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Abstract Human action recognition from videos is a chal-
lenging task in computer vision. In recent years, histogram-
based descriptors that are calculated along dense trajectories
have shown promising results for human action recognition,
but they usually ignore motion information of the track-
ing points, and the relationship between different motion
variables is not well utilized. To address this issue, we pro-
pose a motion keypoint trajectory (MKT) approach and
a trajectory-based covariance (TBC) descriptor, which is
calculated along the motion keypoint trajectories. The pro-
posed MKT approach tracks motion keypoints at multiple
spatial scales and employs an optical flow rectification algo-
rithm to reduce the influence of camera motions and thus
achieves better performance than the improved dense tra-
jectory (IDT) approach well known in the literature. In
particular, MKT is faster than IDT, because MKT does not
need to use human detection and extracts fewer trajecto-
ries than IDT. Furthermore, the TBC descriptor outperforms
the classical histogram-based descriptors, such as the His-
togram of Oriented Gradient, Histogram of Optical Flow
and Motion Boundary Histogram. Experimental results on
three challenging datasets (i.e., Olympic Sports, HMDB51
and UCF50) demonstrate that our approach is able to achieve
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better recognition performances than a number of state-of-
the-art approaches.

Keywords Human action recognition · Motion keypoint
trajectory · Optical flow rectification · Trajectory-based
covariance descriptor

1 Introduction

The past few years have witnessed a great success of social
networks and multimedia technologies, leading to the gener-
ation of vast videos. Therefore, it is increasingly important
to design automatic approaches for analyzing video contents.
Among all these studies, human action recognition is one of
the most attractive research directions, as it has extensive
applications in video retrieval, video surveillance, human–
computer interaction, and so on.

Recently, local spatial–temporal descriptors with the
classical Bag-of-Words (BoW) model have shown high
action recognition performance. In particular, histogram-
based descriptors, which are calculated along dense tra-
jectories [35], obtain promising results for human action
recognition. Based on these low-level descriptors, a number
of approaches [14,26,36,40] further promote the recogni-
tion performance. Although impressive progresses in human
action recognition are achieved by recent studies, it is still
challenging to recognize human actions from realistic videos
owing to complex background, camera motion, view angle
variation, etc.

In general, previous studies ignore themotion information
of the tracking points and the relationship between differ-
ent motion variables. To address these issues, we propose
the motion keypoint trajectory (MKT) and trajectory-based
covariance (TBC) descriptor, which can be utilized as the
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Fig. 1 An overview of the proposed system

basis of high-level algorithms for action recognition sys-
tems. After the extraction of local descriptors, the vectors
of a video are separately encoded into a video-level sig-
nature vector by Fisher Vector (FV) model [29] for each
descriptor, and then linear Support Vector Machine (SVM)
[10] is utilized to classify actions. Extensive experiments
are carried out to evaluate our approach on three challeng-
ing datasets, including Olympic Sports [25], HMDB51 [18]
and UCF50 [28]. The experimental results demonstrate that
TBC is able to achieve better performances than the classi-
cal histogram-based descriptors (i.e., HOG [7], HOF [20]
and MBH [8]), and the proposed MKT outperforms the
state-of-the-art approaches of dense trajectory (DT) [35] and
improved dense trajectory (IDT) [37]. An overview of the
proposed system is shown in Fig. 1, and the major contribu-
tions of this work are summarized as follows.

– The proposed MKT approach tracks motion keypoints at
multiple spatial scales and dispels the influence of camera
motions by an optical flow rectification approach.

– Unlike other covariance-based descriptors, the proposed
TBC descriptor is formulated along trajectories and can
be clustered or classified in the Euclidean space by uti-
lizing the Log-Euclidean Riemannian metric [1].

Note that a preliminary investigation of TBC descriptor
has been made in our previous work [38]. This work is dif-
ferent from [38] in the following aspects.

– The TBC descriptor is extracted along motion keypoint
trajectories,which are better than the previousmethod for
action recognition, and the dimension of TBC is further
reduced as described in Sect. 4.3.

– We propose three hypotheses about the selection of
covariance variables and perform experiments to vali-
date these hypotheses in Sect. 5.3. Experimental results
demonstrate that our selection offers a good trade-off
between speed and accuracy.

– We provide more detailed description about the TBC
descriptor and verify our method on more challenging
dataset for action recognition.

The rest of this paper is organized as follows: Section2
gives an overview of the related works. Section3 describes
the MKT approach in detail. The TBC descriptor is elabo-
rated in Sect. 4. The experimental results and discussion are
reported in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Related work

During the past decade, human action recognition has
attracted a lot of attentions in the computer vision commu-
nity. A number of researchers focus on this challenging topic.
Readers are referred to [4,9,34] for comprehensive surveys of
human action recognition techniques. In the next subsections,
we only focus our discussion on the studies that investigate
human action tracking techniques and local spatial–temporal
descriptors.

2.1 Human action tracking

Owing to the wonderful ability of capturing local motion
information, trajectory-based approaches have been shown
to be very efficient for video representation. Messing et al.
[24] used dense clouds of Kanade–Lucas–Tomasi feature
tracker for action recognition. Sun et al. [31] proposed a
dense long-duration trajectory extraction scheme.Wang et al.
[35] designed the dense trajectory (DT)model,which tracked
dense sampling points by optical flow at multiple spatial
scales. Wu et al. [40] improved the DT approach by a tem-
poral pyramid model and latent SVM. To address the camera
motion problem, Wang and Schmid [37] improved the DT
method by explicitly estimating camera motions. With an
excellent human detection algorithm, the improved dense tra-
jectory (IDT) method obtained state-of-the-art experimental
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results. In [15], the performance of DT was promoted by
compensating camera motions, where the 2D affine motion
model was utilized to calculate the affine flow vector, and
the compensated flow was obtained by removing the affine
flow vector from the optical flow vector. The performance of
IDT was further promoted by utilizing the spatial–temporal
pyramid and spatial FV in [36].

As opposed to these existing human action tracking tech-
niques, the key distinctions of our tracking strategy are given
below. First, we consider both salient and motion informa-
tion when selecting tracking points. This sampling scheme
ensures a good trade-off between computational complexity
and performance. Second, the sampled motion keypoints are
tracked by dense optical flow at multiple spatial scales, and
four local descriptors (i.e., HOG, HOF, MBH and TBC) are
employed to depict trajectories. Furthermore, we explore the
potential of the approach of Vector Field Consensus (VFC)
[23] as a robust pointmatching technique andpropose aVFC-
based optical flow rectification algorithm to eliminate the
influence of camera motions. In particular, the VFC-based
approach obtains good performance without utilizing human
detection, which is usually computationally expensive.

2.2 Local spatial–temporal descriptors

The local spatial–temporal descriptors have been shown
to be excellent for capturing the intrinsic characteristic of
human actions. To represent the detected events, Laptev
[19] proposed a scale-adapted space-time interest points
(STIP) descriptor. Willems et al. [39] proposed a dense
spatial–temporal feature detector. A combination of time-
series representation was introduced in [16]. To encode the
temporal information, a temporal sparse representation was
proposed in [41]. Based on the Laban movement analysis
model, a 3D descriptor was proposed in [32]. To capture
the structural information, Li et al. [22] proposed a cumu-
lative probability histogram descriptor. Among all local
spatial–temporal descriptors, the histogram-based descrip-
tors (i.e., HOG [7], HOF [20] and MBH [8]) which were
calculated along dense trajectories [35] obtained excellent
performances. Unlike histogram-based descriptors, Tuzel et
al. [33] introduced covariance matrix as region descriptors
and achieved excellent performance on object detection and
texture classification. Then, the covariance-based descriptors
were utilized in other fields [13,27]. For action recognition,
Guo et al. [13] proposed a covariance-based descriptor to
depict videos. Bilinski and Bremond [3] proposed the Video
Covariance Matrix Logarithm (VCML) descriptor based on
pixel-level appearance features to recognize actions. In addi-
tion to the above descriptors, there are also high-level features
based on low-level descriptors such as [5,6]. To recognize
human activities, Brendel and Todorovic [5] represented
videos by spatiotemporal graphs, and four types of 10-bin

histograms were utilized as the low-level descriptors. In [6],
the temporal structures of the trajectory components were
employed for action recognition, and the trajectory-based
descriptors were used as the low-level features.

Unlike the existing spatial–temporal descriptors, the key
characteristics of the proposed TBC descriptor are given
below. First, the TBC descriptor is formulated along trajec-
tories and does not need to utilize action segmentation or
background subtraction.TheTBCdescriptor canbe extracted
with different tracking strategies, e.g., DT and IDT. Second,
motion variables (i.e., the derivations of dense optical flow)
are employed as covariance variables, and experiments are
performed to select suitable variables for action recogni-
tion. Finally, with the Log-Euclidean metric, the matrices
of TBC descriptor are projected to the Euclidean space.
Extensive experiments demonstrate that the TBC descriptor
obtains better performances than a number of state-of-the-art
trajectory-based descriptors.

3 Proposed motion keypoint trajectory

In this section, we introduce the major components of the
proposed MKT approach, including sampling and tracking,
optical flow rectification and trajectory descriptors.

3.1 Sampling and tracking

The first step of MKT is to select tracking points. In gen-
eral, salient points represent more information than points in
homogeneous regions. Because the approach of speeded-up
robust features (SURF) [2] provides a fast keypoint detec-
tor and can obtain excellent results on keypoint matching,
we utilize the SURF detector to detect keypoints. Given a
point P = (x, y) in a frame, H(x, y) is the Hessian matrix
at P . If the determinant of H(x, y) is larger than a given
salient threshold Ths, then P is selected as a candidate track-
ing point.

To well obtain the motion information of human actions,
it is important to select the points which are moving as time
goes on. For each frame, we compute its dense optical flow
w = (u, v), where u and v are the horizontal and ver-
tical components of the dense optical flow. Given a point
P = (x, y) in a frame, its motion magnitude is defined as

M(x, y) =
√

(u|x,y)2 + (v|x,y)2, where u|x,y and v|x,y are
the horizontal and vertical motion value at (x, y). In general,
themotionmagnitudes of background points are smaller than
the mean motion magnitude of a frame because foreground
points are usually fewer than background points which are
often static. As shown in Fig. 2, themagnitudes ofmost back-
ground points are smaller than themeanmotionmagnitude of
a frame. Since the background points have less contribution
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Fig. 2 Histograms of the motion magnitude and corresponding frame.
a Motion magnitude histogram for a frame. b Corresponding frame
where the white regions are those with the motion magnitude larger
than the mean magnitude

Fig. 3 Comparison between a the proposed motion keypoint sampling
and b dense sampling

to action recognition, we compute the adaptive threshold of a
frame as Thm = M , where M is the mean motion magnitude
of this frame.

For a point P = (x, y), if M(x, y) > Thm and
|H(x, y)| > Ths, then P is selected as a tracking point.
A comparison between the dense sampling strategy and the
proposed motion keypoint sampling strategy is illustrated
in Fig. 3, where the white regions are those with the motion
magnitude larger thanThm , and the red points are the selected
trackingpoints. InFig. 3b, the points are densely sampledon a
grid spaced by 5 pixels as the same as in [35]. The experimen-
tal results in Sect. 5 further demonstrate that MKT extracts
fewer but more salient trajectories than IDT, since themotion
keypoint sampling strategyobtains fewer butmore significant
points for tracking than the dense sampling strategy.

In order to obtain scale-invariant features, the sampling
points are projected to multiple spatial scales, and the spatial
scales are decreased by a factor of

√
2. The max number of

spatial scales is set to 8, and the size of each spatial scale
must be larger than that of the space region, which is defined
in Sect. 3.3. After the dense optical flow is calculated, these
points are individually tracked with optical flow at each spa-
tial scale. Given a point Pm:t = (xm:t , ym:t )T in the spatial
scale layer m of frame It , its tracked position in the same
layer of the subsequent frame is calculated as

Pm:t+1 = (xm:t , ym:t )T + (K · ωt )|(xm:t ,ym:t )T , (1)

where (xm:t , ym:t ) is the coordinate of the given point at
scale m of frame It , K is the 3 × 3 median filter, and ωt

is the 2-channel optical flow matrix of frame It . In particu-

lar, the matrix ωt is first split into its horizontal and vertical
components, and then, they are separately smoothed by the
3× 3 median filter. To realize these functions, we utilize the
OpenCV1 toolbox.

3.2 Optical flow rectification

In realistic videos, the static background may become
dynamic via camera motions; therefore, human actions may
be confused by these motions. Previous researches utilize
the 2D affine motion model [15] or the homography estima-
tion with RANSAC [37] to avoid this confusion. In order to
address this issue, we rectify the current frame before calcu-
lating dense optical flow. Because the global motion between
two consecutive frames is usually small, we assume that two
consecutive frames are related by a perspective transforma-
tion as formulated as

[
xt
yt

]
∼ M

⎡
⎣
xt−1

yt−1

1

⎤
⎦ , (2)

whereM is a 2×3 perspective transformation matrix. Then,
the key step of optical flow rectification is to find the per-
spective transformation matrixM. To obtain matched points
for computing M, we employ two complementary strate-
gies including optical-flow-based matches and SURF-based
matches. First, the SURF keypoints are matched between the
current frame It and its previous frame It−1 by brute-force
descriptor matcher. Second, the Shi and Tomasi [30] corner
points are detected in each frame, and the matched points
are calculated by dense optical flow. To reduce the computa-
tion complexity, we reuse the dense optical flow and SURF
keypoints, which have been calculated during sampling and
tracking.

Due to the complexity of unconstrained videos, there
are usually a large number of false matches. To establish
robust matches between points in consecutive frames, the
VFC algorithm [23] is utilized to filter out the false matches,
which is an efficient algorithm to establish robust correspon-
dences between two sets of points. Because SURF-based
and optical-flow-based matches represent different types of
matches, we separately filter out the outliers by VFC. After
the false matched points are filtered out, a normalized direct
linear transform is applied to calculate the perspective trans-
formation matrix M. Then, the current frame is rectified by
Eq. (2), and the warped frame I ′

t is generated. Finally, the
Gunnar Farneback algorithm [11] is utilized to calculate the
dense optical flow between frame I ′

t and It−1.
The effect of the proposed rectification method is visu-

alized in Fig. 4 with two major advantages observed. First,

1 http://opencv.org/.
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Fig. 4 An example of comparison between the original optical flow
and the rectified optical flow. a Visualization of trajectories. b Optical
flow before rectification. c Optical flow after rectification

Fig. 5 Illustration of trajectory-based descriptors. a Trajectories. b A
trajectory with nt = 3

invalid trajectories generated by camera motions can be
removed by the proposed rectification method. Second, the
background movements caused by camera motions are sup-
pressed, and the foreground is enhanced as seen from the
comparison between Fig. 4b and c.

3.3 Trajectory descriptors

In order to well depict the tracking information, four descrip-
tors are calculated along trajectories, including HOG [7],
HOF [20], MBH [8] and the proposed TBC descriptor. The
HOF and MBH descriptors capture the local motion infor-
mation, the HOG descriptor depicts the local appearance
information, and the TBC descriptor represents the relation-
ships between different motion variables. An illustration of
the trajectory-based descriptors is given in Fig. 5.

To utilize the temporal information, a trajectory T = {Gi :
i ∈ [1, nt]} is represented by nt temporal grids. As shown
in Fig. 5b, a temporal grid G = {Ri (N ) : i ∈ [1, ns]} con-
sists of ns space regions, where N is the width and height
of the square space region R aligned with a tracking point.
So the frame number of a trajectory (i.e., trajectory length)
is L = nt × ns. In general, there are small differences
between consecutive frames, so a temporal grid is described
as the average feature vector of each space region within
the corresponding temporal grid. To depict a trajectory, the
descriptor vectors of each temporal grid are linearly concate-
nated according to the time stamp. In practice, we fix nt = 3,
ns = 5 and N = 32. The HOG, HOF and MBH descrip-
tors are computed with the same parameters as used in [37];
then, the final dimensions of HOG, HOF and MBH are 96,

108 and 192, respectively. The detailed information of our
TBC descriptor is introduced in the next section.

4 Proposed trajectory-based covariance descriptor

The proposedTBCdescriptor is calculated along trajectories,
and it can be extracted by different tracking approaches, e.g.,
SIFT tracking [31], DT [35] and IDT [37].

4.1 Description of region

Aswe know histogram-based descriptors obtain state-of-the-
art performances, but they ignore the relationships between
different variables. Because the covariancematrix reflects the
correlation of variables, it is utilized to depict space region.
Let F denote a W × H × d dimensional feature extracted
from dense optical flow where W and H are the width and
height of a frame, d is the number of variables, a mapping
function Φ is defined as

F(x, y) = Φ(u, v, x, y), (3)

where u and v are the horizontal and vertical components
of optical flow. There are many choices about the variables
in function Φ, e.g., partial derivation, motion magnitude and
motion orientation. Given a rectangular region R ⊂ F which
is selected around a tracking point, let {zk, k ∈ [1, S]} be the
d-dimensional feature points inside R; an estimate of the
covariance matrix for R is given by

cov(R) = 1

S − 1

S∑
k=1

(zk − μ)(zk − μ)T, (4)

where S = N × N is the size of region R, and μ is the mean
of feature points.

Because Euclidean operations on covariance matrices
suffer from several shortcomings [1], we utilize a Rie-
mannian metric instead. In general, there are two clas-
sical distance metrics for covariance matrices, including
the affine-invariant Riemannian metric [12] and the Log-
Euclidean Riemannian metric [1]. As analyzed in [1], both
the affine-invariant metric and the Log-Euclidean metric
obtain similar performances, but the Log-Euclidean metric
is much simpler and faster than the affine-invariant metric.
Therefore, we utilize the Log-Euclidean metric to project
covariance matrices to the Euclidean space. Let the sin-
gular value decomposition of a covariance matrix X be
X = UΣVT; the matrix logarithm log(X ) is calculated
as

log(X ) = U · ln(Σ) · VT

= U · diag(ln(λ1), ln(λ2), . . . , ln(λd)) · VT, (5)
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where Σ = diag(λ1, λ2, . . . , λd) is a diagonal matrix of the
singular value of X ; meanwhile, U and V are the orthogonal
matrices. With the covariance matrix and the Log-Euclidean
metric, a space region is represented as a d × d symmetric
matrix.

4.2 Selection of covariance variables

Motion information is important to classify human actions
from videos. A visualization of optical-flow-based variables
is shown in Fig. 6, from which we can discover that both the
horizontal and vertical components of optical flow contain
the motion information of human actions. Furthermore, the
magnitude and orientation of optical flow components and
the corresponding first-order partial derivatives with respect
to x and y (i.e., motion boundaries) also reveal motion cues.

The selection of covariance variables is vital to descrip-
tors based on covariance.We propose three hypotheses about
selecting covariance variables. First, the magnitude and ori-
entation of optical-flow-based variables are effective for
capturing motion information. Second, unlike the first-order
partial derivatives of optical flow with respect to x and y, the
second-order partial derivatives of optical flow with respect
to x and y have few motion cues. Finally, the partial deriva-
tives of optical flow with respect to time have little influence
on action recognition. Massive experiments in Sect. 5.3 have
been performed to verify the aforementioned hypotheses.

Let the magnitude function be defined as mag(x, y) =√
x2 + y2, and the orientation function as atan(x, y) =

arctan(x, y) where arctan(·) is the arc tangent function; we
select the optical-flow-based variables to form the mapping
function Φ as

Φ =
[
x, y, u, v,mag(u, v), atan(u, v),

∂u

∂x
,
∂u

∂y
,

∂v

∂x
,
∂v

∂y
,mag

(
∂u

∂x
,
∂u

∂y

)
, atan

(
∂u

∂x
,
∂u

∂y

)
,

mag

(
∂v

∂x
,
∂v

∂y

)
, atan

(
∂v

∂x
,
∂v

∂y

)]T
, (6)

where x and y indicate the location of the dense optical flow,
u and v are the horizontal and vertical components of the
optical flow. In order, the follow-up optical-flow-based vari-

Fig. 6 Visualization of optical-flow-based variables. a Original frame.
b Optical flow. c Horizontal motion boundaries. d Vertical motion
boundaries

ables include the magnitude and orientation of u and v, the
first-order partial derivatives of u and v with respect to x and
y, themagnitude and orientation of ∂u

∂x and
∂u
∂y , themagnitude

and orientation of ∂v
∂x and ∂v

∂y .

4.3 Covariance description of trajectory

After the covariance matrix is projected to the Euclidean
space, it is further converted to a vector by using its upper
triangular matrix elements. As introduced in Sect. 4.2, the
first and second variables of the covariance matrices X rep-
resent the horizontal and vertical positions, so the elements
ofX(1,1),X(1,2),X(2,1) andX(2,2) are the same in eachmatrix
X . Therefore, these elements are deleted when vectorizing
matrix, and the dimension is shortened to (d(d + 1)/2− 3).
Then, we calculate the mean vector of space regions within
a temporal grid. The final TBC descriptor for a trajectory is
the linear concatenation of these vectors of temporal grids
along the corresponding trajectory.

5 Experimental results

In this section, we report the comparison and analysis of the
proposed MKT and TBC approaches on three challenging
action recognition datasets including Olympic Sports (Olyc-
Spos) [25], HMDB51 [18] and UCF50 [28].

5.1 Datasets

The introductions and experimental protocols for the three
datasets are described in this section. Figure7 shows some
examples from these datasets. We follow the standard eval-
uation protocols by reporting the mean average precision
(mAP) over all classes for OlycSpos and average accuracy
for HMDB51 and UCF50.

The OlycSpos dataset [25] contains videos of different
sports. There are 16 kinds of actions represented by a total of
783 video sequences. We use 649 video sequences for train-
ing and the other 134 sequences for testing. The performance
is evaluated with the mAP over all classes as recommended
in [25].

The HMDB51 dataset [18] is collected from a variety
of sources. There are a total of 6766 videos distributed in
51 action categories. For evaluation, there are three distinct
training and testing splits. We follow the original protocol
using three train–test splits [18] and report average accuracy
over these three splits.

TheUCF50 dataset [28] has 50 action categories and 6618
videos, which are downloaded from YouTube. For all of
these 50 categories, the videos are split into 25 groups. As
suggested in [28], we apply the Leave-One-Group-Out cross-
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Fig. 7 Sample frames from three human action recognition datasets. The top row is from OlycSpos, the middle row is from HMDB51 and the
bottom row is from UCF50

validation experimental setup and report average accuracy
over all classes.

5.2 Experimental setup

In order to classify videos, the conventional approach to
describing a video is to extract feature vectors with low-
level local descriptors. Then, these vectors are encoded into
a high-dimensional video-level signature vector to represent
this video. Among all encoding techniques, the Fisher Vector
(FV) encoding method [29] achieves excellent performances
on image classification and action recognition. According to
this conventional approach, we first extract feature vectors
of TBC and three baseline descriptors (i.e., HOG, HOF and
MBH). In order to fairly compare with DT [35] and IDT
[37], the same parameters are utilized to extract these base-
line descriptors as used in [37].

After feature extraction, the principle component analysis
(PCA) is individually applied to reduce the dimensionality
of these descriptors (i.e., HOG, HOF, MBH and TBC) by a
factor of two as suggested in [29,37], so as to better fit the
diagonal covariance matrix assumption [29]. For each video,
these PCA-reduced vectors are separately encoded into a sig-
nature vector by the FV method [29]. For each descriptor,
we randomly select 256,000 training samples to learn the
PCA projection as suggested in [37], and the Gaussian mix-
ture models (GMM) are, respectively, learned based on these
PCA-reduced vectors. In all experiments, we set the number
of GMM for FV generation to 256 as the same as in [37].

After encoding, each vector is normalized with the signed
square root and �2 normalization. To utilize the spatial–
temporal location information of video contents, we employ
the Spatial–Temporal Pyramid (STP) representation [21] and
divide one video in two temporal parts and three spatial parts
as used in [36].When utilizing STP, we separately encode the
local features in different spatial–temporal grids to obtain the
related FV representations and then concatenate these FVs
with the vector computed over the entire video.

Data augmentation (DA) is an efficient scheme to increase
the amount of training samples, which has been utilized in
image classification [17] and video classification [14]. Based
on the observation that a video and its left–right mirrored
video depict the same human action, we double the amount
of training samples by adding videos obtained by left–right
flipping.

When using multiple descriptors, we utilize early fusion
to linearly concatenate the normalized vectors together. To
achieve the balance of training samples, we weight positive
and negative samples in an inverse manner. In the following
experiments, the standard linear SVM [10] is used with the
penalty parameter C equal to 100, which is the same config-
uration applied in [37].

5.3 Evaluation of parameters

The selection of covariance variables is important for
covariance-based descriptors. To evaluate the aforemen-
tioned three hypotheses discussed in Sect. 4.2, three addi-
tional mapping functions are defined as follows.

Φ1 =
[
x, y, u, v,

∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y

]T
, (7)

Φ2 =
[
Φ,

∂2u

∂x2
,
∂2u

∂y2
,
∂2v

∂x2
,
∂2v

∂y2

]T
, (8)

Φ3 =
[
Φ,

∂u

∂t
,
∂v

∂t

]T
, (9)

where x and y indicate the location of the dense optical
flow, u and v are the horizontal and vertical components of
the optical flow, ∂u

∂x , ∂u
∂y ,

∂v
∂x and ∂v

∂y are the first-order partial
derivatives of u and v with respect to x and y, Φ is the map-
ping function defined in Eq. (6), ∂2u

∂x2
, ∂2u

∂y2
, ∂2v

∂x2
and ∂2v

∂y2
are

the second-order partial derivatives of u and v with respect
to x and y, ∂u

∂t and
∂v
∂t are the first-order partial derivatives of

u and v with respect to time.
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Table 1 Comparison of variable selection on HMDB51

Approach Number Accuracy (%)

TBC with Eq. (7) 8 50.6

TBC with Eq. (6) 14 54.3

TBC with Eq. (8) 18 54.5

TBC with Eq. (9) 16 50.3

To evaluate the performance of different variables, we
calculate the TBC descriptor with the aforementioned four
mapping functions on the HMDB51 dataset. Except the dif-
ference of mapping functions, we fix other parameters to
the default values as described in Sect. 5.2. The comparison
results are listed in Table1. On this dataset, “TBC with Eq.
(6)” achieves better performances than “TBC with Eq. (7).”
This demonstrates that the additional variables in Eq. (6)
including magnitude and orientation of optical flow deriva-
tives promote the performance for action recognition. By
adding four second-order partial derivatives, “TBC with Eq.
(8)” is 0.2% better than “TBC with Eq. (6).” This testifies
that the second-order partial derivatives in Eq. (8) have a few
influence on action recognition. Furthermore, the first-order
partial derivatives of optical flow components with respect to
time in Eq. (9) reduces the performance for action recogni-
tion. In practice, we utilize Eq. (6) as the mapping function
for TBC in the next experiments, because Eq. (6) offers a
good trade-off between computational efficiency and accu-
racy.

To quantify the improvement of the proposed optical
flow rectification (OFR), we employ the techniques of cam-
era motion compensation (CMC) [15] and camera motion
estimation (CME) [37] as the baseline approaches for com-
parison. We implement these baseline approaches with our
proposed method according to [15,37] and select TBC
descriptor to depict trajectories. In particular, we utilize the
publicly availableMotion2D software2 to calculate the affine
flow vector as in [15], use the code of CME and the bounding
boxes of human detection3 provided by [37].

The evaluation results are listed inTable2,whereCMEHD
is the CME approach with human detection. By comparing
“TBC without OFR” and “TBC with CMC,” we find that
the performance of TBC is not improved with CMC, and the
similar results of MBH are also obtained in Table3 of [15].
This may be due to the reason that CMC is not suitable for
descriptors which cancel the constant motion, such as MBH
and TBC. From Table2, we also discover that both CME
and OFR improve the performances of TBC descriptor, and
“TBC with OFR” achieves the best results on these datasets.

2 http://www.irisa.fr/vista/Motion2D/.
3 http://lear.inrialpes.fr/people/wang/improved_trajectories.

5.4 Comparison with baseline descriptors

A number of experiments have been carried out to quan-
tify the improvement obtained by our TBC descriptor as
compared to three baseline descriptors (i.e., HOG, HOF
and MBH). To compare in a fair manner, both TBC and
baseline descriptors are extracted along the proposed MKT
trajectories and employ the same parameters as presented
in Sect. 5.2. The comparison between our TBC descrip-
tor and baseline descriptors is given in Table3, where
“HOG+HOF+MBH” is the method of combining these
three descriptors and “Combined All” is the combination
of the four descriptors (i.e., HOG, HOF, MBH and TBC).
In this experiment, we utilize the early fusion strategy to
directly concatenate vectors of these descriptors before clas-
sification.

As given in Table3, the TBC descriptor outperforms the
other three baseline descriptors, since it captures more infor-
mation of human actions than the baseline descriptors. In
particular, TBC, respectively, obtains 6.9, 16.9 and 6.2%
higher recognition performance than HOG on OlycSpos,
HMDB51 and UCF50. This experiment verifies that the
covariance of optical-flow-based variables along trajectories
is more robust than histogram-based descriptors. Further-
more, the combination of TBC with baseline descriptors
achieves the best performance, which demonstrates that the
TBC descriptor and baseline descriptors complement each
other. Figure8 shows the confusion matrices for combined
descriptors on HMDB51 and UCF50. The errors mainly
occur between classes which are visually similar, like “sword
exercise” and “draw sword” on HMDB51, “Swing” and
“Tennis Swing” on UCF50.

5.5 Comparison with baseline trajectories

Due to the excellent performances obtained by DT [35]
and IDT [37], they are selected as the baseline track-
ing approaches. The default parameters of the baseline
approaches are set as the same as in [35,37]. To obtain
the best performance of IDT, human detection is utilized.
For a fair comparison, the other parameters of both base-
line approaches and MKT are configured as the same as
presented in Sect. 5.2. The combination of the four descrip-
tors (i.e., “Combined All” in Table3) is utilized to evaluate
the performance, and the results are reported in Table4,
where we report the mAP over all classes for OlycSpos [25],
average accuracy over three train–test splits for HMDB51
[18], and average accuracy over all classes for UCF50
[28].

As seen from the results, the recognition performances
of MKT, respectively, outperform DT by 4.8, 5.4 and 3.3%
on the three datasets. As compared with DT and IDT, MKT
obtains the best recognition performance, since MKT tracks
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Table 2 Evaluation of optical
flow rectification

Approach OlycSpos (%) HMDB51 (%) UCF50 (%)

TBC without OFR 83.5 49.4 86.7

TBC with CMC [15] 82.3 48.6 86.4

TBC with CME [37] 86.7 52.2 88.6

TBC with CMEHD [37] 87.8 53.6 88.8

TBC with OFR 89.4 54.3 89.2

Table 3 Comparison of TBC
with baseline descriptors

Approach OlycSpos (%) HMDB51 (%) UCF50 (%)

HOG 82.5 37.4 83.0

HOF 87.6 50.7 87.4

MBH 89.3 53.0 89.0

TBC 89.4 54.3 89.2

HOG+HOF+MBH 92.5 59.2 92.1

Combined all 93.2 60.2 92.8

motion keypoints and utilizes a VFC-based optical flow rec-
tification algorithm to eliminate the influence of camera
motions.

5.6 Computational complexity

To fast calculate the covariance matrices, the integral image
is employed in this work to compute TBC descriptor. As
described in [33], the computational complexity of construct-
ing the integral images is O(d2WH), where d is the number
of covariance variables, W and H are the width and height
in pixel of a video frame. After the construction of integral
images, the TBC descriptor of a region can be calculated in
the complexity of O(d2). So the computation of TBC is fast
owing to the use of integral image.

Toobtain good recognitionperformance, the IDTapproach
uses human detection (HD), while MKT obtains better per-
formances than IDT without using HD. Generally speaking,
the process of HD is time-consuming, so MKT is faster
than IDT with HD. Moreover, we also compare the fea-
ture extraction speed of MKT and IDT without HD and
show the comparison on the HMDB51 dataset in Table5 for
example. In particular, all the experiments are run at a PC
with Intel I7 (3.6GHz CPU) and only a single CPU core is
used.

In Table5, “Total” represents the total number of extracted
trajectories, “Percent” stands for the percentage of valid
trajectories, and the processing speed is reported in frames-
per-second (fps). As observed from the results,MKT extracts
fewer trajectories than IDTwithoutHD since themotion key-
point filter is utilized byMKT, so theMKT approach is faster
than IDT without HD.

Regarding memory consumption, it is mainly determined
by the resolution of videos and the number of extracted

descriptors. In order to quantify the memory requirements,
experiments are performed on a 240 × 320 video with four
descriptors (i.e., HOG, HOF, MBH and TBC) extracted, for
instance. For this video, the maximummemory consumption
required byMKT is about 0.25GB and that of IDT is approx-
imate 0.29GB. The memory requirements of IDT are higher
than those of MKT, because IDT extracts more trajectories
than MKT.

5.7 Comparison with state of the arts

The MKT approach with data augmentation (DA) and
Spatial–Temporal Pyramid (STP) is compared with other
state-of-the-art approaches in Table6, where “A + B” is
the approach combining the techniques of A and B, and
“–” indicates that no available results are reported by the
cited publications. On all of the three datasets, the MKT
approach outperforms other competing methods. As listed
in Table6, most state-of-the-art approaches are based on
STIP [19], DT [35] or IDT [37]. The performance of DT
is improved by utilizing Spatial Fisher Vector (SFV) and
STP in [26]. In [15], the performance of DT is promoted by
CMC andDivergence–Curl–Shear (DCS) descriptor. In [40],
the recognition accuracy of DT is boosted by using Temporal
PyramidModel (TPM) and latent SVM. In [14], two comple-
mentary techniques are proposed to improve the recognition
performance of IDT, including the Subsequence-Score Dis-
tribution (SSD) and Relative Class Scores (RCS). To capture
the structural information, the Cumulative Probability His-
togram (CPH) descriptor is proposed in [22] based on STIP.
The performance of IDT is improved by the Video Covari-
anceMatrixLogarithm (VCML) in [3].As introduced in [36],
the performance of IDT is further improved by utilizing SFV
and STP.
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Fig. 8 Confusion matrices for
combined descriptors on a
HMDB51 and b UCF50
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Table 4 Comparison of MKT with baseline trajectories

Approach OlycSpos (%) HMDB51 (%) UCF50 (%)

DT 88.4 54.8 89.5

IDT 91.2 58.3 92.0

MKT 93.2 60.2 92.8

Table 5 Speed comparison of feature computation on HMDB51

Approach Total Percent (%) fps

IDT without HD 180,987,836 44.8 2.16

MKT 77,457,827 66.9 3.22

As given in Table6, only TBC descriptor achieves promis-
ing results, as all state-of-the-art methods in this table utilize
multiple descriptors and some high-level algorithms (e.g.,
DA, STP and SFV) are used to improve their performance.
From the results in the bottom of this table, our “MKT+DA”
is superior to the MKT approach on three datasets, because
the training samples are doubled. On the HMDB51 and
UCF50 datasets, the method of “MKT+DA+STP” out-
performs the method of “MKT+DA,” but the STP strat-
egy fails to promote the performance on the OlycSpos
dataset. This phenomenon can also be observed by com-
paring the results reported in [36,37]. On the whole,
the experimental results of our approach can be further
promoted by the DA and STP strategies. As we cur-
rently focus on extracting low-level descriptors, the per-
formance of the proposed approach may be further pro-
moted by other high-level strategies, e.g., SFV, SSD and
RCS.

6 Conclusion

In this paper, a new tracking approach MKT is proposed
and a novel descriptor TBC is designed for human action
recognition. The MKT approach tracks motion keypoints
at multiple spatial scales, and the VFC-based optical flow
rectification algorithm is designed to eliminate the influ-
ence of camera motions on action recognition. Experimental
results demonstrate that the proposed MKT outperforms the
baseline approaches (e.g., DT and IDT). In recent years,
many excellent systems utilize the baseline approaches to
extracting trajectory-based descriptors as low-level features
and develop high-level algorithms based on these low-level
features. In order to further improve the recognition perfor-
mance, action recognition systems can utilize MKT instead
of these baseline approaches to extract low-level descriptors
(e.g., HOG, HOF, MBH and TBC).

Regarding TBC, it is based on the covariance matrix
representation of trajectory and captures the linear relation-
ships between the derivations of dense optical flow. Note
that the TBC descriptor can be calculated not only along
MKT trajectories but also other trajectories. The experiments
demonstrate that the TBC descriptor outperforms three clas-
sical trajectory-based descriptors, and these descriptors are
complementary to each other.

Furthermore, the recognitionperformanceof our approach
can be further promoted by the improving strategies (i.e.,
DA and STP). Extensive experiments demonstrate that
the proposed approach is superior to other state-of-the-art
approaches. Our approach is easy to implement, and the
source code of the approach will be made available to the
public. In the future, we will focus our research on designing
more discriminative features for human action recognition.

Table 6 Comparison with
state-of-the-art approaches,
where we report mAP for
OlycSpos and average accuracy
for HMDB51 and UCF50

Approach OlycSpos (%) HMDB51 (%) UCF50 (%)

DT+STP [35] 77.2 48.3 85.6

DT+SFV+STP [26] 82.1 54.8 90.0

DT+CMC+DCS [15] 83.2 52.1 –

IDT+FV [37] 91.1 57.2 91.2

DT+TPM [40] 84.3 47.1 –

IDT+DA+RCS [14] – 60.8 –

STIP+CPH [22] – 29.6 –

IDT+VCML [3] – 58.6 92.1

IDT+SFV+STP [36] 90.4 60.1 91.7

TBC 89.4 54.3 89.2

MKT 93.2 60.2 92.8

MKT+DA 94.1 62.5 93.2

MKT+DA+STP 93.3 64.2 93.7

Best results of other approaches and our approach are in bold, respectively
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