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Abstract In this paper we propose a heuristic convex-
ity measure for 3D meshes. Built upon a state-of-the-art
convexity measure that employs a time-consuming genetic
algorithm for optimization, our new measure projects only
once a given 3D mesh onto the orthogonal 2D planes along
its principal directions for an initial estimation of mesh con-
vexity, followed by a correction calculation based on mesh
slicing. Our measure experimentally shows several advan-
tages over the state-of-the-art one: first, it accelerates the
overall computation by approximately an order of magnitude;
second, it properly handles those bony meshes usually over-
estimated by the state-of-the-art measure; third, it improves
the accuracy of the state-of-the-art measure in 3D mesh
retrieval.

Keywords Shape analysis · Convexity measure · PCA ·
3D mesh retrieval

1 Introduction

Shape analysis has been a vigorous research field for decades,
and one of its research focuses is to study how to define a
scalar to holistically describe geometric properties of shapes,
such as convexity [22], rectilinearity [5,14,21], regularity
[2], ellipticity, rectangularity, triangularity [12], and concav-
ity [20]. Among these shape properties, convexity is a crucial
measure in both 2D and 3D shape analysis and plays a funda-
mental role in shape decomposition [1,4,8,11], classification
[9,15,18], and retrieval [7,16]. In geometry, a planar shape
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is referred to as convex if an arbitrary line has no more than
two intersections with the boundary of the shape in the plane.
Generally speaking, four desirable conditions have to be sat-
isfied in justifying a convexity measure.

1. The value of the convexity measure is a real number and
varies between (0, 1] for all shapes;

2. the value is equal to 1 if and only if the shape is convex;
3. there exist shapes whose convexity measure is arbitrarily

close to 0;
4. the convexity measure of a given shape is invariant under

similarity transformations.

These four conditions can be generalized to 3D by replac-
ing the term shapes with 3D meshes.

1.1 Convexity measures for 2D shapes

Convexity measurement for 2D shapes has been extensively
studied up to now. The most commonly used convexity mea-
sure for 2D shapes is based on the area ratio of a shape over its
convex hull [22], as defined below. Note that for the sake of
clarity, in this paper we define all the 2D convexity measures
with c in lower case, while all the 3D convexity measures
with C in capital.

Definition 1 For a given 2D shape s and its convex hull
CH(s), its convexity measure c1(s) is formulated as

c1(s) = Area(s)

Area(CH(s))
. (1)

c1 is easy to evaluate and generally robust to boundary noise,
but it fails to sense extremely slim dents in the shape. This
problem can be overcome by introducing a perimeter-based

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-017-1385-6&domain=pdf
http://orcid.org/0000-0003-0293-466X


904 R. Li et al.

convexity measure, which takes boundary into account. For
any planar shape, there exists an inequality between the
perimeters of itself and its convex hull, i.e., Per(CH(s)) ≤
Per(s) and they are equal only if s is convex. Therefore, the
perimeter-based convexity measure is defined as the perime-
ter ratio of a shape over its convex hull.

Definition 2 For a given 2D shape s and its convex hull
CH(s), its convexity measure c2(s) is defined as

c2(s) = Per(CH(s))

Per(s)
. (2)

c2 is based on shape boundary and more sensitive to boundary
noise than c1 [22].

There are other measures that calculate convexity regard-
less of the convex hull. For example, Zunic et al. [22]
proposed a boundary-based convexity measure based on
boundary projection of the 2D shape. Rosin et al. [13] pro-
posed a symmetric convexity measure with a convex polygon
that best fits the 2D shape, and their measure is defined as
the area ratio of the convex polygon to the shape. Rahtu et
al proposed a convexity measure defined as the probability
that a point on any line segment formed by an arbitrary pair
of points from a shape also belongs to the shape [10].

1.2 Convexity measures for 3D meshes

Unlike 2D convexity measurement that has been extensively
studied, there has been far less work reported for 3D con-
vexity measurement thus far. A few intuitive attempts for
3D meshes were built on the 2D measures mentioned above.
It is worth noting that the term 3D mesh in the context of
this paper is referred to as 3D closed mesh and visualized as
3D shaded objects. Similar to Definition 1 of 2D shapes, a
volume-based measure, that is the 3D generalization of c1,
can be formulated for 3D meshes.

Definition 3 Letting M stand for an arbitrary 3D mesh
and CH(M) indicate its convex hull, its convexity measure
C1(M) is evaluated as

C1(M) = Volume(M)

Volume(CH(M))
(3)

Similar to its 2D counterpart, C1 is insensitive to extremely
slim dents [7] and cannot sense the difference of two meshes
with identical mesh and convex hull volumes, as shown in
Fig. 1.

Similarly, we directly generalize the perimeter-based con-
vexity measure c2 into 3D. The 3D counterpart of 2D
perimeter is regarded as mesh surface area. However, it is
hard to construct an inequality for a 3D mesh with its mesh
surface area and its convex hull area. This is because for some
3D meshes, such as the one shown in Fig. 2

Fig. 1 Two different meshes but with the same C1 value

Fig. 2 A cube with many holes

Area(M) > Area(CH(M)),

while for others, such as the hollow cube shown in Fig. 9,
especially when the bars go extremely slim, the inequality
becomes

Area(M) < Area(CH(M)).

Therefore, the 3D generalization of c2 may not always hold
for 3D meshes.

To resolve the problem that C1 is insensitive to extremely
slim dents, Lian et al. [7] proposed a projection-based
convexity measure for 3D meshes. Their measure was gen-
eralized from the 2D projection-based convexity measure
reported by Zunic et al. [22].

Definition 4 For a given 3D mesh M its convexity measure
C2(M) is defined as

C2(M) = min
α,β,γ∈[0,2π ]

Pview(M, α, β, γ )

Pface(M, α, β, γ )
, (4)

where Pview(M, α, β, γ ) and Pface(M, α, β, γ ) are Pview
and Pface of M after rotating α, β and γ with respect to
x , y and z axes, respectively. Pface is the summed area of
mesh faces projected onto the three orthogonal planes, Y OZ ,
ZOX and XOY , with Pface = Pfacex + Pfacey + Pfacez ,
while Pview is the summed area of mesh silhouette images
projected onto six faces of its bounding box parallel to the
orthogonal planes, with Pview = 2(Pviewx + Pviewy +
Pviewz). Figure 3 illustrates examples of Pface and Pview.
Thus, it is noticeable that there exists an inequality Pface ≥
Pview for any mesh and that they are equal only if a mesh is
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Fig. 3 Projections of a triangular patch and a whole mesh on the coor-
dinate planes

convex. Convexity is measured as a minimum value that is
sought by rotating the mesh at variant angles.

Since the calculation of C2 is a nonlinear optimization
problem that traditional methods cannot deal with, a genetic
algorithm is used to help seek the minimum value ofC2. Nev-
ertheless, the genetic algorithm is computationally expensive
and requires a plethora of iterations to reach an optimum.
Therefore, a computation-friendly measure enabling efficient
convexity evaluation is yet to be studied.

In this paper, we propose a heuristic convexity measure for
3D meshes. Our measure is still projection based, but com-
putes the summed area ratio of projected mesh silhouette
images and mesh faces only once, just along the principal
directions of the mesh, followed by a correction process
based on mesh slicing, rather than optimizing the ratio in
iterations with the genetic algorithm, accelerating the over-
all computation by some an order of magnitude. Compared
with C2, our measure gives a more reasonable evaluation to
bony meshes. Compared with C1, our measure can sense the
difference of the two meshes displayed in Fig. 1 and can
detect slim dents that C1 can do nothing with. Moreover, the
new measure has a better performance than both C1 and C2

in 3D mesh retrieval.

2 Heuristic convexity measurement

To accelerate the computation of C2, this paper proposes to
project a given 3D mesh onto the orthogonal 2D planes in a
certain direction only once. The philosophy adopted here is
that in this direction an initial estimate of mesh convexity is
first approximated and then nicely corrected to approach the
de facto convexity. Such a scenario can be formulated as

C3(M) = Corr

(
Pview(M · R)

Pface(M · R)

)
, (5)

where R represents the rotation matrix for the initial estima-
tion; Corr(·) indicates the correction process subsequently
applied.

2.1 Initial estimation along principal directions

As stated above, initial estimation should result in a value
as close to the de facto mesh convexity as possible by rotat-
ing the mesh with R only once. However, it is difficult to
figure out how much a mesh should be rotated without a pri-
ori knowledge. To this end, we propose a statistical method
for initial estimation. From Definition 4 we know that C2

can reach a minimum by rotating a mesh to a certain direc-
tion. Explicitly speaking, this minimum value exists only if
faces of the mesh are projected onto three orthogonal planes
having a maximum overlapping area. Therefore, our goal
is to approximate this minimum convexity value using the
projection-based approach by rotating the mesh to a certain
direction that ensures a large overlapping area of the mesh
faces. Moreover, this direction should make our convexity
measure invariant under similarity transformations.

Here we select principal component analysis (PCA) for
initial estimation mainly for three reasons. First, the math-
ematical meaning of PCA is to transform a given set of
data to a new coordinate system having the greatest vari-
ances of data along the principal directions. To this end, PCA
ensures that the mesh faces are projected onto three orthog-
onal planes with a relatively larger overlapping area, leading
to a relatively smaller initial estimate, closer to the de facto
mesh convexity. Second, for the following correction pro-
cess, cross sections sliced along the principal directions can
best characterize the geometric detail of the mesh. Third,
PCA normalizes meshes and makes our convexity measure
invariant under similarity transformations. In other words,
an initial rotation of the mesh to an arbitrary angle will not
make our convexity measure variant under similarity trans-
formations.

Let E denote the matrix for the eigenvectors of the covari-
ance matrix of mesh vertices. Replacing R with E , the initial
estimation can be rewritten as

Ce(M) = Pview(M · E)

Pface(M · E)
. (6)

Figure 4 depicts the silhouette images of some meshes
projected along the principal axes, where the principal direc-
tions of the meshes conform well with the human intuition
and the values of Ce are close to those of C2.

2.2 Correction to initial estimation

In this paper, we propose to correct the initial estimation
of convexity by slicing a mesh model into a series of cross
sections. If we treat cross sections of a 3D mesh along its
principal axes as normal 2D shapes, then a 2D convexity
measure can be used to help offset the precision loss caused
by the initial estimation with PCA. Take a symmetric and
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Fig. 4 Mesh silhouettes along the principal axes

Fig. 5 An example whose convexity is overestimated by PCA

Fig. 6 An illustration of mesh slicing in one direction

elongated 3D mesh as an example, as shown in Fig. 5, where
the PCA-based projections perfectly align with the human
intuition. According to Eq. 6, the initial estimate of the mesh
convexity is close to 1 . However, this mesh appears non-
convex. As shown in Fig. 5, one of the three silhouettes is
convex, while the others are not. There is some concavity
omitted by the PCA-based initial estimation, which can be
recovered from cross sections of the mesh.

Therefore, a 2D convexity measure to the cross sections
of the 3D mesh can be readily used to correct the initial
estimation of 3D convexity.

Similar to CT slicing in medical science, we slice the mesh
into a sequence of 2D shapes in equal intervals along prin-
cipal directions of the mesh, as shown in Fig. 6. We use
convexity values of these 2D shapes to compute the correc-
tion factor of each principal direction. Here we choose the

area-based measure c1 for the computation of the correction
factors.

According to Definition 1, given that the 3D mesh is sliced
along each principal direction into N + 1 equally spaced 2D
cross sections, we can denote the general form of the correc-
tion factor r along each principal direction as

r =
∑N

i=0 Area(si )∑N
i=0 Area (CH(si ))

(7)

where Area(si ) is the area of the i th slice and Area (CH(si ))
is the area of its corresponding convex hull. Since Area(si ) is
inconvenient to compute in practice, we turn the computation
of Area(si ) into that of volume as follows. We multiply both
the numerator and denominator of Eq. 7 by a slice step length
lstep as

r =
∑N

i=0 Area(si )lstep∑N
i=0 Area (CH(si )) lstep

≈ Volume(M)

lstep
∑N

i=0 Area (CH(si ))
.

(8)

In order to make slices retain more geometric details, we
compute the average edge length of the mesh and set the
slice step as a half of the average edge length. To lighten the
computational burden, we cap the slice number by setting
a threshold, Nmax. The slice number along some principal
direction is, thus, derived as

N =
{
Nmax, ifL/ lstep ≥ Nmax

L/ lstep, ifL/ lstep < Nmax,
(9)

where L is the projection length along each principal direc-
tion and Nmax can be applied to all three principal directions.
In this paper, Nmax is by default set to 100, a quantity suf-
ficient for all the 3D meshes in our experiments. Therefore,
the correction factors for three principal directions can be
written as
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Fig. 7 A negative example of using c2 where the close-up of a cross
section into the legs shows that the value of c2 is larger than 1

r j = Volume(M)

lstep
∑N j

i=0 Area (CH(si ))
, j = {x, y, z} (10)

Note that not every 2D convexity measure can be applied
to correcting the initial estimation. For example, one may
argue whether the boundary-based measure c2 can be used
to replace c1. One natural consideration for the replacement
of Eq. 7 with c2 is

r ′ =
∑N

i=0 Per (CH(si ))∑N
i=0 Per(si )

(11)

Nevertheless, we cannot guarantee that this correction factor
is definitely smaller than 1. One of the negative examples is
shown in Fig. 7. Because the mesh model in the figure has
limbs, the value of r ′ evaluated along the illustrated princi-
pal direction is greater than 1 and will undermine the final
convexity to be measured. Thus, only c1 is used in this paper
for the correction of initial estimation.

Now we can give our new convexity measure an ultimate
definition.

Definition 5 For a given 3D mesh M its convexity measure
C3(M) is defined as

C3(M) = Pview(M · E, r)

Pface(M · E)
. (12)

where

Pview(M · E, r) = 2(rx Pviewx (M · E)

+ ry Pviewy(M · E)

+ rz Pviewz(M · E)) (13)

Pface(M · E) = Pfacex (M · E)

+ Pfacey(M · E)

+ Pfacez(M · E) (14)

Theorem 1 1. C3(M) distributes in the range (0, 1];
2. C3(M) = 1 only when the mesh is convex;
3. inf

M∈�
(C3(M)) = 0, where�denotes the set of allmeshes;

4. C3(M) is invariant under similarity transformations.

Proof If M is convex, all the 2D slices along its prin-
cipal directions must be convex. Thus, rx = ry = rz = 1.
Because Pview(M · E, r) = Pface(M · E), it always holds
C3(M) = 1. When M is non-convex, there must be some
non-convex slices, and thus 0 < rx , ry, rz ≤ 1. Furthermore,
because Pview(M · E) ≤ Pface(M · E) always holds, com-
bining Eqs. 12, 13 and 14 we have C3(M) ≤ 1. Since C3(M)

is computed along principal directions of the mesh, it is
invariant under rotation and translation. Because C3(M) is
a ratio, it is invariant under scaling too. Hence, the fourth
condition of Theorem 1 is satisfied. It is worth noting that
an initial rotation of the mesh to an arbitrary angle will not
make our convexity measure variant under rotation transfor-
mation thanks to PCA. Were PCA not applied, the values
of C3 would change as the mesh rotates. Some examples of
such a hypothesis are shown in Fig. 8, where rotations are
made with respect to the z axis. ��

In order to prove the third condition of Theorem 1, we
employ a hollow cube shown in Fig. 9, where a indicates the
edge length of the cube and b denotes the edge length of the
hollow. Then, we have

rx = ry = rz = a3+2b3−3ab2

a3 . (15)

When increasing b to approach a, we have

lim
b→a

C3(M) = 0. (16)

The third condition of Theorem 1 is, therefore, proved.
Furthermore, if decreasing b to 0, the hollow cube turns

completely convex as a proper cube, and C3(M) = 1.
Another interesting finding is that if applying Lian’s mea-

sure to the same procedure above with the same hollow cube,
we have

C2(M) = min
α,β,γ∈[0,2π ]

Pview(M, α, β, γ )

Pface(M, α, β, γ )

= 6
(
a2 − b2

)
6
(
a2 − b2

) + 6
((
a2 − b2

) − (a − b)2)
= a + b

a + 3b
(17)

When decreasingb to 0,C2(M) = 1. However, if inversely
increasing b to approach a, Lian’s measure returns

lim
b→a

C2(M) = lim
b→a

a + b

a + 3b
= 1

2
. (18)
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Fig. 8 Without PCA convexity values calculated by C3 change as the meshes rotate

Fig. 9 A hollow cube. a The model, b its silhouette

This means that the hollow cube with extremely slim bars is
considered as infinitely close to being absolutely concave by
C3, but not by C2.

3 Experimental evaluations

In this section, we perform experimental tests with some
publicly accessible databases. The results produced by C1,
C2 and C3 are quantitatively evaluated and compared in
Sect. 3.1. Then an application of the convexity measures in
3D mesh retrieval is performed and analyzed in Sect. 3.2.
The computational efficiency of our method is also experi-
mentally demonstrated in Sect. 3.3.

3.1 Quantitative evaluations

To demonstrate the effectiveness of our convexity measure,
we apply it to two commonly used mesh databases, the
McGill Articulated 3D Shape Benchmark [19] and Princeton
Benchmark [3]. Before we carry out the tests, all the meshes
have to be normalized by translating their origins to the mesh
centroids.

Figure 10 shows a quantitative evaluation of different mea-
sures on a group of meshes ranked by C3. It can be seen that

for those bony meshes, such as the 1st, 3rd, 6th, 7th, and 8th
meshes, their convexity values evaluated byC3 are lower than
those of C2, better reflecting the reality. It is also observed
that C1 hardly senses the slim dent in the 18th mesh, which
is, however, noticed by both C2 and C3. It is worth noting
that the convexity of the sphere evaluated by C3 is 0.9744
due to the approximation introduced by Eq. 8.

Figure 11 shows a group of hand gestures ordered by C3,
with their convexity values calculated by C1, C2 and C3. For
the gestures with five straight fingers, their convexity values
calculated by C1 and C3 are higher than those with fingers
bending. However, C2 cannot distinguish this nuance.

Moreover, we extend our test to the hollow cube with
both C2 and C3. As shown in Fig. 12, when b goes wider,
the values of two measures become smaller. Note that the
convexity values computed by C3 range from 0 to 1, while
the values computed by C2 are between 0.5 and 1. Here the
value of b is in turn set to 0, 0.2a, 0.5a and 0.8a for the
hollow cube.

A cube with a deep dent shown in Fig. 13 is also tested
by comparing C3 with C1. When n → 0, the volume for the
dent approaches 0. The convexity computed by C1(M) is,

lim
n→0

C1(M) = lim
n→0

Volume(M)

Volume(CH(M))

= lim
n→0

m3 − 1
2m

2n

m3 = 1

(19)

However, this value cannot reflect the cut existing in the cube.
C3 can detect this cut instead, which is computed as

lim
n→0

C3(M) = 6m2

8m2 = 0.75 (20)

The new measure can also handle the problem shown in Fig.1.
The convexity values of the two meshes calculated byC3 are,
respectively, 0.6756 and 0.7483.
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Fig. 10 Meshes of the
quantitative evaluation

Fig. 11 Hand gestures ordered by C3

Fig. 12 The hollow cube with
b broadening

3.2 3D mesh retrieval

We apply C1, C2 and C3 to non-rigid 3D mesh retrieval.
The meshes are selected from the McGill articulated 3D
shape benchmark, consisting of 10 categories of 255 water-
tight meshes. The retrieval performance is evaluated by four
quantitative measures (NN, 1-Tier, 2-Tier, DCG) [17]. We
use convexities computed by the three measures to repre-

sent the 3D meshes and employ the L1 norm to calculate the
dissimilarity between two features. The results are shown
in Table 1. Note that all these convexities are calculated
after the 3D meshes are converted into their canonical forms.
Here, we use a method introduced in [6] to construct their
feature-preserved canonical forms of the 3D meshes. As
shown in Fig. 14, the meshes for the same species may
appear in quite different poses but have similar canoni-
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Fig. 13 A cube with a cut. a The 3D perspective, b its silhouette

Table 1 Retrieval performance of our measure and the other convexity
measures evaluated on the McGill database

NN (%) 1-Tier (%) 2-Tier (%) DCG (%)

C1 26.3 26.0 43.7 59.8

C2 25.9 26.3 45.9 60.4

C3 34.1 26.8 50.3 61.9

C1 and C3 43.9 33.0 54.1 66.0

The bold values correspond to the best results of the three convexity
measures.

cal forms. Thereby following the calculation of canonical
forms, all feature extraction methods, even those specifically
designed for rigid 3D meshes, can be employed to extract
isometry-invariant shape descriptors from non-rigid objects.
The results in Table 1 show that our measure outperforms
the others in terms of retrieval rate. However, represent-
ing 3D meshes by a solo convexity measure may result in
relatively poor discriminations. Instead when we use both
C3 and C1 as dual features, better performance results are
obtained.

3.3 Computational efficiency

C2 is computationally expensive due to the genetic algo-
rithm with 50 individuals and 200 evolution generations [7],
especially when the number of vertices in the mesh is large.

Table 2 Comparison of time consumptions

Meshes Vertex number C3 (in second) C2 (in second)

One iteration Total

673 11.34 0.0648 648

4463 45.11 0.0905 905

9261 86.08 0.1400 1400

14,872 148.4 0.1700 1700

34,817 316.1 0.3115 3115

In contrast, our measure needs to capture silhouette images
from the frame buffer only once. Table 2 shows the compar-
ison of the time consumed by both the measures on some
typical meshes ordered in vertex number. It can be seen that
C3 accelerates the overall computations by approximately an
order of magnitude. The whole experimental environment is
under Visual Studio 2010 in a laptop configured with Intel
Core i5 CPU and 6G RAM.

4 Conclusions

Aiming to address the problems in the extant measures, we
have proposed a heuristic convexity measure for 3D meshes
in this paper. Our measure projects only once a given 3D
mesh onto orthogonal 2D planes along its principal direc-
tions for an initial estimation of mesh convexity, followed by
a correction process based on the 2D area-based convexity
measurement of mesh cross sections. To this end, our measure
avoids the tedious genetic algorithm adopted byC2, enabling
highly efficient convexity measurement for 3D meshes and

Fig. 14 Canonical forms of the
meshes. The first row shows the
original non-rigid models, while
the second row shows their
feature-preserved 3D canonical
forms
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shortening the computational time of C2 by some an order of
magnitude. Compared with C1 that has difficulties in detect-
ing slim dents and sensing the difference of meshes with the
identical mesh and convex hull volumes, our measure can
successfully handle these issues. The experimental results
have also demonstrated the advantage of our measure in 3D
mesh retrieval against both C1 and C2. Since our measure
is computationally inexpensive, it is ready for use in many
other graphics applications, such as 3D mesh partitioning and
classification.
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