example-based
procedural synthesis approach, we avoid any explicit mod-
eling. Furthermore, our method allows to add variety to the
synthesized models and allows to control and author differ-
ent types of biomes such as alpine mountains with forests or
arid plateaus simply by increasing the number and variety
of examples. Therefore, our approach provides a powerful
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Fig. 1 Overview of our coherent multi-layer landscape synthesis:
given a set of input exemplars, our method automatically creates a
high-resolution consistent and coherent multi-layer terrain model from
a low-resolution elevation model by matching input patches with the
nearest dictionary atoms

and efficient framework to perform the inverse procedu-
ral modeling of multi-layer terrains at a low computational
cost.

Our algorithm proceeds in two steps (Fig. 1). Given a set
of exemplars, a preprocessing step creates a multi-layer dic-
tionary. During the landscape synthesis step, the user edits a
low-resolution input elevation and possibly a small subset of
other layers. The matching algorithm decomposes the input
into patches which are matched with atoms in the dictionary.
Selected multi-layer atoms are blended together to generate
the final high-resolution multi-layer model.

Themain contributions are as follows (1)We propose a set
of matching functions adapted to the multi-layer representa-
tion for finding the best patch in the dictionary. Our method
combines multi-layer information in a coherent way and
guarantees that no ambiguity is created when synthesizing
the landscape. (2) We present an example-based dictio-
nary extraction combined with a coherent multi-layer terrain
synthesis algorithm. Given a low-resolution input, we auto-
matically generate an augmented high-resolution model. (3)
Our approach allows the user to control the features of the
output terrain by changing the style of different regions and
classes of atoms in the dictionary.

2 Related work

Our work relates to terrain modeling and ecosystem genera-
tion, which can be classified into procedural, example-based
and simulation-based approaches. This section presents a
focusedoverview;we refer the reader tomoregeneral surveys
on procedural terrain modeling [21] and plant and ecosystem
simulation [5].

Procedural modeling methods exploit the observation that
landform features repeat at different scales and define the
elevation either as fractals [15,20] or by using a combination
of scaled noise-based functions [17]. Several improvements
were proposed to improve user control, such as terrains gen-
erated from feature curves [14], rivers [10] or a hierarchical
construction tree representation [11]. Specifying generative
rules that preserve the overall coherence of the scene is a
difficult task, mainly because of the indirect control over the
generation processes.

Inverse procedural modeling is a general approach which
aims at inferring the input control parameters of procedu-
ral models from examples or constraints. Some techniques
have been successfully developed for generating vegeta-
tion [22]. Recently, the sparse representation of terrains [12]
combined atomswhose characteristic landforms features can
be extracted from exemplars and stored in an optimized dic-
tionary.

Ourmethod also relies on a dictionary learned from exam-
ples. The originality of our approach is that it processes not
only the terrain elevation, but also many different channels
encoding other parameters such as vegetation density, slope,
humidity to generate high-resolution terrains in a coherent
way.

Simulations aim at generating realistic landscapes with
eroded mountains, sedimentary valleys and realistic plant
distributions. Erosion simulations [17] are often used as a
post-processing step to add realism to procedurally gen-
erated terrains. Hydraulic erosion techniques were further
extended and refined in [2,19]. Large-scale simulation of ero-
sion at the level of entire mountain ranges was addressed
in [3]. Erosion-based techniques are difficult to control and
cannot be used to simulate large-scale terrains at a high
resolution.

Ecosystem simulations aim at producing realistic plant
distributions [18] according to the characteristics of the
environment and in general rely on particle-based simula-
tions where plants compete for resources such as light and
space [4]. Several improvements were proposed such as sim-
ulating multilevel plant communities [16] and asymmetric
plant competition [1].

Example-based synthesis approaches borrow from texture
synthesis methods [13,25] and aim at generating realistic ter-
rains by combining patches extracted from exemplars. A first
method proposed in [26] extracts high-resolution height-field
patches from a terrain exemplar and combines them accord-
ing to a user-painted coarsemap. This approachwas extended
and improved to allow better control [8,9]. Recently, an inter-
active approach for creating virtual worlds using statistical
example-based synthesis to automate content synthesis and
deformation was proposed in [7].
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Fig. 2 Given a low-resolution single-layer terrain model, we synthe-
size a high-resolution multi-layer landscape model with sand, rock
layers, and vegetation. Our algorithm analyzes the input T and decom-

poses it into patches P . It then matches P with the atoms Di of the
dictionary and guarantees that the synthesized layers are coherent with
the input T

In contrast, our method analyzes exemplars to gener-
ate coherent multi-layer dictionary implicitly storing the
relationships between terrain elevation, vegetation densities
and other parameters such as solar irradiance or upstream
drainage area. A key contribution of our work lies in the use
of heterogeneous signals, i.e., the signal encodes information
of different kinds such as elevation, vegetation information or
textures. This research field is known in the signal processing
literature as joint sparse approximation [24]. Our framework
proposes a simple and efficient implementation with a view
to allowing for a faster processing without any sophisticated
sparse approximation algorithm.

3 Overview and notations

The overall workflow of ourmethod is divided into two steps:
a dictionary extraction froma set of exemplars performed as a
preprocessing step (Fig. 3), and a high-resolution multi-layer
terrain synthesis from a low-resolution model (Fig. 2).

3.1 Dictionary creation

At the heart of our method is a dictionary built from a set of
multi-layer exemplars. The dictionary is created by analyzing
multi-layer input exemplars and contains multi-layer atoms.
Multi-layer terrain exemplars are first decomposed into
partially overlapping patches as described in [12]. The multi-
resolution dictionary is a set of two dictionaries denoted as
(D, ˜D), low and high resolution, with the same number of
atoms and a one-to-one correspondence between their atoms.
Thus, given a decomposition overD, the reconstruction from
˜D can be obtained simply by keeping the decomposition and
replacing the atoms through the one-to-one correspondence.

3.2 Multi-layer terrain synthesis

The inputs of our algorithm are a low-resolution terrain T
containing either a single elevation layer or additional layers,

D

D

hD

D

vD sD

sDvDhD

uD
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Fig. 3 Dictionary extraction from a set of input exemplars

and a multi-resolution dictionary (D, ˜D). The terrain T can
be either a user-drawn sketch, specifying a coarse elevation
map and a distribution of different materials and vegetation
types over the terrain, or a real digital elevation map that the
user wants to augment with additional layers.

Our algorithm decomposes T into patches, denoted as P ,
which are matched to the nearest low-resolution atoms D of
the dictionary. The patches P are then replaced by the high-
resolution and multi-layer atoms ˜D corresponding toD, and
the terrain is built by blending the high-resolution atoms.
The output of our algorithm is a high-resolution multi-layer
terrain ˜T whose layers are obtained from the different layers
extracted from the exemplars.

Our method lends itself for synthesizing landscapes with
different kinds of information (detailed elevation, vegetation
density and type, sediment thickness) depending on the num-
ber and categories of layers included in the dictionary. It
can be used to create vegetation and population density, or
replace specific regions in a consistent way as demonstrated
in Sect. 6.

Layers store vector or scalar data. Superscripts will refer
to layers for both input patches and dictionary atoms. Pe

and Ph denote the elevation and the normalized elevation,
respectively. Pa will refer to the mean elevation of the layer

123



1008 O. Argudo et al.

Ph , and Ps to the mean deviation of the layer Pe, and will
be computed as follows:

Pa = Pe Ps = ‖Pe − Pa‖ Ph = (Pe − Pa)/Ps

The other layers for vegetation density, upstream drainage
area, solar irradiance and classes will be denoted as Pv , Pu ,
and P l , respectively.

4 Dictionary construction

The creation of the dictionary is performed as a preprocess-
ing step, independent of the synthesis step itself. Exemplars
are down-sampled to get low-resolution multi-layer exem-
plars. Dictionary atoms are extracted from both original and
down-sampled exemplars, processed layer by layer and re-
assembled into multi-layer atoms (Fig. 3). The computations
are performed on both the low-resolution and high-resolution
atoms so that the one-to-one correspondence is preserved.
Atoms are defined as square regular grids storing digital ele-
vation data and combined with a radial falloff function for
smooth blending. The layers represent any kind of data: ele-
vation, vegetation density for every different species, and
computed data such as upstream area or slope.

Elevation layers are first centered according to the mean
elevation value of the patch and then normalized. Some layers
such as the mean elevation, the slope, the global vegetation
density, the solar irradiance and upstream drainage area lay-
ers are directly computed from the elevation layer.

The dictionary structure is defined as a set of multi-
layer low-resolution atoms associated to their high-resolution
counterpart. They will be denoted as D j

i and ˜D j
i , respec-

tively, where j ∈ {0, . . . , l − 1} denotes the layer, and
i ∈ {0, . . . , n−1} refers to the i-th atom in the dictionary. The
low-resolution dictionary D = {Di } will be used to match
the input to the dictionary,whereas the high-resolution dictio-
nary ˜D = {˜Di } will be used for synthesizing the multi-layer
terrain.

5 Multi-layer terrain synthesis

Our synthesis algorithm is designed so that the matching
process should match an input terrain patch to a unique dic-
tionary atom efficiently. Moreover, it successfully handles
multi-layer data and can represent nonlinear features such as
the normof an atom, local curvature or any feature of interest.

In order to be matched with a given atomDi of the dictio-
nary, an input terrain patch P comes with a subset Γ of the
set of layer indices Ω = {0, . . . , l − 1}. Let P j be the j th
layer of the input terrain patch. Let g j denote the matching
function of the j th layer. We define the matching function
g : Rn × R

n → [0, 1] as:

g(P,Di ) =
∑

j∈Γ

ω j g j (P j ,D j
i )

∑

j∈Γ

ω j = 1

The coefficients ω j form a partition of unit and weight the
relative impact of the different layers in the matching. The
matching functions g j detailed in the next sections evaluate
the similarity between patches and atoms for the different
types of layers. The higher the value g(P,Di ), the better the
correspondence between the input patch and the i th atom.
Let k denote the atom index that minimizes the matching
function:

k = argmax
i

g(P,Di )

The reconstructed patch ˜P = {˜P j } contains the layers of the
high-resolutionmatched atom k. The reconstructed elevation
will be computed as:

˜Pe = (Ph · Dh
k )Ps

˜Dh
k + Pa

All the other layers will be directly reconstructed from the
dictionary atoms, therefore

∀ j ∈ Γ − {e}, P j = ˜D j
k

In the particular setting of l = 1, Γ = {h} and
gh(Ph,Dh

i ) = |Ph · Dh
i | where the layer h contains vector

data and atoms in the dictionary are normalized, we obtain
the regular Matching Pursuit algorithm[23] with a sparsity
of s = 1. Our framework generalizes this approach by intro-
ducing additional layers in the matching step and allowing
complex matching layouts.

The landscape reconstruction from the patches ˜P is per-
formed by blending the overlapping patches with a falloff
function of the distance to the patch center. In the remainder
of this section, we rely on this general framework and show
how the different types of layers are processed.

5.1 Orientation

In this section, we consider the layer h that represents the
elevation of a terrain. Recall that dictionary atoms Dh

i and
terrain patchesPh are centered at zero in order to avoid a con-
stant component term in the projection which would make
the matching less meaningful. Consequently, if we use the
matching function gh(Ph,Dh

i ) = |Ph · Dh
i |, a good match-

ing can be achieved with Ph · Dh
i < 0, i.e., by inverting the

dictionary atom, which produces inaccurate results for our
landscape generation: North faces may become South faces,
ridges may become valleys, with dramatic consequences on
additional layers, such as riverside vegetationon topofmoun-
tains as illustrated in Fig. 4.

123



Coherent multi-layer landscape synthesis 1009

Input patch Best atom: P ·D < 0 Output patchh h
k

Fig. 4 By using standard sparse synthesis, the atom that best matches
the input ridge elevation data has a negative coefficient and corresponds
to a valley. The vegetation density of the valley atoms is incorrectly
placed on top of the terrain patch. In contrast, our approach avoids
inversions

ReferenceOur approachSparse synthesis

Fig. 5 Sparse synthesis generates patches with arbitrarily oriented
atoms, resulting in inconsistent orientations which affects the gener-
ation of other layers: north rims would be replaced by south rims, thus
misplacing orientation-dependent content such as solar irradiance or
vegetation. Our method preserves the orientation and generates coher-
ent patches

In our framework, we are synthesizing layers that store
other important properties; therefore, we need to preserve the
overall coherence between layers. To solve this problem, we
use the following matching function that maps onto [0, 1] :

gh(Ph,Dh
i ) = (1 + Ph · Dh

i )/2

Figure 5 demonstrates the importance of preserving the ter-
rain orientation. The dictionary was created frommulti-layer
data containing the elevation (used for patch matching) and
the normal (used in synthesis). The generated terrain is a
high-resolution elevation map augmented with a coherent
normal map.

5.2 Elevation and slope

The matching algorithm can also benefit from information
about the altitude of the atoms and patches, as well as their
mean elevation deviation that approximates slope. The alti-
tude matching function is:

ga(Pa,Da
i ) = k(|Pa − Da

i ‖) k(x) = e−x2/σ 2

The standard deviation coefficient σ serves as a user-control
parameter. We chose σ so that the Gaussian should be equal
to 0.5 at the medium difference:

σ = (2
√
ln 2)−1 max

i
(‖Pa − Da

i ‖)

We use the same matching function for the slope function
gs . The weight ωa allows users to control altitude-dependent

h = 0.4  a = s = 0.3

ExemplarInput

h =1  a = s = 0.0

Fig. 6 Activating the altitude and slope matching functions gives a
vegetation distribution that better fits the exemplar

content such as snow on high peaks, whereas ωs controls
slope-dependent content such as sediments or trees.

Figure 6 illustrates the impact of the coefficientsωa andωs

on the vegetation synthesis when using a dictionary contain-
ing a mean altitude layer and a slope layer that are derived
directly from the elevation data (mean elevation and slope
magnitude). The synthesis was performed on a input eleva-
tion map T with steeper slopes than the exemplar, which
explains the scattered vegetation compared to large forests
in the exemplar.

5.3 Context layers

Environmental properties (such as specific climate or illumi-
nation conditions) that may extend over multiple patches.
Taking into account the context is crucial for improving
the overall matching process; therefore, we use context lay-
ers computed from the neighboring patches to improve the
matching process.

Context data for a given patch P j are computed over a
spatial domain Ω j embedding P j . In our experiments, the
radius of the domain ranged for twice to eight times the radius
of the patch. In our implementation, we perform a hierarchi-
cal down-sampling of the information contained in Ω j so
as to define a multi-scale description of the patch neighbor-
hood and speed up the evaluation of the matching function.
Although context layers include data from a larger domain
Ω j ⊃ P j , atoms D j and ˜D j have identical spatial extents.
Atoms in ˜D are used exclusively in the last step of the terrain
synthesis when replacing patches with their high-resolution
counterparts.

Figure 7 compares the results obtained by increasing the
size of the neighborhood when using context layers for cap-
turing the landform features. Context layers allow for a more
realistic reconstruction of the cliffs, valleys and flat terrain
landforms such as plateaus as the best matching atom can be
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No context Large context

P

Fig. 7 Elevation synthesis using context layers. The input sketch is
shown as an inset. From left to right output terrain with simplematching
and with a context layer. The gray square denotes the patch size, and
the white one indicates the approximate extent of the neighborhood Ω

considered for computing the context layers

Exemplar Input Output

Fig. 8 Terrain authoring from a sketch defining 3 classes: hills with
forests, desert mountains, snow peaks. The dictionary includes seg-
mented exemplars from the central part of the Himalayas

determined according to the features in the neighborhood of
the patch.

5.4 Class layers

We introduce class layers as a powerful tool to control the
style of the synthesized multi-layer terrain model, e.g. rocky
mountains, snowpeaks, hills with forests. Classes are defined
by using a specific abstract layer that defines the desired class
of patch.

Dictionary atoms are first labeled to identify multiple
differentiated regions from distinct classes (Fig. 8). A clas-
sification layer stores vectors whose components define the
relative probability (terms range in [0, 1] and sum to 1) that
the patch should belong to the corresponding class. An exem-
plar with 3 different classes leads to 3-component vectors
for the class layer (Fig. 8). The matching method consists
in choosing atoms that have preferably the same class as the
input terrain patches. We define the matching function gc as:

gc(Pc,Dc
i ) = 1

n

n
∑

k=1

Pc(k) · Dc
i (k)

where n represents the number of classes; Pc(k) and Dc
i (k)

represents the kth class information sample for the input
patch and dictionary atom, respectively. Samples are normal-
ized class vectors: Normalization is important so that patches
with smoothly varying classes should not match well with
atoms of a single class.

5.5 Matching multiple exemplars

Our method allows to use dictionaries created from different
exemplars and featuring various types of landscapes (Fig. 9).
Without loss of generality, we present multiple exemplars
matching with 2 biomes. In this particular setting, we con-
sider two dictionariesA andB that represent the two biomes.
The user has to paint two additional input layers α and β

that describe the relative influence of the respective biomes.
Note that the sum of α and β should be 1 everywhere. For
the matching and reconstruction, we use the following algo-
rithm: for all patches P in the input terrain:

1. Find the atomsAi ∈ A that maximizes g(Pα �P,Pα �
A). Perform the same taskwithP for the other dictionary
B weighted by β to find B j .

2. Blend the two high-resolution atoms and generate P =
˜Pα � ˜Ai + ˜Pβ � ˜Bi where ˜Pα and ˜Pβ are the upsampled
versions of Pα and Pβ .

where� denotes Hadamard element-wise vector multiplica-
tion.

5.6 Environmental layers

Layers representingglobal environmental information can be
used to further improve the overall landscape, i.e. terrain and
vegetation, synthesis process. Contrary to elevation or veg-
etation density layers that only provide local information at
a given point, global layers store parameters that are derived
from a global analysis of the terrain. Such layers are particu-
larly useful for implicitly representing correlations between
neighboring patches and introducing coherence terms in the
equation that evaluates the matching between patches and
atoms. In our system, we experimented with two types of
global information layers: the upstream drainage area that
approximates the average flow of water passing through a

ExemplarsInput T Control layers

Generated terrain Close-up

A B C

Fig. 9 High-resolution landscape generated from a low-resolution ele-
vation map, three exemplars and control layers indicating the preferred
exemplar. The dictionaries were created from the RockyMountains, the
Grand Canyon and Smokies National Park elevation maps
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Without drainage With drainage

Fig. 10 Influence of the upstream drainage area layer: gullies and
ravines are better reconstructed using it

patch, and the average solar irradiance that represents the
average amount of sunlight received by a patch. If not pro-
vided, those layers can be computed from the elevation data
of the exemplars and the input T to generate the correspond-
ing layers for patches Pu and P l and dictionary atoms Du

and Dl . The matching function is simply defined as:

gu(P j ,D j
i ) = (1 + P j · D j

i )/2 j ∈ {u, l}

The upstream drainage area is computed by simulating the
flow of a large number of particles randomly distributed over
the surface of the terrain and measuring the number of parti-
cles passing through every patch. Figure 10 shows that taking
the drainage area into account allows for a better matching
reconstruction of ravines and gullies. Solar irradiance (layer
P l ) is calculated based on latitude and longitude by inter-
secting rays from the sun position along its trajectory with
the terrain. This captures terrain self-shadowing and provides
average direct illumination from the sun.

6 Results

Our system automatically synthesizes coherent high–
resolution multi-layer landscapes, i.e., terrains with detailed
elevation, soil type, sediment layers covered with a realis-
tic distribution of different types of vegetation from a few
input low-resolution layers (in general elevation and control
layers). Instead of relying on complex procedural ecosystem
simulations, our method reproduces the patterns and charac-
teristics of the dictionary exemplars and preserves the overall
coherence of the different layers (Figs. 11, 14).

An important feature of our framework is its versatility: It
canbeused to generate an arbitrary number of layers of differ-
ent types. Moreover, our dictionary-based system allows the
user to enhance the database with as many atoms as needed,

Sparse synthesis
Coherent 

multi-layer synthesis

Dense vegetation 
on steep slopes

Coherent vegetation 
layers

Rocky
cliffs

Fig. 11 Comparison between sparse synthesis and our method. Left
image shows the vegetation distribution without taking into account the
orientation, mean altitude and slope. Right image shows the coherent
distribution: as exemplars do not have trees at high altitudes, ourmethod
produces trees that conform to this rule

Without vegetation constraint Vegetation constraint
h = 1.0  v = 0.0 h = 0.4  v = 0.6 

Fig. 12 Vegetation control left image shows a terrain without vege-
tation density control, i.e., following the distribution of the dictionary
exemplar, whereas right image shows a smooth disk-shaped constraint.
The algorithm automatically selects atoms with no vegetation under
water

Input
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Vegetation
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Fig. 13 Example of a two-step vegetation synthesis. First, we produce
a vegetation layer coherent with a population density. Then, this layer is
used to produce the distribution of three vegetation classes. In the first
step, the resolution was increased by 3, whereas it was preserved in the
second step. Using directly the second dictionary on the input terrain
cannot account for population density and thus places forests on areas
with a high population density

completing it with atoms featuring sediments or different
kinds of plants.

The user controls the multi-layer terrain generation pro-
cess by adjusting the weighting coefficients for the input and
synthesized layers (Figs. 6, 12, 13).Artists can freely provide,
besides the elevation data, arbitrary layers as inputs, choose
the layers and define their purpose: soil type, humidity, veg-
etation density or biomes as long as the dictionary atoms
encode these layers. The algorithm produces high-resolution
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Fig. 14 Vegetation control over a large terrain: the vegetation dis-
tribution dictionary was created from the eastern Pyrenees exemplars
(Fig. 1), and the different species were prescribed by the user by defin-

ing three different classes (trees in red, bushes in green and sand in
blue). Results are shown for different values of the control parameter
ωv

Fig. 15 Example of an incremental authoring session. Given an input
digital elevation (gray scale inset), our method automatically generated
a detailed layered terrainmodel with bedrock, soil and vegetation layers
from the multi-layer dictionary (left image). The input was incremen-
tally edited by adding a volcano and a canyon (center left and center

right). Finally, the designer re-used the synthesized vegetation layer,
down-sampled it, changed the density in the canyon and relaunched
a complete synthesis process with a two-layer input to get the final
landscape (right image). This authoring session took less than 10 min,
including user editing and terrain synthesis

terrains or additional layers consistent with the user-provided
input.

Figures 8 and 9 show examples of sketch-based author-
ing. The sketch contains a coarse description of the desired
classes (forest, desert, peaks), with the purpose of synthesiz-
ing consistent biomes. The influence of the sketches in the
matching process can be controlled bymodifying theweight-
ing coefficients. Figure 14 shows an example where control
is achieved by sketching the expected distribution of differ-
ent vegetation layers (tree, shrub, grass). Figure 15 shows an
example of an authoring session. This example demonstrates
that the synthesized layers (here the vegetation layer) can be
in turn used andmodified to guide the synthesis, in a coherent
feedback loop.

Instead of defining a vegetation distribution for each vege-
tation type, the user may simply provide a vegetation density
layer (single scalar) and use the dictionary to convert the
overall density into vegetation distributions for the different
types of vegetation. Figure 12 illustrates this case: we created
another layer for the dictionary that encodes the (weighted)
sum of other vegetation layers and used it to compare the
average density between atoms and patches.

6.1 Multi-step synthesis

Our method allows to execute the synthesis process itera-
tively, using some of the output layers of one iteration as

input layers for the next iteration. Therefore, we can use sev-
eral dictionaries with different layer subsets in a coherent
way.

Figure 13 shows an example of a two-step workflow. The
first iteration generated a dictionary extracted from a real
dataset of Catalonia, which was in turn used to synthesize
coherent population and vegetation densities. The second
iteration generated a higher-resolution dictionary contain-
ing per-class distributions which was used to synthesize the
different types of vegetation according to the previously gen-
erated vegetation density.

6.2 Performance

Our method was implemented and tested on an Intel Core
i7 with 16 GB of RAM. Table 1 presents an overview of
the different cases and reports the corresponding statistics.
Timings demonstrate that our approach is efficient and can
be used in practical terrain authoring applications. Although
our current framework has been coded into a single-threaded
CPU implementation, our method lends itself for a parallel
implementation on the GPU.

The dictionaries can be extended easily by adding new
layers to existing atoms, or by adding new atoms from
other exemplars. Increasing the size of the dictionary allows
for more variety and yields better results, at the cost of
a more computationally demanding matching step. Match-
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Table 1 Statistics: patch size,
number of atoms in the
dictionary, number of patches,
size of the input and output
terrains, amplification factor

Layers Multi-layer terrain synthesis Time (s)

Input Output Figure Patch Atoms Patches Input Output Scale Dict. Match. Synth.

h, c h, t 8 242 3920 289 1852 7402 ×4 0.20 0.07 0.43

h, c h, t 9 242 5401 1521 4502 13502 ×3 0.35 3.19 9.95

h h, v 11 322 2116 324 2802 14002 ×5 0.08 0.03 0.47

h, v, c h, v 14 102 3969 10816 5132 51302 ×10 0.07 1.91 7.45

h, v h, v 12 242 3481 29584 20482 20482 ×1 0.11 3.07 7.47

We also report timings (in s) for the dictionary construction, matching process, and patch replacement

ing performs in a few seconds and even less than a second
for average-size dictionaries. The matching step of Fig. 9
required one pass per class; timings take into account the
multiple passes. Synthesis and blending performs in less
than a few seconds onmost examples. Notable exceptions are
reported for the largest synthesized model (Fig. 14), with a
large terrain (5130×5130) involvingmore than 10 k patches,
and Fig. 12 which contains almost 30 k patches.

The time needed to evaluate g j (P j ,D j
i ) for complex

data becomes the more expensive as the number of layers
increases. In our implementation, we optimized the compu-
tation by using a Poisson disk-based distribution of samples
inside the patch area and evaluating g j only over the reduced
set of center points.

6.3 Discussion

Our dictionary-based framework has several applications.
The input can be real digital elevationmodels, rough sketches
drawn by hand, or a combination of both, containing a single
layer (e.g. elevation), or multiple layers. The output terrain
contains always as many layers as available in the dictionary,
thus providing coherent data amplification.

A key feature of our approach is to provide a unified,
easy-to-control, and flexible model for multi-layer land-
scape synthesis generating plausible and predictable results.
Although alternative methods exist for some specific prob-
lems, none of them cover simultaneously all the applications
supported by our framework. Our method provides control
to the user and allows him to create any arbitrary layer in
a coherent way. These two features are key for dictionary
reusability and, ultimately, for effective terrain creation, edit-
ing and synthesis. Context layers combined with global
environmental layers allow us to generate spatially coher-
ent patches that more faithfully reproduce landform features
such as gullies, erosion lines or plant clusters. Finally, our
approach can be extended easily by considering other types
of layers and defining the corresponding appropriate match-
ing function.

As for all example-based approaches, our method may
require a large input dataset to synthesize terrains. The dictio-
nary extraction preprocessing step is very efficient. Although

it may be difficult to find real-world exemplars with appro-
priate layers, the set of exemplars can be completed with
results obtained by computer simulations. Our framework
offers many possibilities for reusing dictionaries, since it is
built independently of the synthesis step.

Although the coherence between the different layers of
an output patch is guaranteed by construction, the coherence
between neighboring patches in the output is affected by the
variety of atoms in the dictionary.This limitationhas twocon-
sequences. First, mixing exemplars from radically different
biomes (e.g. rain forest and desert) into the same dictionary
may result in poor spatial coherence or sharp transitions.
That limitation may be alleviated by providing a sketch of
the desired distribution, as described in Sect. 5.5.

Another limitation of our method is that it does not prop-
erly handle structured layouts such as road networks, villages
or cities: The synthesis process does not guarantee that the
structures would seamlessly link between two neighboring
patches. Our method can nevertheless synthesize statistic
information such as population density (Fig. 13), which in
turn may be used as input to generate villages or cities [6].

7 Conclusion

We have presented a multi-layer example-based approach to
synthesize realistic landscapes, i.e. terrains containing het-
erogeneous information layers such as elevation, vegetation
density or soil type. The cost function formatching dictionary
atoms with terrain patches allows joint synthesis of coherent
information layers. While our method lends itself for repre-
senting statistical data layers such as vegetation or population
density, it cannot be directly used to synthesize constructs
such as road networks or cities. Bridging the gap between
our approach and road and city generation techniques is a
challenging problem worth investigating as future work.
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