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Abstract Uncertainty is inevitable in scientific simulations.
As the increase in computing power, ensemble data have been
generated for multiple variables. Uncertainty has become
a great challenge to the analysis of variable associations
for multivariate ensemble data, as the variable associations
are very complex and diverse among different ensemble
members. In this paper, we propose a novel visualization
method to present the uncertain associations between a ref-
erence variable and the associated variable for multivariate
ensemble data. Considering the huge scale of original ensem-
ble data, Gaussian mixture model (GMM) is exploited to
quantify the uncertainty and represent the original data com-
pactly. To reveal the spatial uncertainty of the reference
variable, a GMM-based method for extracting uncertainty
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isosurface is proposed and shows the accuracy advantage
over Gaussian-based method. Meanwhile, a data reduction
method is proposed to enhance the performance of extracting
uncertainty isosurface. By mapping the values of the associ-
ated variable onto the uncertainty isosurface of the reference
variable, a syncretic rendering method is proposed to show
the variable associations intuitively. Besides, the screen space
accumulating strategy is introduced to present the uncertain-
ties of the associations. Furthermore, we provide a switchable
view for users to obtain the credibility of variable associ-
ations. The credible associations can assist users to make
reliable decisions. For the regions with not credible associ-
ations, the detailed information of the associations in every
ensemble member can be explored through animation for
further analysis. The effectiveness of our method is demon-
strated by synthetic, climate and combustion data sets.

Keywords Uncertainty visualization - Gaussian mixture
model - Uncertainty isosurface - Variable associations
analysis

1 Introduction

When performing complex scientific experiments or simu-
lations, uncertainty is inevitable and affects the analysis of
scientific data in many applications. At present, the most
common method for reducing the influence of this kind of
uncertainty is producing ensemble data, which performs a set
of simulations with different model parameters. Ensemble
data are often multivariate, such as climate data and Weather
Research and Forecasting (WRF) data that both have sev-
eral variables. The analysis of variable associations plays
an important role in understanding the multivariable data.
The variable associations of single-value multivariate data

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-017-1359-8&domain=pdf
http://orcid.org/0000-0001-8006-4845
http://dx.doi.org/10.1007/s00371-017-1359-8

532

H. Zhang et al.

sets have been well studied [1,2]. However, most of the cor-
relation visualization methods still ignore the uncertainty.
Actually, uncertainty is very necessary to be considered for
the visualization and analysis of variable associations in
ensemble data, because different simulations in ensemble
data can result in different association patterns between two
variables. Moreover, the opposite conclusions can even be
drawn when the difference between the association patterns
of different ensemble members is very large. Therefore, it
is difficult to make reliable decisions from the complex and
uncertain association patterns.

Due to the spatial heterogeneity, different spatial regions
usually lead to different association patterns, and it is nec-
essary to visualize the relationship patterns in space. This
means that the associations need to be presented together
with the intrinsic spatial information. However, this results in
difficulties when showing the uncertainty information since
a new visual dimension is usually needed. Therefore, how
to visualize and analyse the uncertain associations between
different variables in ensemble data is a non-trivial problem.

To address this challenging problem, in this paper, we
propose a novel visualization method that can effectively
analyse the uncertain associations between a scalar value of
a reference variable and the associated variable in uncertain
field. The associations between the specific scalar values and
variables are usually very concerned by scientists. To show
the spatial uncertainty of the scalar value of the reference
variable, uncertainty isosurface where the scalar value may
exist is extracted. Compared with visualizing the whole vol-
ume space, uncertainty isosurface can usually denote some
salient features or interesting regions. To understand the asso-
ciations between the reference variable and the associated
variable, the uncertain values of the associated variable are
mapped onto the uncertainty isosurface of the reference vari-
able. Then, the associations between different variables of
ensemble data can be intuitively recognized. Furthermore,
uncertainty measurement is utilized to evaluate the credibil-
ity of the variable associations for different regions. For the
credible regions, scientists can make predictions directly. For
the regions with not credible associations, animation is pro-
vided for scientists to explore the variable associations of
each ensemble member in detail.

For the representation of uncertainty in ensemble data,
modelling distributions for each point using the values in
different simulations is a prevalent method in recent years.
Generally, each point in ensemble data is considered as a
random variable. Then, the discrete scalar values can be
represented by a Probability Density Function (PDF) con-
tinuously. Gaussian distribution [3—5] has been widely used
in uncertainty visualization for science and engineering sim-
ulations, due to its fast computation with little space cost.
However, for some fields that the data do not conform to
Gaussian naturally, more flexible models need to be utilized
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to better fit the distributions. Some nonparametric models
such as histogram and Kernel Density Estimation (KDE)
have been used [6-8]. However, since the space costs of
nonparametric models are huge, these methods cannot be
applied for large-scale data sets. GMM is arelatively compact
parametric model that can fit a wide range of distributions
and has been used for uncertainty volume rendering [9].
Hence, GMM is exploited in this paper to represent the
uncertainty of both the reference variable and the associated
variable.

For the extraction of uncertainty isosurface, we propose a
method inspired by the Probabilistic Marching Cubes (PMC)
method proposed by Pothkow et al. [10]. The advantages of
PMC are that it can quantize the uncertainty by crossing prob-
ability values and make the uncertainty isosurface more accu-
rate through considering spatial correlation as well. However,
this method uses Gaussian to model the distributions, which
cannot be applied to all kinds of data sets. Furthermore, PMC
method is of low efficiency for large-scale data sets, because
it uses a time-consuming algorithm for all the data serially.
In this paper, on the basis of preserving the advantages of
PMC, we model the uncertainty information with GMM to
get more accurate results for synthetic and real ensemble
data sets. To address the performance issue, a data reduction
method is suggested to significantly decrease the processed
data size and the parallel algorithm is designed to improve
computation efficiency. Hence, our method is capable of
extracting the uncertainty isosurface for large-scale data
sets.

For mapping the associated variable onto the uncertainty
isosurface of the reference variable, we propose a syncretic
rendering method to integrate the uncertainty information of
the reference variable and the associated variable. The uncer-
tain values of the associated variable are blended using the
screen space accumulating strategy [9]. The opacity of trans-
fer function is set as the crossing probabilities of the reference
variable. In this way, the regions where the associations more
likely to exist are highlighted, and users will be able to eas-
ily identify the important association patterns through visual
perception. This screen accumulating view can provide an
overview of the variable associations.

For the exploration of variable associations, a switchable
view composed of a mean view and a standard deviation view
is provided to help users interactively observe the variable
associations and their corresponding credibility. Animation
is provided to understand the details of ensemble members in
the regions with relatively uncertain associations. The effec-
tiveness and usefulness of this approach is demonstrated by
analysing three multivariate ensemble data sets.

In summary, the contributions in this work are threefold:

1. We propose a data reduction method for extracting the
uncertainty isosurface. Through the data reduction and
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parallel implementation, uncertainty isosurface can be
extracted for large-scale data sets efficiently.

2. Multidimensional GMM considering spatial correlation
is exploited in the extraction of uncertainty isosurface
to improve the accuracy of uncertainty isosurface. Com-
pared with Gaussian, GMM can better conform to the real
distributions of simulations. The uncertainty isosurface
extracted by the GMM-based method is more accurate
and reliable than the uncertainty isosurface extracted by
Gaussian-based method.

3. We propose a visualization method to present variable
associations in multivariable uncertain field. The general
association patterns among different ensemble members
can be intuitively shown, which provides scientists an
overall understanding of the variable associations. The
credibility of the associations can be shown at the same
time, which can help scientists draw reliable conclusions
in scientific experiments. The associations that are not
credible enough can be further analysed by browsing the
associations among different ensemble members.

The rest of this paper is organized as follows: firstly, the
related research works are summarized in Sect. 2. Then, the
overview of methods and the workflow are given in Sect. 3.
The details of our methods are demonstrated in Sects. 4, 5
and 6. Results are illustrated in Sect. 7. The selections of
isovalues, the parameters setting, the performance and the
evaluation of our method are discussed in Sect. 8, followed
by the conclusion and future work in Sect. 9.

2 Related work
2.1 Uncertainty quantification

The uncertainty caused by the different results of multiple
runs in an experiment can usually be represented by prob-
ability density function statistically [11,12]. As a concise
model, Gaussian model was generally used in the uncer-
tainty visualization for diverse applications [3-5]. However,
for those simulations that do not fit Gaussian distribution, the
accuracy of these methods will decrease. Liu et al. [9] took
advantage of GMM which can compactly model relatively
complex distributions to summarize the large ensemble data
for volume visualization. Pothkow and Hege [7] compared
the effects of the nonparametric models with Gaussian when
extracting the uncertainty isocontours, including empirical
distribution, histogram and kernel density estimation. Non-
parametric models were observed with good feasibility for
various data sets. However, the storage costs are expensive.
To balance the accuracy and storage cost, GMM is exploited
in this paper to represent the uncertainty in the ensemble data.

2.2 Visualization of uncertainty

Uncertainty visualization is one of the most challenging top-
ics in scientific visualization. Uncertainty will bring troubles
to the visualization, especially for 3D or higher dimensional
data sets. This is because the uncertainty information usually
needs to be encoded by another visual dimension. Various
visualization methods have been proposed to show the uncer-
tainty. In 1997, Pang et al. [12] summarized the early methods
of uncertainty visualization. In recent years, the visualization
of uncertainty has been concerned by increasing number of
researchers. The up-to-date overviews of uncertainty visual-
ization given by Bonneau et al. [13] and Brodlie et al. [14]
described the taxonomy of uncertainty and the state-of-the-
art visualization techniques.

Animation has been utilized to convey the uncertainty in
several works [15—17]. Regions with high frequency of vari-
ations usually have high uncertainties and should be further
explored. However, the flickers can exist in different parts
of the image. Therefore, it is not easy to catch the overall
uncertainty in ensemble data.

In order to overcome the limitations of animation, Hengl
[18] encoded the uncertainty using HIS colour space, in
which the luminance was determined according to the uncer-
tainty. However, HIS colour space has too few available
colours to encode the variations in detail. For this issue,
high dynamic range (HDR) volume rendering was used by
Dinesha et al. [19] for uncertainty visualization. Liu et al.
[9] presented a screen space integration technique to show a
fuzzy rendering result that took uncertainty into account.

Taking advantage of opaqueness is another effective way
to demonstrate the uncertainty. In the works of Pothkow et
al. [10,20], the positional uncertainty of isosurface was con-
veyed by combing the opaque isosurface of the ensemble
mean with the ray-casting result of uncertainty isosurface.
Glyph [21,22] is commonly used to encode the uncertainty
information, because it can show the multiple information
simultaneously. Recently, Hao et al. [23] utilized glyph-based
visualization to visually compare the data across multiple
ensemble members and explore the temporal ensemble data
sets.

In this paper, we introduce the screen space integration
scheme [9] and propose a transfer function setting strategy
to give an overview of the associations between different
variables among all ensemble members.

2.3 Uncertainty isocontouring

Extraction of uncertainty isocontours is an effective way to
visualize the uncertainty features. Approaches of uncertainty
isocontouring can be classified to the value uncertainty and
the positional uncertainty [14]. The value uncertainty is often
indicated by combing the mean contour with the metaphor
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of uncertainty. The positional uncertainty usually shows the
possible positions where contours may exist. Sanyal et al.
[24] described an uncertainty ribbon, the mean contour lines
with thickness, to indicate the uncertainty. A probability-
based method of extracting uncertainty isocontours was
proposed by Pothkow and Hege [20]. This method assumed
that the voxels are independent of each other, but this often
does not conform to the real case. By further considering
the correlation in the data, more reliable uncertainty isosur-
faces have been obtained in ensemble data sets [10,25]. These
methods are all based on Gaussian distribution. Athawale et
al. [8,26] analysed the positional uncertainty of the isocon-
tours using nonparametric models. Nevertheless, the storage
cost is huge, and the computation complexity is relatively
high. In this paper, we propose an efficient GMM-based
method which can support the analysis of nearly arbitrary
ensemble data sets with low memory cost.

2.4 Visualization of variable associations

Analysis of variable associations is an essential task in the
visualization of multivariate data. Gosink et al. [27] mapped
a correlation field onto an isosurface to explore multivari-
ate data sets. Guo et al. [28] designed a multidimensional
transfer function, which could intuitively show the associa-
tions between different variables, through embedding scatter
plots projected by multidimensional scaling (MDS) into the
parallel coordinates plot (PCP). Biswas et al. [29] proposed
an exploration framework for multivariate data by utilizing
the metrics in information theory. Their method can anal-
yse the relationship between the scalar value of a selected
variable and another variable. Recently, informativeness and
uniqueness metrics were introduced by Liu and Shen [30]
to measure the information flow and explore the associations
between scalar values of different variables. Zhang et al. [31]
proposed a correlation metric for the voxels in multivariate
time-varying data. In their work, the correlation patterns have
been revealed by considering the time-varying trend of mul-
tiple variables and the information of spatial correlation.

However, the above works are focused on the single-value
multivariate data. For ensemble data, only the spatial corre-
lations between voxels were studied by Pfaffelmoser et al.
[32] while studies on visualization methods of associations
between different variables of ensemble data are rare. In our
work, the uncertainty of variable associations is considered
and is analysed through several views.

3 Overview
In this section, we provide an overview of our approaches.

In order to analyse the uncertain associations between the
selected reference variable and an associated variable, we
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extract uncertainty isosurface of the reference variable and
colour it with uncertain values of the associated variable.
For the reference variable, the uncertainty isosurface is
extracted to get the regions focused by users. According to
the user’s interest, the isovalues can be selected in the field
of ensemble mean for reference variable. In order to consider
the spatial correlation for extracting uncertainty isosurface,
every 8 adjacent points in a cube are taken as a cell. For
each cell of the reference variable, multidimensional GMM
is used to model the distributions of ensemble members.
Through Monte Carlo sampling, the probability of crossing
the isosurface for each cell can be obtained. To enhance the
performance, we perform a data reduction that can cut the
cells have zero or very little probabilities of crossing the iso-
value. For the associated variable, per-voxel GMM is used
to model the distribution of ensemble members. Through
Monte Carlo sampling based on GMM and our syncretic
rendering method, the screen accumulating view presents the
overview of uncertainty associations between the associated
variable and the reference variable’s scalar value. To support
the in-depth analysis of uncertain associations, we provide a
switchable view composed of the mean field and the standard
deviation field for the associated variable on the uncertainty
isosurface to observe the credibility of the variable associa-
tions. Furthermore, animation is utilized to reveal the details
of uncertainty information. Through the proposed methods,
the variable associations in uncertain field and the credibility
of the associations can be intuitively shown. The workflow
of the uncertainty visualization for variable associations is
presented in Fig. 1.

4 Uncertainty quantification

Since GMM can approximate most of distributions in a
compact way, we exploit it to quantify the uncertainties of
ensemble data. For the reference variable, we use GMM to
model the multidimensional distribution of each cell, and
further compute the crossing probability for each cell using
Monte Carlo sampling. For the associated variable, GMM
is used to fit the distribution of each voxel and colour the
uncertainty isosurface of the reference variable by Monte
Carlo integrating in screen space.

Gaussian mixture model is a commonly used parametric
probabilistic model. It is composed of several Gaussian dis-
tribution components combined through a linear weighted
sum to approximate the entire distribution. The PDF approx-
imated by GMM with K components is defined as:

K
p) =Y N (x|, ), ey
i=1

in which u; and X; denote the mean and covariance matrix
for each component i and m; is the weight of compo-
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nent i. Usually, expectation—maximization (EM) algorithm
is exploited to compute these parameters. Given the ini-
tial parameters, a value of the likelihood function can be
computed, and the parameters can be updated iteratively.
Iterations are stopped when the parameters maximize the
likelihood function.

A good initialization of parameters can accelerate the iter-
ating process of EM algorithm. A common-used initialization
method is using the fast K-means algorithm to divide the data
into K clusters in advance. Then, the mean and covariance
matrix of each cluster’s data are used as the initial parame-
ters of each Gaussian component. The number of data in each
cluster is used to compute the initial weight of each compo-
nent. Performing the initialization for multiple times can also
avoid trapping in local optimum during the computation of
EM algorithm.

GMM is a compact and effective way to model almost
arbitrary distributions. Compared with Gaussian, GMM can
better fit the complex multimodal distribution, which is
illustrated in Fig. 2. As a compact form, GMM stores a dis-
tribution with only K x 3 parameters for univariate data, and
the storage cost is significantly reduced by comparing with
the original ensemble data.

In order to best fit GMM with the real distributions using
least storages and computation time, Bayesian information
criterion (BIC) is employed to determine the number of com-
ponents. BIC can evaluate the performance of the model
for fitting the data distribution. The lower BIC score means
that the model better approximates the data distribution with
lower possibility of over-fitting. The BIC scores are com-
puted for GMM with different component numbers from 1
to 4 in the pre-processing, and perform GMM fitting with
the component number corresponding to the minimum BIC
score.

5 Extraction of uncertainty isosurface

In this section, we present the extraction of uncertainty iso-
surface for the reference variable. Since ensemble data are

very large and the computations will be time-consuming,
we first describe the data reduction of the reference vari-
able according to the isovalue for increasing the efficiency.
Then, we describe how the uncertainty is modelled by multi-
dimensional GMM and present the computation of crossing
probability field. Finally, the results of our method are com-
pared with the results of the ensemble mean and PMC method
[10] using a synthetic data set.

5.1 Data reduction

We define that the ensemble volume data have m ensem-
ble members and each ensemble member has n voxels. The
sizes of spatial dimensions are, respectively, Dim,, Dim,
and Dim;. Similar to PMC [10] method, the 8 neighbouring
points in a cube is built as a cell. Obviously, ensemble data
have a large data size that is usually difficult to be loaded
in memory directly. Moreover, the multidimensional GMM
fitting for all the cells is also a relatively time-consuming
process. Therefore, data reduction of the original ensemble
data is necessary to accelerate the computation process fun-
damentally.

By comparing the given isovalue vjs, with the data values
in each cell, we cut the cells that are impossible to intersect
with the uncertainty isosurface. For ease of exposition, if the
cell meets the constraint conditions, we reserve it and call
it a valid cell. Those cells that can be reduced are called as
invalid cells.

Two judgements are proposed to identify the valid cells.
Firstly, the value range Repsemble between the maximum value
and minimum value of all ensemble members in a cell is
used to test whether the cell is certainly reserved. For the
cell whose value range contains the isovalue, it is directly
reserved as a valid cell. However, the ensemble members can-
not represent all the possible cases of ensemble data; hence,
the valid cells filtered only by Repsemble cannot cover all the
cells that the isosurface might cross. For the cell whose value
range does not contain the isovalue, if the isovalue locates in
arange that is wider than Repsemble, it should also be seen as
a valid cell.
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Fig. 3 Four possible cases that a cell will be reserved

To increase the accuracy of data reduction, the three sigma
rule is introduced to further judge the validity of the inde-
terminate cells. The three sigma rule is that for a variable
that accords with normal distribution, approximately 99.7%
of the values locate in the three standard deviations of the
mean. The values outside the range of three sigma can be
regarded as anomalies. It is a common way to identify the
abnormal values for a normal distribution in statistics. If the
isovalue locates in the range [« — 30, u+30 ] of acell, the cell
will be reserved. Otherwise, the cell will be cut. Through the
three sigma rule, most of the cells ignored by the value range
Rensemble Will be reserved. Moreover, the cells with very low
crossing probabilities caused by the abnormal values can also
be removed.

All in all, a cell will be reserved only if the isovalue
is between the maximum value and the minimum value or
locates in the range of three sigma. As shown in Fig. 3, the
cell is reserved if the isovalue vjg, locates in the ranges rep-
resented by the yellow bars, and the value range of ensemble
members can be extended in the cases ‘a’, ‘b’ and ‘c’ by
introducing the three sigma rule.

Usually, a large amount of cells can be reduced, because
the valid cells of uncertainty isosurface usually occupy a
small part of the original data. According to the experiments,
for most cases, over 70% of all the cells can be reduced. Com-
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pared with the method of processing all the original cells, the
efficiency of our method is highly increased.

The accuracy of the data reduction method is tested on
multiple data sets, through comparing the filtered valid cells
with the cells that have nonzero crossing probabilities com-
puted by original data. More than 85% of the cells with
nonzero crossing probabilities can be reserved. Moreover, all
those lost cells have very low crossing probabilities. If more
accurate results are required, the range [u — 5o,  + 50] can
be used to get a more accurate result with a relatively lower
simplification rate. The accuracy rates and the simplification
rates of the experiments are listed in Sect. 8.2.

The per-cell GMM modelling and the extraction of uncer-
tainty isosurface are performed only for the valid cells. The
crossing probabilities of those invalid cells are set to O in the
probabilistic crossing field.

5.2 Uncertainty isosurface

After the data reduction, the BIC value is computed for each
valid cell using the number of Gaussian components vary-
ing from 1 to 4. Then, the number of Gaussian components
accorded with the minimum BIC value is recorded for each
cell. The number of ensemble members is m2, thus each corner
point in a cell can be regarded as a random variable that has
m values. Multidimensional GMM is modelled for each valid
cell based on the joint distribution of all ensemble members
on its 8 corner points. This means that the 8 corner points
are considered as 8 variables, and therefore, the weights, the
mean vectors and the covariance matrices for each cell are
obtained through GMM fitting. In this way, the correlation of
the 8 adjacent voxels in the cell is contained in the covariance
matrix of each Gaussian component in GMM.

Since the potential uncertainty information is very diffi-
cult to be represented by the limited m ensemble members,
Monte Carlo sampling is carried out for each cell based on
the multidimensional GMM. Similar to PMC method [10],
each sample of a cell will be determined whether the isosur-
face cross the cell using symmetry-reduced marching cubes
method. As illustrated in Fig. 4, only if vjs, is bigger than
the maximum value or less than the minimum value, the cell
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@ Point value bigger than isovalue
O Point value smaller than isovalue

Total 254 cases

Fig. 4 TIllustration of crossing judgement

is consider as not crossing with the isosurface. So long as
the isovalue locates in the value range of the sample values
for the cell, the cell is regarded as intersecting with the iso-
surface. This judgement is simple, but it is accurate enough
for the extraction of uncertainty isosurface in data with high
resolution.

Different from the PMC method that serially performs the
Monte Carlo sampling based on Gaussian, our method uses
GMM and implement the process in parallel to obtain higher
accuracy and higher efficiency. Since GMM in each cell has
different Gaussian components, it is difficult to handle each
cell with the same operation in the parallel implementation.
To address this issue, the Monte Carlo sampling is performed
for each Gaussian component in GMM with the same sam-
pling number and obtains the final crossing probability by the
weighted sum of the crossing probabilities for each Gaussian
component. Given N samples for each Gaussian component,
the crossing probability p for a cell is computed as:

ZiK:l TTini

P=="y (2)
in which K is the component number of GMM, x; and m;,
respectively, denote the weight and the crossing number of
component i. Algorithm 1 explains the process of comput-
ing the crossing probability for each cell. After all the cells
are processed, the probabilistic crossing field is obtained to
quantize the uncertainty. The whole process of our method
is illustrated in Fig. 5. Volume rendering can be utilized to
show the crossing probability field.

5.3 Comparison with PMC
A synthetic ensemble data set is exploited to demonstrate

the advantage of the GMM-based method over the ensemble
mean and the Gaussian-based method (PMC). The synthetic

Algorithm 1 Computing Crossing Probability for Each Cell
by Crossing Judgement and Monte Carlo Integration

Input: Sample number N , GMM composed of K components and
isovalue v;g,
Output: Crossing probability of the cell
1: For each Gaussian component i from 1 to K of GMM, do:
1.1 Initialize the crossing number m; of component i into 0 and
current step count S into 0.
1.2 Compute the value range R of the 8 values in the current
sample.
1.3 If the isovalue falls in the range R , then add 1 to the crossing
number m; .
1.4 Update step count S with S + 1.
1.5 If current step count S is little than N, then to step 1.2.
2: Compute the crossing probability of the cell according to Equation
2.
3: Algorithm end.

ensemble data are built based on the formula v(x, y,z) =
(cos (7x) + cos(7y) + cos(7z))e *>4 where d =
Vx2 + y2 4 72 [10]. Four Gaussian noises are added onto
the formula to generate ensemble members. The means of
Gaussians are shifted symmetrically around 0, and the vari-
ances are constant. Sixteen samples are generated for each
Gaussian noise, and 64 ensemble members with resolution
128 x 128 x 128 are obtained.

In the experiment of this synthetic ensemble data, the iso-
value is set as 0.01215. Figure 6 illustrates the results of the
ensemble mean, the Gaussian-based method and our GMM-
based method for conveying the positional uncertainty of
isosurface. The isosurface of the original synthetic data (com-
puted by the formula) is presented in Fig 6a as the ground
truth. Through comparing Fig. 6b with Fig. 6a, it is observed
that the ensemble mean expresses little uncertainty and may
lose important features, such as the connectivity of isosur-
face (displayed by the partial detail view on right). As shown
in Fig 6c, d, distribution-based method can convey wider
positional uncertainty of the isosurface.

Although the Gaussian-based method can present where
the isosurface might exist, the corresponding probability val-
ues over the uncertainty isosurface are inaccurate. Gaussian
distribution always has the highest probability density in the
mean value but relatively lower probability densities for the
values far from the mean. Hence, for the PMC method, the
crossing probabilities are always the highest in the regions
near the location of mean isosurface while lower as the posi-
tions are far away from the mean isosurface. As shown in the
detailed view in Fig. 6¢, the fuzzy outer regions of uncertainty
isosurface indicate smaller crossing probabilities.

However, according to the added noises, the distribution
for ensemble members of the cell in this synthetic data has
relatively high probability densities for the values far from
the mean. Hence, the true probability values in the outer
regions of uncertainty isosurface should be higher than those
computed by the PMC method. As for our approach, GMM
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Fig. 5 Process of extracting
uncertainty isosurface

Ensemble Data of

Fig. 6 Comparison of uncer-
tainty isosurfaces for synthetic
data with isovalue 0.01215
extracted by the ensemble mean,
Gaussian-based method and
GMM-based method. a Ground
truth  isosurface of original
synthetic data. b Isosurface of
ensemble mean. ¢ Uncertainty
isosurface extracted by PMC
method. d Uncertainty isosur-
face extracted by GMM-based
method

can precisely describe this kind of distributions and provide
more reliable results. Compared with Fig. 6¢, the uncertainty
isosurface in Fig. 6d is clearer in the regions far from the
isosurface of the ensemble mean and describes the crossing
probabilities more accurately. Therefore, compared with the
Gaussian-based PMC method, the GMM-based method can
compute the probability field more precisely.

6 Visualization of variable associations

Generally, variable associations can be revealed by mapping
the values of the associated variable to the isosurface of the
reference variable. However, data uncertainty causes great
difficulties in the visualization for ensemble data, because
the variable associations of ensemble data are uncertain on
space and also have different patterns among the ensemble
members. In this section, we describe the visualization of
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variable associations between the reference variable and the
associated variable, which takes uncertainty into account.
To reveal the variable associations, we present a syncretic
rendering method that maps the uncertain values of the
associated variable onto the uncertainty isosurface of the
reference variable. The screen space Monte Carlo integrat-
ing strategy [9] is introduced to obtain an overview of the
variable associations. Moreover, standard deviation of the
associated variable is used to quantify the credibility of vari-
able associations. Through using the syncretic rendering
method, we also provide a switchable view and anima-
tion to explore the variable associations and the contained
uncertainty.

6.1 Syncretic rendering

To handle the uncertainty of the associated variable, per-
voxel GMMs are used to model distributions for the ensemble
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Fig. 7 Process of variable associations visualization

members of the associated variable’s voxels that are corre-
sponding to the cells with nonzero crossing probabilities.
Then, more samples are generated based on the per-voxel
distributions.

Considering the spatial uncertainty, the isosurface-
crossing probabilities of the reference variable are used as the
opacity and the values of the associated variable are used as
the colour in transfer function to realize syncretic rendering.
In this way, regions with higher opacities are emphasized to
present more certain variable associations, whereas the posi-
tions with lower opacities show variable associations with
less confidence and are visually weakened.

Considering the value uncertainty, the screen space Monte
Carlo integrating strategy [9] is introduced to accumulate the
syncretic rendering results of all the samples of the associated
variable in screen space. This screen accumulating view is
an uncertainty-aware image and can give users the overview
of the uncertain variable associations. The volume rendering
result of samples’ mean will lead to strong colour contrast that
may give users an incorrect visual classification of the uncer-
tainty positions, whereas the uncertainty-aware result of the
screen accumulating view can give users a more authentic
recognition of the uncertain variable associations. The ren-
dering process of the screen accumulating view is illustrated
in Fig. 7.

Through this screen accumulating view, the association
between the isovalue of the reference variable and the val-
ues of the associated variable can be generally revealed. If the
association is complex, the colours of the visualization result
are chaotic. If the colours of the visualization result are rela-
tively consistent, an explicit association can be deduced. The
credibility of the association patterns in uncertain field can
be measured by the standard deviation values of the samples.

6.2 Uncertainty exploration

We provide users the switchable view and animation to
support further explorations of the uncertain variable asso-
ciations. The switchable view is made up by the mean view
and the standard deviation view. The mean view maps the
samples’ mean of the associated variable onto the uncer-
tainty isosurface and can support the interactive observation
of the general variable associations. Since the result of screen
accumulating view does not directly present the strength of
uncertainty for the associated variable, standard deviation is
utilized to measure the uncertainty of the associated variable.
The standard deviation values for all samples of the associ-
ated variable are mapped onto the uncertainty isosurface of
the reference variable. Then, this standard deviation view
combines the positional uncertainty of isosurface for the ref-
erence variable with the value uncertainty of the associated
variable. Through the standard deviation view, users can rec-
ognize the credibility of the associations in different regions.
For the reference variable, the regions with high opacity can
be seen as credible, because these regions have more pos-
sibilities to contain the specific isovalue. For the associated
variable, the regions with low standard deviation values can
be considered as credible, because the associations change
very little on these regions among the samples of the ensem-
ble members.

Generally, the credible associations should have low
uncertainty for both variables. Users can draw reliable con-
clusions from these credible associations. For those regions
with low credibility, animation is exploited to reveal the
details of data variation among ensemble members of the
associated variable. Through browsing the rendering result
of each sample and focusing on the regions with not cred-
ible associations, users can detailedly understand the inner
associations between different variables.

7 Results

In this section, we show the results obtained by our method
in visualizing the uncertain associations between different
variables, through three data sets.

7.1 Synthetic data set

In this case study, synthetic ensemble data are used to illus-
trate the effect of visualizing different association patterns
and their corresponding credibility. The reference variable is
generated as mentioned in Sect. 5.3. Since the uniform pat-
tern and the confusion pattern are two typical cases focused
by scientists, the other two artificial variables are generated to
show the different association patterns. The associated vari-
ables have the same data size as the reference variable and
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64 ensemble members. To present the confused association
pattern, the volume spaces of the associated variables are
divided into blocks with uniform resolution 43, and the val-
ues of data points in the same block are randomly generated
from the same value range, whereas the data values in adja-
cent blocks are sampled from different value ranges. When
creating the first associated variable Var1, data values are
generated from range [0, 50] and [500, 550] for adjacent
blocks alternately, and thus data of ensemble members in
adjacent blocks have different means and similar variances.
Whereas, for the second associated variable Var2, random
numbers are produced, respectively, from range [—25, 25]
and [—400, 400] for adjacent blocks, thus data of ensemble
members in adjacent blocks have similar means and diverse
variances.

After the data reduction with range [ — 30, u + 30], we
compute the uncertainty isosurface of the reference variable
as shown in Fig. 6d. Then, through the syncretic rendering,
the screen accumulating views and the standard deviation
views that display the different association patterns and dif-
ferent credibility patterns are generated as shown in Fig. 8.

Since the values of the ensemble members for Var1 have
big differences over space, it is observed from Fig. 8a that
the screen accumulating view of Var1 has confused colours.
Hence, it can be inferred that Var1 is chaotic over the uncer-
tainty isosurface, and this pattern usually corresponds to
some complex phenomena in scientific data sets, such as sim-
ulations of combustion and climate. As shown in Fig. 8b, the
colours in the standard deviation view are uniform, and the
standard deviation values are relatively low. This means that
values of Var1 are stable among the ensemble members, so
the associations presented in Fig. 8a are credible enough for
users to draw conclusions. Besides, the regions marked by the
yellow circles, respectively, in Fig. 8a, b have low opacities,
so the variable associations have relatively low probabilities
to exist in these regions.

The screen accumulating view of Var2 is shown in Fig. 8¢
where the colours are consistent. The standard deviation view
of Var2 is shown in Fig. 8d where the standard deviation
values are distributed over the uncertainty isosurface chaoti-
cally. This means that for different regions of the uncertainty
isosurface, the credibility of associations is different, though
the means for the samples of the associated variable are sim-
ilar. For the regions with high standard deviation values, the
complex information existed among ensemble members of
the associated variable is not presented in the screen accumu-
lating view as shown in Fig. 8c. This means that the variable
associations shown in these regions are relatively not credible
and need to be further explored by users. The associations on
the regions with low standard deviation values can be consid-
ered as credible. Therefore, the proposed method is capable
of presenting various kinds of variable associations and their
corresponding credibility.
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7.2 Climate data set

In this case study, we explore the variable associations in a
climate data set which can be constructed as ensemble data.
As we know, climate generally changes with the period of
one year. Therefore, the climate of the same month in differ-
ent years can be seen as the ensembles of a climate model.
In this paper, the ECMWF ERA-20C data sets (http://www.
ecmwf.int/en/research/climate-reanalysis/era-20c) is used.
We combine the data of 31 days in May as a volume data. The
data of 111 years (from 1900 to 2010) are adopted to analyse
the uncertain associations between different variables. There-
fore, 111 ensemble members with resolution 360 x 181 x 31
are formed.

We choose the sea surface temperature (SST) as the ref-
erence variable, and the mean sea level pressure (MSLP) is
chosen as the associated variable. These two variables are
both important factors used to analyse the climate changes,
such as El Nino phenomenon [33]. In order to explore the
associations between these two variables in different geo-
graphical positions, we choose —24,000 and 18,000 as the
isovalues for SST to get the uncertainty isosurfaces that
are, respectively, located on cold polar regions and tropi-
cal regions. Figure 9a shows the volume rendering result of
SST in year 1982. Since SST values change with the lat-
itude in space, the uncertainty isosurface of SST —24,000
only occupy a little volume space as shown in Fig 9b and
the simplification rate of data reduction can be more than
90%. Figure 9c, d, respectively, show the results of valid
cells for isovalue —24,000 after the data reduction using
range [ — 30, u + 30] and range [ — 50, i + 50]. Com-
pared with Fig. 9a, a large amount of data has been reduced.
Even so, the reserved data can cover the uncertainty isosur-
face extracted without data reduction as shown in Fig. 9b.
Therefore, our method of data reduction can highly enhance
the performance of extracting the uncertainty isosurface and
meanwhile guarantee the accuracy of uncertainty isosurface.
The accuracy rate and simplification rate are discussed in
Sect. 8.

As shown in Fig. 9b, the uncertainty isosurfaces of iso-
value —24,000 are situated in the cold Polar Regions. By
performing syncretic rendering, the screen accumulating
view as shown in Fig. 10a is generated to show the overview
patterns of associations between SST and MSLP. Compared
with the mean view in Fig. 10b, the screen accumulating view
shows more uncertainty information of MSLP. An interesting
result can be observed in Fig. 10a that the MSLP values are
relatively low in the regions of the South Pole, but are high in
the Arctic Ocean region. Furthermore, the MSLP values dis-
tribute consistently in the Arctic Ocean region but distribute
chaotically over the uncertainty isosurface in the South Pole.
It can be inferred that regions of the Arctic Ocean are rel-
atively homogeneous for MSLP and regions of the South
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Fig. 8 Results of synthetic data
set. a Screen accumulating view
of Varl . b Standard deviation
view of Varl. ¢ Screen accumu-
lating view of Var2 . d Standard
deviation view of Var2

Fig. 9 Effect of data reduction.
a Volume rendering result for
year 1982 of SST. b Uncer-
tainty isosurface of SST with-
out data reduction when isovalue
is —24,000. ¢ Reserved data
(112,416 cells) after data reduc-
tion with range [u — 30, u+30].
d Reserved data (165,192 cells)
after data reduction with range
[ — 50, u+50]
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Fig. 10 Results of MSLP and
SST with isovalue —24,000. a
Screen accumulating view. b “1 -
Mean view. ¢ Standard deviation
view. d Query result of the cred-
ible associations in mean view
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Pole are relatively inhomogeneous for MSLP, when SST is
—24,000. However, the inferring may be inaccurate, if the
uncertainties of MSLP are high in the regions.

Therefore, we analyse the credibility of the variable asso-
ciations through the standard deviation view. As shown in
Fig. 10c, strong variations of ensemble members in the uncer-
tainty isosurface of the South Pole region can be recognized,
especially for the regions marked by the red box, whereas the
values of MSLP in the Arctic Ocean region are stable. This
means that MSLP values of the Arctic Ocean region are not
strongly affected by the climate changes over a long period
of time. Through analysing the uncertainty, the conclusion
can be drawn that the association pattern presented on the
Arctic Ocean is more credible than the association pattern
presented on the South Pole.

For those regions with high uncertainty, the detail infor-
mation in the ensemble members can be further explored
through the animation. Fig. 11 presents several frames of the
animation for the uncertain regions marked by the red box
in Fig. 10c. It is not hard to see that the association patterns
change strongly among these frames.

To obtain the regions with relatively credible variable
associations, we provide a query function. We perform the
query that standard deviations are less than MinVar + 0.4
(MaxVar — MinVar), where MinVar and MaxV ar are,
respectively, the minimum value and the maximum value of
standard deviations. The query result of the mean view is
shown as Fig. 10d, in which the regions of the Arctic Ocean
are extracted.

We also explore the associations between SST and MSLP
with isovalue 18,000. The simplification rate of data reduc-
tion for isovalue 18,000 is also more than 90%. Figure 12a
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shows the uncertainty isosurface of isovalue 18,000 that is
located on tropical regions. As shown in Fig. 12b, the accu-
mulation values of MSLP are relatively high and are consis-
tently distributed over the uncertainty isosurface. Compared
with the mean view in Fig. 12c, the screen accumulating
view is an uncertainty-aware result that has more meaningful
colours. From Fig. 12d, it can be observed that the standard
deviation values are low and consistent, and therefore, the
association pattern presented in Fig. 12a is relatively cred-
ible. Therefore, the variable associations that MSLP values
are high when SST value is 18,000 can be certainly obtained.

Through comparing the results of isovalue —24,000 with
isovalue 18,000, we can know that different geographical
locations can have different variable associations and differ-
ent credibility.

7.3 Combustion data set

In this case study, we use a turbulent combustion simu-
lation data that has 120 time steps with the resolution of
240 x 360 x 60. Non-Gaussian noise with mean of 0 is added
on the original values to generate 56 ensemble members for
each variable in each time step, using the original values as
ensemble mean. We apply our method to this turbulent com-
bustion simulation data to analyse the uncertain associations
between different variables across space and time.

The mixture fraction (MIX) and the heat release rate (HR)
are, respectively, selected as the reference variable and the
associated variable, because these two variables are very rel-
evant. The mixture fraction denotes the ratio of fuel and
oxidants, which usually indicates the regions of flame. The
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Fig. 11 Six frames of the ani-
mation for the regions with high
uncertainty when the reference
variable SST is about —24,000
and the associated variable is
MSLP

Fig. 12 Results of MSLP and
SST with isovalue 18,000. a
Uncertainty isosurface of SST.
b Screen accumulating view. ¢
Mean view. d Standard deviation
view

0

heat release rate can denote the quantity of heat released dur-
ing the combustion in unit time.

We perform data reduction for isovalue 0.96 using range
[u — 50, u 4+ 501, and the simplification rate is 82.65%. By
using the case of isovalue 0.96, we compare the uncertainty
isosurface extracted by our method with the uncertainty iso-
surface extracted by PMC method. The isosurface of the
original data is shown as Fig. 13a, which is very irregular
and complex. This isosurface can be regarded as the ground
truth. The distribution of the ensemble members in a voxel is
shown as the histogram in Fig. 13b, which is a non-Gaussian
distribution. As shown in Fig. 13b, Gaussian approxima-
tion has higher probability densities than GMM in the value
range (marked by the skyblue boxes) that is near the mean of
the voxel but lower probability densities in the value range
(marked by the yellow boxes) that is far from the mean of
the voxel. The uncertainty isosurfaces extracted by Gaussian
and GMM are, respectively, shown as Fig. 13c, d. They are
significantly different in the terms of crossing probabilities.
The Gaussian-based method gets higher crossing probabili-
ties than the GMM-based method in the regions marked by

-=
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gl

Tropical Regions
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8216.08
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the skyblue circles but relatively lower crossing probabilities
in the regions marked by the yellow circles.

Since the mean of the noise distribution is zero, the mean
of the ensemble members in each voxel is approximately
equal to the original data value. Due to the spatial similarity
that values are similar in the adjacent space, the means of
the skyblue circle regions near the isosurface of ground truth
are close to the isovalue 0.96. Therefore, the Monte Carlo
sampling based on the distribution approximated by Gaus-
sian will lead to more samples near the isovalue and higher
crossing probabilities than GMM, which does not conform
to the real distribution of ensemble members. Meanwhile,
the sampling based on GMM can obtain more samples in the
value ranges marked by the yellow boxes in Fig. 13b. For
the yellow circle regions that are far from the isosurface of
ground truth, the value ranges are relatively far from the mean
value of the voxel and can be near the isovalue. Therefore,
our GMM-based method obtains higher crossing probabili-
ties than Gaussian-based method for the regions marked by
the yellow circles.
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Fig. 13 Comparison of uncer-
tainty isosurfaces of combus-
tion data with isovalue 0.96
extracted by the Gaussian-based
PMC method and our GMM-
based method. a Ground truth
isosurface of original data. b
PDFs of Gaussian fitting and
GMM fitting for the ensemble
members of a voxel. ¢ Uncer-
tainty isosurface extracted by
PMC method. d Uncertainty iso-
surface extracted by our method

Fig. 14 Results of MIX and HR
with isovalue 0.96 and 0.40 in
time step41. a Screen accumulat-
ing view of isovalue 0.96. b Stan-
dard deviation view of isovalue
0.96. ¢ Screen accumulating view
ofisovalue 0.40. d Standard devi-
ation view of isovalue 0.40

As it is observed in Fig. 13b, GMM better approximates
the distribution than Gaussian; therefore, the crossing prob-
ability field computed by our method is more accurate than
PMC method. If the distribution of ensemble members can-
not be fitted accurately, the computed crossing probabilities
will have large errors, especially for the serried and complex
isosurfaces.

In order to illustrate the different association patterns
across space, we explore the cases of isovalues 0.96 and 0.40
in time step 41. Figure 14a presents the screen accumulating
view of isovalue 0.96 and relatively high HR values uni-
formly locate on the regions of the uncertainty isosurface of
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MIX, which means MIX value 0.96 is usually correspond-
ing to high HR values and the reactions are weak in these
regions. However, in Fig. 14c, relatively diverse colours can
be seen over the uncertainty isosurface with isovalue 0.40.
This means that complex reactions are occurred in this region.
At the same time, these two association patterns have rela-
tively high credibility, because standard deviation values are
relatively low as shown in Fig. 14b, d.

To illustrate the variations of associations between dif-
ferent variables in the time series, we explore the variable
associations with isovalue 0.40 among time step 41, 61 and
81. As shown in Fig. l4c, green regions appear around the
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Fig. 15 Results of MIX and HR
with isovalue 0.40 in time step 61
and 81. a Screen accumulating
view in time step 61. b Screen
accumulating view in time step
81. ¢ Mean view of the query
result in time step 61. d Mean
view of the query result in time
step 81

medial edges in time step 41, which is similar to the result
of time step 61 in Fig. 15a. However, the association pattern
changes in time step 81. As shown in Fig. 15b, the result of
the accumulating view for time step 81 has rare green regions.
This means that the values of heat release rate have generally
increased in time step 81 when MIX is about 0.40, which
means more violent reactions are happening. As shown in
Fig. 15¢, d, through the query of green regions, it is observed
that the query result of time step 81 has less green regions
and lower opacities. This shows the decrease in green regions
more clearly.

8 Discussion

Our method provides an effective way to visualize the uncer-
tain associations between different variables by the extraction
of uncertainty isosurface and screen space accumulating
method. Compared with the previous methods of visualiz-
ing variable associations, our method takes into account the
uncertainty and reveals the credibility of variable associa-
tions. In this section, we present the selection of isovalues,
the choice of parameters, the performance of our method and
the evaluation of our method.

8.1 Selection of isovalues

If the users already have some knowledge of the data set,
they can select the isovalues according to their knowledge or
interest. Besides, users can explore the different isovalues in
the field of ensemble mean and select multiple isovalues of
interest in advance. We compute the uncertainty isosurfaces

of these isovalues together. For data reduction, it is worth
mentioning that computations of the value range, mean and
standard deviation for each cell only need to be carried out
once for these isovalues. Moreover, GMM modelling of the
common valid cells for different isovalues can also be per-
formed only once. Therefore, the pre-processing overhead
for multiple isovalues is not much more than the case for
processing only one isovalue. Users can interactively vary
the isovalues of interest among the group of isovalues in
the exploration of uncertainty isosurfaces. The methods for
selecting isovalues can be further studied.

8.2 Parameters setting

In this section, we firstly discussed the influence of different
sampling number in the process of both extracting uncer-
tainty isosurface and the syncretic rendering.

In order to accurately compute crossing probabilities, the
sampling number should be large in the extraction of uncer-
tainty isosurface. We test our method with different sampling
number of 500, 1000, 2000, 4000 and 8000. Although little
differences can be visually observed when sampling number
is larger than 1000, the precisions are higher in the condi-
tions of more samples. For the rendering of the associated
variable, at least 300 samples are generated for each voxel.
Smoother screen accumulating view can be obtained as the
sampling number increases. This can present the contained
uncertainty information more accurately.

Secondly, we discuss the selection of the discrimination
rule used in the data reduction. According to our experiments
for multiple data sets and isovalues, range [ — 30, i + 307]
is sufficient for most cases. Nearly, non-difference between
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Table1 Simplification rates and

accuracy rates for data reduction Data sets Isovalue Range Simplification rate (%) Accuracy rate (%)
of different data sets Synthetic data 0.01215 1=+ 30 84.43 100
xS0 75.29 100
Climate data —24,000 =+ 30 94.2 89.98
n=x5c 91.48 99.97
Combustion data 0.96 n=E 30 86.38 85.96
J7R==Ted 82.65 93.71
the results computed by the original data and the result is 0 == Syt Daa
obtained after the data reduction using range [ — 30, u + *1 Combustion Data +

30 ]. We also evaluate the effectiveness of our data reduction
numerically. The simplification rate ry are computed as:

Cinvalid
ry = ————

3)
Can

where Cinvalia denotes the number of invalid cells after data

reduction and Cyy is the number of all cells in the original

data. For the accuracy rate r, of data reduction, we define it

as:

ry = N Creserved (4)
NCan

where N Cleserved denotes the number of the valid cells with

nonzero probabilities that are computed using data reduction

and N C; is the number of all cells with nonzero probabilities

that are computed based on the original data.

Table 1 lists the simplification rate and accuracy rate for
different data sets with specific isovalues. The simplification
rate is usually high and depends on the selection of isovalues.
For synthetic data and climate data, relatively high accuracy
rates can be reached. In combustion data, since the uncer-
tainty isosurface with isovalue 0.96 of MIX is very complex,
the accuracy rate of range [© — 30, u 4 30] is 85.96%. By
range [t — 5o, u+ 507, the accuracy rate can reach 93.71%.
Actually, an arbitrary range [4 — po, i+ po] can be used to
perform the data reduction according to their requirements.
Generally, the accuracy rate is higher and the simplification
rate is lower when p is higher. Users can select the value of
p according to their requirements.

8.3 Performance

We use 3 data sets to test the performance of our work,
including the extraction of uncertainty isosurface and the
visualization of variable associations. The tests are per-
formed on a desktop computer, with a 3.5GHz Intel Core
i7 CPU, 16GB memory and a NVIDIA GTX 780Ti GPU.
In the implementation of extracting uncertainty isosur-
face, due to the huge data scale and the high computational
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Fig. 16 Performance of extracting uncertainty isosurface with differ-
ent sampling numbers. Cyan line denotes the performance of synthetic
data set with isovalue 0.01215. Pink line denotes the performance of
climate data set with isovalue —24,000. Black line denotes the perfor-
mance of combustion data set with isovalue 0.96 in time step 41

complexity of per-cell GMM modelling (include the compu-
tation of BIC values), a pre-processing needs to be performed
to reduce data and model GMM only for the valid cells. The
computation time is greatly saved for a specific isovalue.

After the pre-processing, we can obtain the GMM param-
eters of weights, means and lower triangular covariance
matrices. To accelerate the computation, CUDA is utilized
to parallelize the sampling and the computation of crossing
probabilities based on each independent cell. Every time, we
maintain two layers of data along the z-axis (forming one
layer of cells) storing in memory and transfer these cells’
parameters of GMMs to GPU. The result of each sample
is computed in a thread. We record the time for computing
the crossing probability field using Monte Carlo integrat-
ing on GPU. Its performance is determined by the Gaussian
component numbers of each layer along the z-axis and the
threads number. Figure 16 displays the performance in the
conditions of different sampling numbers and the same thread
number. In Fig. 16, the numbers of valid cells for synthetic
data, climate data and combustion data are, respectively,
248,078 (992,312 Gaussian components), 113,828 (444,356
Gaussian components) and 878,146 (2,634,438 Gaussian
components). As the sampling number increases, the run-
ning time increases slowly unless the cases of 8000 samples
for all three data sets.
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iizl:llfngnggrgﬁgfifgf Sll\/g:g Data sets Isovalue Variable N. T(s)
visualization of variable associ- - gyniheric data 0.01215 Varl 248,078 9.35
0.01215 Var2 248,078 9.49
Climate data —24,000 MSLP 113,828 7.22
5000 MSLP 112,271 7.52
18,000 MSLP 143,939 8.68
Combustion data 0.40 HR(TIMEA41) 2,008,995 29.865
0.40 HR(TIMEG1) 3,138,213 44.651
0.40 HR(TIMESI) 4,386,690 60.507

For the visualization of variable associations, the compu-
tation of GMM modelling for the ensemble members in a
voxel is relatively fast. We perform GMM modelling and the
sampling for the associated variable on-line and accelerate
the computation with OpenMP. The sampling number and
the size of uncertainty isosurface can affect its performance.
The computation times of GMM modelling and sampling for
different data sets are demonstrated in Table 2, in which N,
is the number of cells contained in the uncertainty isosurface
and T is the computation time of GMM modelling and sam-
pling. The number of samples is 500 for all three data sets. In
animation, the per-frame volume rendering is accomplished
in real time.

8.4 Evaluation

To evaluate the effectiveness of our visualization method
for analysing the variable associations, we have performed a
task-oriented user study with 11 graduate students, including
6 females and 5 males. The climate data set has been used in
the user study.

The tasks are as follows:

Taskl. Identifying the variable associations between the
uniform pattern and the confuse pattern over the
whole space;

Identifying the general association pattern and cred-
ibility for a given region;

Searching for the regions with specific general asso-
ciation patterns;

Searching for the regions with relatively high or low
uncertainty;

Obtaining the detail information among ensemble
members for a region with not credible associations.

Task2.
Task3.
Task4.

Task5.

After a brief explanation to our method and the tasks, the
subjects completed the tasks and evaluated the efficiency and
usability of our method. For Task! and Task2, all the subjects
can provide the right answers in real time through the screen
accumulating view. As for Task3 and Task4, all the subjects

perform the queries for at least 3 times to get the required
regions. With regard to Task5, some subjects pointed out that
the information presented by animation cannot be received
very well. They hope that other visualization techniques can
be added, such as glyphs.

After summarizing all the questionnaires, it can be found
that most of the subjects consider that our method is relatively
efficient and is useful to analyse the variable associations for
multivariate ensemble data. However, some subjects think
that the rendering of association patterns can be further
improved for a better visual perception.

9 Conclusion and future work

In this paper, we focus on the analysis of multivariate ensem-
ble data and have presented an effective approach to visualize
the uncertain associations between different variables in
ensemble data. To accurately and compactly represent the
uncertainty, GMM is exploited to model the distribution of
ensemble members. Based on the GMM representation, we
first extract the uncertainty isosurface of a reference vari-
able to get a salient uncertainty feature. The probabilistic
crossing field is obtained to quantify the uncertainty of the
feature through Monte Carlo sampling. To effectively reveal
the uncertain associations between different variables, the
syncretic rendering technique is applied to combine the asso-
ciated variable with the probabilistic crossing field of the
reference variable. Through utilizing the screen space Monte
Carlo integrating strategy, we can obtain the general pattern
of variable associations in the multivariate ensemble data.
Besides, we provide the switchable view and animation to
present the credibility of variable associations and further
convey the uncertainty contained in the variable associations.
In the switchable view, the standard deviations of per-voxel
samples for the associated variable is computed to show
the credibility of the associations, by combining the spatial
uncertainty of the reference variable and the value uncertainty
of the associated variable. Query operation is supported to
search for the regions with specific association patterns or
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credibility. Animation can support the further observation of
those regions with high uncertainty and the recognition of
unlikely or abnormal cases.

One limitation of our methods may be that only the asso-
ciation between two variables can be visualized at the same
time. Actually, our method can be extended by mapping the
correlation values of two other variables onto the uncertainty
isosurface, which needs a new correlation metric suitable for
ensemble data. We leave it to the future work.

Since scientists may not have an entire knowledge of the
data sets, another limitation of our work is that the effec-
tive selection criterions of significant variables and isovalues
are absent. In the future, we plan to give users a better rec-
ommendation for the selection of significative variables and
isovalues.

About the visualization of variable associations, more
deep analyses can be further performed. Due to the anal-
yses of unlikely cases are important for discovering some
interesting association patterns, new visualization tools can
be further developed to detect and analyse the unlikely cases
in the future. Besides, new rendering methods will also be
studied to reveal the uncertainty in deep level.
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