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Abstract We propose an adaptive sampling and reconstruc-
tionmethodbasedon the robust principal component analysis
(PCA) to denoise Monte Carlo renderings. Addressing spike
noise is a challenging problem in adaptive rendering meth-
ods. We adopt the robust PCA as a pre-processing step to
efficiently decompose spike noise from rendered image after
the image space is sampled. Then we leverage patch-based
propagation filter for feature prefiltering and apply the robust
PCA to reduce dimensionality in high-dimensional feature
space. After that, we estimate a per-pixel pilot bandwidth
derived fromkernel density estimation and construct themul-
tivariate local linear estimator in the reduced feature space to
estimate the value of each pixel. Finally, we distribute addi-
tional ray samples in the regions with higher estimated mean
squared error if sampling budget remains. We demonstrate
that our method makes significant improvement in terms of
both numerical error and visual quality compared to the state-
of-the-art.
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1 Introduction

Monte Carlo (MC) ray tracing [11] plays an important role in
synthesizing photo-realistic images, but produces noise arti-
facts when a small quantity of ray samples (e.g., less than one
hundred or thousand, depend on the complexity of scenes)
are assigned for each pixel in the image space. DeCoro et al.
[6] divide noise artifacts into two categories. One is subtle but
globally distributed high-frequency noise which is generally
caused by the variance of correlated estimators. The other
is the highly-localized, distinctive spike noise, i.e., outlier,
which is generally caused by the low-probability yet high-
energy light paths.

Adaptive rendering, including adaptive sampling and
reconstruction, can mitigate the first category of noise arti-
facts effectively. Adaptive sampling locally adjusts sampling
densities in the image plane according to the variance ormean
squared error (MSE) computed from previous allocated sam-
ples. The key of adaptive sampling is to develop a robust
error metric which can guide where need to allocate more ray
samples, e.g., Stein’s unbiased risk estimator (SURE) [31],
contrast metric [20], median absolute deviation (MAD) [8],
perceptual based error metric [9], f-divergences [26], MSE
which can be decomposed into variance plus the square of
bias, etc.

Adaptive reconstruction adopts locally defined recon-
struction filters which are determined by the bandwidth to
estimate the value of each pixel. Therefore, the key step
to make adaptive reconstruction successfully is to estimate
locally optimal bandwidth. Moon et al. [21] define a set
of bandwidths on which optimal shared bandwidth is esti-
mated through minimizing MSE. Although their method can
produce high-quality images, it suffers from heavy computa-
tional overhead of estimating the optimal bandwidth for each
pixel. Instead of estimating the optimal bandwidth on a set
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of predetermined bandwidths, we present a pilot bandwidth
derived from kernel density estimation (KDE) which can
reduce reconstruction time and meanwhile improve image
quality significantly through removing spike noise and fea-
ture prefiltering.

Addressing the second category of noise artifacts without
noticeable energy loss is a challenging problem in adaptive
renderingmethods. DeCoro et al. [6] propose a density-based
outlier rejection method based on space-partitioning tree. It
is not trivial to integrate their method into current renderer
because of the structure they use. Moon et al. [21] down-
weight these pixels, and Kalantari et al. [12] reject these
pixels. However, their methods still remain splotch artifacts
at low sampling rate, see the comparison of the “conference”
scene in Fig. 11.

In order to handle the two categories of noise artifacts,
we present an adaptive sampling and reconstruction method
based on the robust principal component analysis (PCA).
Given the rendered noisy image, the robust PCA can decom-
pose spike noise efficiently. After that, we use local linear
estimator tomodel the relationship between explanatory vari-
ables (G-buffers includingworld coordinate, shading normal,
texture value for the first intersection and direct light source
visibility) and a response variable (color values including
three channels). Since the visibility can be very noisy due to
depth-of-field effect, we leverage the patch-based propaga-
tion filter [3] for feature prefiltering. Then we use the robust
PCA to reduce dimensionality in the high-dimensional fea-
ture space. Finally, we adopt the local linear estimator to
estimate the value of each pixel. The key of the local lin-
ear estimator is to estimate bandwidth. We propose a pilot
bandwidth derived from KDE which is the main distinc-
tion between our method and the previous one, such as
the approach proposed by Moon et al. [21]. We demon-
strate that our approach leads to significant improvements
both in subjective and quantitative errors compared to the
state-of-the-art. In summary, we make the following techni-
cal contributions:

– We present a novel spike noise removal technique based
on the robust PCA as a pre-processing step to decompose
spike noise from noisy image.

– We extend pixel-based propagation filter to patch-based
for feature prefiltering.

– Given a matrix constructed from a local feature space,
we propose to use the robust PCA to decompose
it into a low-rank and sparse matrix. The low-rank
matrix identifies a reduced, local feature space which
guides our reconstruction based on the local linear
estimator.

– We estimate a pilot bandwidth for each pixel in a reduced,
local feature space.

2 Previous work

Adaptive sampling and reconstruction has been long history
[11]. Early rendering methods have succeeded in reduc-
ing sampling rates. Most recent work concentrates more on
reducing the number of ray samples significantlywithout sac-
rificing image quality.Wewill reviewmost recent techniques
on adaptive sampling and reconstruction from the following
three aspects.

Image-space methods only utilizing color Some types of
these methods leverage multi-scale filters. Overbeck et al.
[24] perform Daubechies wavelet analysis on the generated
image and guide adaptive sampling by contrast metric, and
reconstruct image by wavelet shrinkage [8]. Rousselle et al.
[27] generate high-quality image using Gaussian filters at
several scales. Liu et al. [17] proposed a parallel image-
space adaptive rendering approach based on the multi-scale
and directional analysis. Other methods leverage denoising
filters. Rousselle et al. [28] exploit non-local means filter
for adaptive rendering, while Delbracio et al. [7] proposed
a multi-scale non-local means filter for adaptive reconstruc-
tion. Kalantari et al. [13] proposed a noise estimation metric
based onMAD for adaptive sampling and designed a general
technique using any denoising filters, such as BM3D [5]. Liu
et al. [18] partition the rendering space into clusters based on
feature vectorwhich contains gradient, variance and position.
In addition, they model each cluster by smooth polynomial
regression. Although they utilize polynomial regression for
reconstruction, they don’t make use of auxiliary features.

Image-space methods combining color and G-buffers G-
buffers (i.e., normal, depth and texture), which are easy to
be acquired from MC renderer, can help design adaptive
reconstruction filters that preserve image structures. Sen and
Darabi [30] presented a method based on cross-bilateral fil-
ter utilizing the information theoretic approach to deal with
noisy features. While their method produces high-quality
image with a small number of samples per pixel, the com-
plexity of their algorithm is proportional to the number of ray
samples. Li et al. [15] first introduce SURE to guide adaptive
sampling and reconstruction. Rousselle et al. [29] also build
on SURE and cross-bilateral filter. In order to reduce compu-
tational overhead of themethod proposed byMoon et al. [21],
most recently, Moon et al. [22] proposed to approximate the
value of each pixel in prediction window with multiple, but
sparse local linear estimator. Kalantari et al. [12] presented a
machine learning approach to reduce MC noise. Since they
only focus on image reconstruction, they cannot benefit from
the adaptive sampling. Moon et al. [23] explore higher-order
regression to filter MC noise. Bitterli et al. [2] construct first-
order regression function to estimate the values of each pixel
and leverages the non-local means filter to shape the regres-
sion kernel.
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Multi-dimensional space methods Hachisuka et al. [10] pro-
posed an adaptive sampling and anisotropic reconstruction
method in multi-dimensional space. Although it can effi-
ciently generate high-quality images in a low-dimensional
space, it costs a lot of memory and computation time as
the dimension increases. Liu et al. [19] proposed a paral-
lel multi-dimensional adaptive sampling method to reduce
the computation time and control the memory cost. Bel-
cour et al. [1] proposed a frequency analysis for accelerating
computation for the rendering of effects such as motion
blur and depth-of-field which requires costly 5D integrals.
Yan et al. [34] presented fast 4D sheared filtering method
on the GPU which improve sheared filtering overhead sig-
nificantly. While multi-dimensional adaptive sampling and
reconstruction methods have shown their efficiency in gen-
erating images with a handful of samples per pixel, they
are developed to optimize specific MC effects. In contrast,
image-space methods can handle various MC effects, such
as soft shadows, motion blur, and depth-of-field.

Zwicker et al. [35] surveyed recent advances in adaptive
sampling and reconstruction algorithms and divided them
into two categories: “a priori” methods and “a posteriori”
methods. Our method belongs to the latter .

3 Background and overview

In the following, we briefly review the local linear estimator
and then give an overview of our proposed algorithm.

3.1 Local linear estimator

Thenonparametric regressionmodelwithmultiple covariates
is as follows

y = m(x) + ε (1)

From the perspective of rendering, y and m(x) represent a
MC input image and a ground truth image, respectively. x =
(x1, . . . , xd)T is a d-dimensional auxiliary feature vector,
and ε represents MC noise.

Estimating the local linear estimator on full dimensional
feature space requires a high cost of computation. To address
this issue, we adopt the truncated singular value decom-
position proposed by Moon et al. [21]. Given a projection
matrix Vk ∈ R

d×k (Sect. 4.3) and an auxiliary feature vec-
tor xc ∈ R

d , where k is less than or equal to d, we project
it onto a low-dimensional subspace by multiplying VT

k , i.e.,
zc = VT

k xc ∈ R
k .

In the low-dimensional subspace, the local linear estimator
of the conditional mean function m(·) is α̂ and the solution
for α is to solve the following locally kernel weighted least
squares problem:

min
α,β

n∑

i=1

{
yi − α − βT (zi − zc)

}
KH(zi − zc) (2)

where n represents the number of pixels within a filtering
window centered on pixel c, β = (β1, . . . , βk)

T is coef-
ficient for each explanatory variable. K (·) is a symmetric,
one-dimensional kernel function such that

∫
K (u) = 1 and

KH(zi − zc) =
k∏

j=1

1

b j h
K

(
zi j − zcj
b j h

)
(3)

h is shared bandwidth and b1, . . . , bk are tuning parameters.
The bandwidth matrix H1/2 = diag{hb1, . . . , hkd} is diago-
nal. The model, which separates bandwidth matrix into two
components, has been studied deeply in the statistical field.
Such as, Cheng et al. [4] utilize this model to study the vari-
ance reducing techniques. Moon et al. [21] first apply this
model to image-space adaptive rendering. They choose b j

to be

∣∣∣∣
∂2m(z)

∂z2j

∣∣∣∣
−0.5

. We follow the previous work and replace

the shared bandwidth with our presented pilot bandwidth
described in Sect. 4.4.

From the standard weighted least squares theory, the local
linear estimator on center pixel c is given by

α̂ = m̂(zc)

= eT (XT
z WzXz)

−1XT
z WzY

= LT(zc)Y

=
n∑

i=1

li (zc)yi

(4)

where e = (1, 0, . . . , 0)T is a (k + 1)-dimensional vector,
Y = (y1, . . . , yn)T ,Wz = diag{KH(z1−zc), . . . , KH(zn −
zc)}, the i th row of Xz is (1, (zi − zc)T ) and LT (zc) is set
as the first row of (XT

z WzXz)
−1XT

z Wz. We can clearly see
that the local linear estimator α̂ is a weighted average value
of the response variables in the neighborhood at the center
pixel c. We call L(zc) equivalent kernel.

Then the bias of m̂(zc) can be computed as follows:

E
(
m̂(zc) − m(zc)

) =
n∑

i=1

li (zc)E(yi ) − m(zc)

=
n∑

i=1

li (zc)m(zi ) − m(zc)

=
n∑

i=1

li (zc)yi − yc

= α̂ − yc

(5)
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The variance of m̂(z) can be estimated in a similar manner:

var(m̂(zc)) =
n∑

i=1

(li (zc))2var(yi ) (6)

where var(yi ) is the variance of the sample mean at pixel i .
Then the MSE is estimated as follows:

M̂SE(m̂(zc)) = (α̂ − yc)
2 + var(m̂(zc)) (7)

we will use the MSE to guide adaptive sampling in Sect. 5.
The equivalent kernel only depends on the position of

center pixel c and its neighbors, while is independent of the
response variables. So given center pixel c and its neighbors,
we only compute the equivalent kernel once and apply it to
each channel of color image independently.

3.2 Overview

Addressing spike noise in noisy image is challenging. Kalan-
tari et al. [12] presented an approach for identifying spike
noise in the filtered result. In contrast to this approach, our
outlier removal method based on the robust PCA can detect
sparse spike noise in noisy image so that removing outlier
will not cause noticeable energy loss in the reconstruction
result without redistributing the lost energy [23], see Fig. 1.

Estimating bandwidth for each feature plays a key role
in synthesizing high-quality image. Moon et al. [21] define
a set of shared bandwidth (e.g., 0.2, 0.4, 0.6, 0.8 and 1.0),
and estimate MSE for each shared bandwidth, which suf-
fers from a high computational overhead. Replacing shared
bandwidth with our presented pilot bandwidth will decrease

Input (32 spp) LBF OUR

Fig. 1 Spikes detected by learning-based filter (LBF) [12] and our
outlier removal method (OUR) on the “pool” scene. LBF cannot dis-
tinguish high-frequency signals from noisy image and regards them as
spike noise. If we use LBF’s spike removal method with our recon-
struction approach, we cannot preserve high-frequency signals (bottom
middle). The bottom left image is the reference

WLR (22.5 s)
rMSE: 0.005817
SSIM: 0.9265

WLRP (16.9 s)
rMSE: 0.005825
SSIM: 0.9275

REFERENCE
65536 spp

Fig. 2 Results ofWLR andWLRP on the “chess” scene. Theweighted
local regression (WLR)method is proposed byMoon et al. [21]. WLRP
method ismodified based onWLR replacing shared bandwidthwith our
presented pilot bandwidth in Sect. 4.4

Input
128 spp

WLRV (380 s)
rMSE: 0.0109
SSIM: 0.811

WLR (371 s)
rMSE: 0.0035
SSIM: 0.898

REFERENCE
65536 spp

Fig. 3 The WLR results for the “sanmiguel” scene simulating strong
depth-of-field effects, with and without the visibility feature. The
WLRV method is modified based on WLR through adding visibility
feature

reconstruction time, but not reduce image quality obviously,
see Fig. 2. This motivates us to further improve image qual-
ity through removing outlier, adding visibility feature and
feature prefiltering.

Direct light source visibility feature is very noisy due to
depth-of-field. If we extend WLR method adding visibility
feature straightforwardly, the noise of visibility feature will
propagate directly to the filtered result, see Fig. 3. In order to
mitigate the issue, we propose to use the patch-based propa-
gation filter to denoise auxiliary features.

Based on these observations, we propose a novel render-
ing method based on the robust PCA which can decompose
spike noise from noisy image as described in Sect. 4.1. We
filter the features leveraging propagation filter in Sect. 4.2.
Then we use the robust PCA to identify a reduced feature
space, as presented in Sect. 4.3. In Sect. 4.4, we estimate
a per-pixel pilot bandwidth derived from KDE and use the
local linear estimator to compute the value of each pixel. We
introduce adaptive sampling in Sect. 5, and in Sect. 6 we give
the implementation details of our method. We demonstrate
comparison results with other methods in Sect. 7 and give
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(a) (b) (c) (d)

Local Linear Estimator, Sec. 3.1z

hbj
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(g)
0.32

0.41

0.50

0.59

0.68

(h)

RPCA optimization, Sec. 4.1

Feature prefiltering, Sec. 4.2 Dimensionality reduction, Sec. 4.3 Estimate pilot bandwidth, Sec. 4.4

Fig. 4 Given an input image (a), we use the robust PCA to decompose
spike noise (b) and generate image (c) with spike noise removed. We
filter the input features (e) leveraging patch-based propagation filter.
Then we compute reduced feature space (g) from filtered features (f).

After that, we compute a per-pixel pilot bandwidth (h) derived from
KDE. Finally, we reconstruct image (d) by the local linear estimator.
The meaning of symbols in the figure can be found in Sect. 3.1

conclusions in Sect. 8. Figure 4 illustrates the main steps of
our approach.

4 Proposed method

4.1 Decompose spike noise

Given a color image, we denote color value at a pixel p
as d(p) = (d1(p), d2(p), d3(p)). Then we consider each
channel of a color image as a data matrix Di = (di (p)) ∈
R
m×n , where i = 1, 2, 3, m and n represents the height and

width of a color image. Di may be decomposed as

Di = Ai + Ei (8)

where Ai has low-rank and Ei is sparse. Some entries of the
additive errors Ei can have arbitrarily large magnitude. The
sparse errorsEi can be decomposed by solving the following
convex optimization problem:

min
Ai ,Ei

‖Ai‖∗ + λ‖Ei‖1, subject to Di = Ai + Ei (9)

where ‖·‖∗ denotes the sum of its singular values, ‖·‖1
denotes the sum of the absolute value of matrix entries, and

λ is a positive tune parameter. This optimization is referred
to as the robust PCA (RPCA).

Lin et al. [16] presented a fast algorithm for solving the
RPCA problem (Eq. 9) which utilizes techniques of aug-
mented Lagrange multipliers (ALM). See their paper for the
detail information. We implement the ALM algorithm in a
function

ALM(D,A,E, iterations)

that takes a corrupted matrix D as input and returns a low-
rank matrixA and an error matrixE. The ALM is an iterative
algorithm, so we need specify the number of iterations in the
parameter iterations. Considering computational overhead,
setting iterations to 1 is enough to decompose spike noise
from input image.

In order to reduce computational overhead of ALM func-
tion, we split image into tiles and call the ALM function for
each tile. The value in E is just the candidate of spike noise,
and we need select a threshold value. If any values in E are
greater than the threshold, we mark corresponding pixel as
spike. In our experiments, we set threshold to 2.5. We sum-
marize our pseudocode in Algorithm 1.

In Fig. 4, we show that our algorithm can efficiently
identify spike noise from image that is grossly corrupted.
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Algorithm 1: Remove Spike Noise
Input: Input image I , tile size ts = 64
Result: Output image with spike noise removed

1 Split image into tiles based on tile size ts;
2 foreach tile do
3 Compute extent for the tile;
4 foreach channel i = 1, 2, 3 do
5 Construct Di from this tile;
6 ALM(Di ,Ai ,Ei , 1);
7 end
8 end
9 threshold = 2.5;

10 foreach pixel p in I do
11 if (E1[p] > threshold) Or (E2[p] > threshold) Or

(E3[p] > threshold) then
12 Replace d(p) with the median block color in all the

neighboring pixels of pixel p in a block of size 3×3;
13 end
14 end

dof-dragons
Input 16 spp

Spike noise OUR (35.0 s)
rMSE: 0.0005
SSIM: 0.932

WLR (38.5 s)
rMSE: 0.0008
SSIM: 0.915

conference
Input 32 spp

Spike noise OUR (50.7 s)
rMSE: 0.0030
SSIM: 0.948

WLR (55.3 s)
rMSE:0.0055
SSIM: 0.936

Fig. 5 Ourmethod benefits from removing spike noise comparingwith
WLRmethod.We show that the spike noises are decomposed from input
image. TheWLRmethod leaves few spike noises in reconstructed image
while our approach removes spike noise efficiently

Our algorithm can also recognize sparse spike noise from
noisy image. Figure 5 shows more comparisons between our
approach and the state-of-the-art algorithms.

4.2 Propagation filter

The propagation filter [3] is a pixel-based, edge preserving
filter which targets homogeneous variance. It computes the
weight of adjacent pixels based on their connected path, see
Fig. 6a. If two pixels (e.g., c and q) are vertically or hori-
zontally aligned, the path would connect the two pixels in a
straight line. If two pixels are not simply vertically or hor-
izontally connected, the filter determines the path based on
their Manhattan distance. If the Manhattan distance between
c and q is odd, the filter selects the path for traversing from

c

p

q

(a)

c wc,c = 1

d wc,d = wc,c × e−max(0,D(c,d)+D(c,d))

p wc,p = wc,d × e−max(0,D(d,p)+D(c,p))

q wc,q = wc,p × e−max(0,D(p,q)+D(c,q))

(b)

Fig. 6 Pixel-based propagation filter, a the pattern for performing fil-
tering with radius r = 3, and b the calculation of wc,q

pixel q to p in the vertical direction; otherwise, the horizontal
path will be selected. Figure 6b gives the recursive steps for
computing the weight between pixel c and q.

We extend the pixel-based propagation filter to patch-
based and support for non-uniform variance using the range
distance proposed by Rousselle et al. [28].

D(c, q) = (yc − yq)2 − (var(c) + var[c, q])
ε + var(c) + var(q)

(10)

where var(c) is the buffer variance at pixel c, var[c, q] =
min(var(c), var(q)), and ε is a small number to prevent divid-
ing by zero. Then the patch-based range distance is defined
as:

D(P(c),P(q)) = max

⎛

⎝0,
1

|P|
∑

i∈P0

D(c + i, q + i)

⎞

⎠ (11)

where P(c) is a square patch of size |P| (e.g., 7 × 7 pixels)
centered on c, and P0 represents the offsets to each pixel
within a patch. Figure 7 shows filtering results of pixel-based
and patch-based propagation filter.

In order to compute var(c), we evenly split all samples
between two independent image buffers and estimate the
buffer variance using the squared difference between the two
buffers presented by Rousselle et al. [28].

There are (2 × r2 + 2 × r + 1) pixels in the filtering
window with maximum Manhattan distance r . Even though
the number is just half of the pixels in the squared filtering
window with radius r (i.e., (2 × r + 1)2 pixels), the patch-
based propagation filter gives better result compared with the
feature prefiltering method proposed by Kalantari et al. [12],
see the right column of Fig. 7.

4.3 Dimensionality reduction

We arrange auxiliary feature vectors in a filtering window
center on pixel c as the rows of a data matrix D ∈ R

n×d
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Input
128 spp

Pixel-based
rMSE: 0.0052
SSIM: 0.884

Patch-based
rMSE: 0.0031
SSIM: 0.916

OUR2
rMSE: 0.0035
SSIM: 0.912

Fig. 7 Our reconstruction method with visibility feature (“sanmiguel”
scene simulating strong depth-of-field effects) filtered by different
approaches. Pixel-based propagation filter cannot smooth out inhomo-
geneous noise introduced byMC effects. Patch-based propagation filter
gives nearly noise-free result. OUR2 is also reconstruction method with
feature prefiltering by Kalantari et al. [12] and it also leaves few noise
artifacts. The bottom left image is the reference

whose i-th row is set as (xi − xc)T . Even though we filter
the auxiliary features, there are still few residual filtering
artifacts. To address this issue, we recover a low-rank matrix
A fromD = A+E using ALM function defined in Sect. 4.1.
Thenwe perform singular value decomposition (SVD) on the
covariance of A and identify the k1 biggest singular values
satisfying following condition:

∑k1
i=1 σi∑r
i=1 σi

> 0.97 (12)

where r is the rank ofA and σi is the singular value ofA. We
also compute the spectral norm ofE and select the k2 biggest
singular value where σi > C‖E‖2 proposed by Moon et al.
[21]. We use k = max(k1, k2) to select the k biggest singular
values.

Moon et al. [21] suggest to select the k biggest singular
values using C‖E‖2 (e.g., C = 4) as a criterion. How-
ever, selecting optimal C depends on noisy level of different
scenes. IfC is bigger, it may omit noticeable singular values.
In order to mitigate this issue, we combine Eq. 12 with their
proposed criterion to select the k biggest singular values.
Figure 8 shows that our strategy of selecting the k biggest
singular values can improve image quality.

The matrix A can be approximated by a compact form
A ≈ UkSkVT

k , whereUk andVk are n× k and d × k reduced
unitary matrix, respectively, and Sk is a diagonal matrix that
has k nonzero singular values. Vk is used in Sect. 3.1 to
project auxiliary feature vector to low-dimensional subspace.

Input
32 spp

OUR2
rMSE: 0.0030
SSIM: 0.948

OUR
rMSE: 0.0030
SSIM: 0.948

Fig. 8 Results of OUR2 and OUR method on the “conference” scene.
OUR2 is also our method using the strategy of selecting the k biggest
singular values proposed byWLRmethod. The strategy can omit notice-
able singular values so that OUR2 method leaves few noise artifacts.
The bottom left image is the reference

4.4 Estimate pilot bandwidth

After transforming auxiliary feature vectors into the reduced,
local feature space, we estimate a per-pixel pilot bandwidth
which is derived from KDE:

G = �

(
4

Nc × (k + 2)

) 2
k+4

(13)

where� is a k×k covariance matrix and Nc is the number of
pixels which contributes to the center pixel c. The derivation
of Eq. 13 can be found in Wand’s book ([32], p. 111) and
Kristan’s paper [14].

We set � to identify matrix. Since we have used SVD
to project auxiliary feature vectors onto a low-dimensional
subspace, they are not relevant. In order to compute Nc, we
construct a weight vectorW = (KH(z1 −zc), . . . , KH(zn −
zc))T . In order to bootstrap pilot bandwidth estimation, we
set H to identity matrix, i.e., b j h = 1 for j = 1, . . . , k.
Here we select arbitrary bandwidth b j h bigger to bootstrap
our estimation, so that more samples can be included in the
process of estimating the pilot bandwidth. Nc is the number
of nonzeros in W . Then the shared bandwidth in Eq. 3 is
estimated as follows:

h = √
G(0, 0) (14)

Figure 9 demonstrates shared bandwidth comparison
between our method (OUR) and weighted local regression
(WLR) proposed by Moon et al. [21].
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0.32

0.41

0.50

0.59

0.68

(a) OUR (2.1 s)

0.17

0.34

0.51

0.68

0.85

1.00

(b) WLR (11.3 s)

(c) OUR (50.7 s)
rMSE: 0.0030
SSIM: 0.948

(d) REFERENCE
65536 spp

(e) WLR (55.3 s)
rMSE: 0.0055
SSIM: 0.936

Fig. 9 Shared bandwidth comparison between our approach (a) and
WLR (b) on the “conference” scene rendered with 32 spp. On the
smoothed area, such as the surface of the table, WLR is prone to esti-
mate larger bandwidth because of the influence of spike noise, but our
approach estimates relative small bandwidth. We also give the time of
estimating pilot bandwidth (OUR) and shared bandwidth (WLR). The
middle (d) is the reference image. Even though WLR estimates larger
bandwidth, it still remains splotch artifacts. In addition, WLR fails to
reconstruct the edge of the shadow on the chair

5 Adaptive sampling

The state-of-the-art adaptive rendering methods (such as, Li
et al. [15], Rousselle et al. [29] and Moon et al. [21,22])
adopt a common iterative approach to distribute additional
ray samples to the regions with higher estimated MSE. We
implement that iterative model. First of all, coarse sampling
is initiated by uniformly allocating a small number of ray
samples (e.g., four ray samples per pixel). Then, we estimate
M̂SE(zc) (Eq. 7) by our reconstruction method and predict

an error reductionΔMSE(zc) = M̂SE(zc)×n(zc)
−4
k+4 , where

the error reduction factor n(zc)
−4
k+4 is derived by Moon et al.

[21] and n(zc) is the number of ray samples which has been
already allocated at pixel c.

Rousselle et al. [27] suggest relative MSE (rMSE) which
is based on human visual perception that is more sensi-
tive to darker areas. The rMSE is computed as follows:
ΔrMSE(zc) = ΔMSE(zc)

m̂2(zc)+ε
. ε is a small number, e.g., 0.001,

which is used to avoid the divide-by-zero. The rMSE estima-
tion can be noisy, we filter it leveraging Gaussian filter in a
3 × 3 window. We sort the rMSE in an ascending order and
select the upper rMSE at 95% position. We compute maxi-
mum sample count based on the upper rMSE and then select
the minimum value between the maximum sample count and

samples per pixel as a fixed value to clamp the per-pixel sam-
ple count which is proportional to ΔrMSE(zc).

6 Implementation details

We implemented our method as an extension of the PBRT2
rendering system [25] and adopted CUDA to accelerate our
matrix operations. During sampling stage, PBRT2 renderer
gathers color and auxiliary features for each pixel. The aux-
iliary features contain 10 dimensions: 3D coordinates, 3D
textures, 3D normals and 1D direct light source visibility.
We will normalize auxiliary features to the range [−1,1]. We
use the optimal Epanechnikov kernel K (u) = 3

4 (1− u2) for
u < 1, as the kernel function in Eq. 3.

For all the test scenes, we use a 11×11 filtering window
in the iterative steps and 23×23 filtering window for the final
reconstruction. The reason why we use smaller filtering win-
dows is that we only estimate relative MSE in the iterative
steps. This decision only has slightly effect on adaptive sam-
pling. We select r = 5 for feature prefiltering. Until all the
sample budget is used up, we opt for a small number of iter-
ations (i.e., 3) for adaptive sampling.

7 Results and discussion

We test all the scenes in this paper using a desktop with
Intel(R)Xeon(R)CPUE5-1650v3@3.50GHz, andNVIDIA
Geforce GTX TITAN X with CUDA 8.0 SDK for accelerat-
ing our reconstructionmethod.We compare our method with
low discrepancy (LD) and three state-of-the-art algorithms,
weighted local regression (WLR) [21], learning-based filter
(LBF) [12] and nonlinearly weighted first-order regression
(NFOR) [2]. To test WLR and LBF, we use the source code
provided by the authors and set parameters recommended by
their corresponding papers. To evaluate the NFOR method,
we implemented it according to the pseudocode provided by
authors.

For the purpose of comparing image quality generated by
different methods in terms of quantitative measure, we use
the relative mean squared error (rMSE) [27] which is defined

as 1
n

∑n
i=1

(m̂(xi )−m(xi ))2

m(xi )2+ε
, where ε = 0.001 prevents from a

divide-by-zero, and m(x) refers to the ground truth image.
We also use the structural similarity (SSIM) [33] index to
measure the similarity between two images.

We verify our method on rendering following scenes,
“pool” (1024 × 1024), “conference” (1024 × 1024), “san-
miguel” (1024 × 1024) and “sibenik” (1024 × 1024). Each
billiard ball has different motion blurs effect in the “pool”
scene. The “conference” scene has indirect illumination and
glossy surfaces that makes severe spike noise at low sam-
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Fig. 10 Convergence plots for all tested scenes of Fig. 11 for LD, LBF, WLR, NFOR and OUR methods. a pool, b conference, c sanmiguel, d
sibenik

pling rate. The “sanmiguel” scene has complex geometries
and simulates strong depth-of-field effects. The “sibenik”
scene has an environment light which can be seen by refrac-
tion through the windows.

We combine equal-time and equal-sample comparison
based on rendering time and ray samples of our method for
each comparison. If some methods run faster than ours using
same ray samples, e.g., LD method, we increase ray samples
for those methods to reach same rendering time as ours. If
some methods run slower than ours using same ray samples,
we do not decrease ray samples for thosemethods. Since only
LDmethod runs faster than our method, we actually conduct
equal-sample comparison among OUR, WLR, NFOR and
LBF methods.

Figure 10 contains log–log convergence plots for the
“pool”, “conference”, “sanmiguel” and “sibenik” scenes.
The plots indicate that our method outperforms other meth-
ods across all the tested ray samples per pixel. The plots of
“pool” scene for LBF and NFOR methods decrease slowly,
since they do not implement adaptive sampling.

In Fig. 11 (last page) we compare rendering performance
with LD, LBF, NFOR, WLR and our technique (OUR). We
also include a reference image (REFERENCE) which is ren-
dered by 64K samples per pixel (spp). The LD, LBF and
NFOR methods use uniform sampling for all tested scenes.
The WLR and OUR methods use adaptive sampling for all
tested scenes.

In the “pool” scene, the comparison shows that ourmethod
has advantages over LBF andWLR. LBF preserves shadows
in second row of the “pool” scene, while fails to reconstruct
motion blur in the first row of the “pool” scene. Conversely,
WLR smooths shadow edge seriously, while reconstructs
motion blur efficiently. Our method not only preserves shad-
ows but also generates a high-quality reconstruction result
on the motion blurred region.

The first row comparison of “conference” scene shows
the benefits of removing spike noise and estimating pilot
bandwidth. LBF and WLR show splotch artifacts, while our
method removes splotch artifacts efficiently, since we utilize
the RPCA as a pre-precessing technique to remove sparse
spike noise. The second row comparison of the “conference”
scene shows the benefits of the direct light source visibility

feature.Wepreserve soft shadows clearly,whileWLR,which
does not adopt direct light source visibility feature, cannot
do so. LBF shows artifacts around soft shadows. In addition,
our method has the minimum rMSE and maximum SSIM
among these methods.

In the “sanmiguel” scene, LBF and WLR methods leave
noise artifacts in the defocused areas. WLR cannot preserve
shadows. Figure 9 is another case that WLR fails to recon-
struct edge. Our method preserves the shadows and removes
noise artifacts in the areas of depth-of-field due to feature
prefiltering. In the “sibenik” scene, LBF and WLR produce
over-blurred fence. Our method, on the other hand, preserves
the fence as similar as the reference image.

In comparison with NFOR, our method produces better
results for the “pool” and “conference” scenes. Adaptive
sampling can improve the image quality of the “pool” scene
significantly, butNFORdoes not give an errormetric to guide
adaptive sampling. NFOR cannot handle spike noise and
leaves obvious splotch artifacts in the “conference” scene.
OUR and NFOR methods produce equivalent image quality
in out-of-focus regions of “sanmiguel” and “sibenik” scenes.

NFOR evenly splits all samples between two image
buffers and estimates four local linear estimators (each for
one buffer with two different parameters) for each pixel.
Furthermore NFOR employs block-based reconstruction in
filtering window, so that each pixel will be reconstructed
by (2r + 1)2 linear models, where r is half size of filtering
window. This is why NOFR obtains larger SSIM than our
method for “sanmiguel” scene. This is also the reason why
NFOR takes long time to finish reconstruction. For example,
rendering time of NFOR is two times more than ours for the
“pool”, “conference” and “sibenik” scenes.

Adaptive polynomial rendering (APR) proposed byMoon
et al. [23] is the most recent adaptive rendering method. APR
uses the same approach as LBF to remove spike noise as
a pre-process and pre-filters auxiliary features using image
polynomial function. Their rMSE for “pool” scene with 31
spp is 0.00029, but our rMSE with 32 spp is 0.00035. Even
thoughwe obtain larger rMSE, our running time is faster than
theirs (46.2s vs 65.8s). Our method has potential to reach the
equivalent image quality in equal time.
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OUR LD LBF NFOR WLR OUR REFERENCE

pool
rMSE:
SSIM:

60 spp (45.5 s)
0.01592
0.941

32 spp (48.3 s)
0.00109
0.959

32 spp (101.1 s)
0.00228
0.975

32 spp (52.5 s)
0.00049
0.978

32 spp (46.2 s)
0.00035
0.983

65536 spp

conference
rMSE:
SSIM:

48 spp (50.2 s)
0.4718
0.596

32 spp (53.8 s)
0.0039
0.946

32 spp (106.5 s)
0.0054
0.936

32 spp (55.3 s)
0.0055
0.936

32 spp (50.7 s)
0.0030
0.948

65536 spp

sanmiguel
rMSE:
SSIM:

140 spp (357.3 s)
0.05639
0.583

128 spp (418.1 s)
0.00483
0.897

128 spp (415.8 s)
0.00310
0.920

128 spp (370.7 s)
0.00345
0.898

128 spp (356.2 s)
0.00309
0.916

65536 spp

sibenik
rMSE:
SSIM:

28 spp (45.0 s)
0.02097
0.817

16 spp (44.6 s)
0.00079
0.962

16 spp (103.9 s)
0.00064
0.962

16 spp (47.3 s)
0.00106
0.947

16 spp (45.1 s)
0.00058
0.975

65536 spp

Fig. 11 Comparisons of our approach (OUR) to LD, LBF, NFOR and
WLR. At the bottom of the images we give the number of ray sam-
ples per pixel (spp), rendering time in seconds, rMSE and SSIM values.
OUR and WLR methods produce better results in motion blur regions
in the “pool” scene due to adaptive sampling. OUR and LBF methods
preserve shadow edge in the second row of “pool” and “conference”
scenes due to the visibility feature. The results of OUR method in the

first row of “conference” scene highlight the benefits of removing spike
noise. OUR, LBF and NFORmethods preserve the small direct shadow
details in “sanmiguel” scene because of the absence of the visibility fea-
ture. OUR and NFOR methods produce outputs largely free of artifacts
in out-of-focus regions of “sanmiguel” and “sibenik” scenes because of
the efficiency of feature prefiltering

123



Adaptive rendering based on robust principal component analysis 561

In summary, we ascribe our improvements over the pre-
vious state-of-the-art algorithms to removing spike noise,
feature prefiltering and estimating pilot bandwidth. The local
linear estimator is sensitive to spike noise. Removing spike
noisemakes the local linear estimator to reduce the estimated
bias, but our method does not entirely rely on removing spike
noise. Removing outlier and feature prefiltering can reduce
the MSE of the local linear estimator since it requires nearly
noise-freeweights.Our pilot bandwidth estimation also plays
an important role in improving image quality and reducing
computational overhead of estimating optimal bandwidth.

Adaptive rendering methods based on auxiliary features
generate suboptimal results when the auxiliary features have
low correlations with the color image at low sampling rate.
This is also the limitation of our method, we want to make
further improvement on this. Another limitation is that we
do not extend our method to handle animated images, but we
can employ similar approach presented by Moon et al. [21]
to handle animations.

8 Conclusions

We have presented a method based on the RPCA to effi-
ciently denoise images with diverse MC effects. We utilize
the RPCA as a pre-processing step to decompose spike noise
from noisy image. We filter the auxiliary features leveraging
the patch-based propagation filter. We use the robust PCA
to reduce dimensionality in high-dimensional feature space
and apply SVD to project that space into a local, reduced fea-
ture space. We also introduce a novel approach to estimate a
per-pixel pilot bandwidth derived from KDE. We adopt the
local linear estimator to compute the value of each pixel. In
sum, decomposing spike noise, feature prefiltering, reduc-
ing dimensionality by the RPCA, estimating pilot bandwidth
and direct light source visibility features make our method
have significant improvements in terms of both numerical
error and visual quality compared to the previous state-of-
the-art. In addition, many regression techniques in statistics
are useful for reconstructing high-quality image, especially
for multivariate regression. Whether estimating bandwidth
for each feature, which needs high computational overhead,
will improve denoising efficiency is unexplored. We would
like to investigate if there is an efficient way to do this.
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