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Abstract This paper presents a novel 3D reconstruction
framework of large objects, where we adopt one 3D scanner
to reconstruct partial sections of large objects, and employ
multiple stereo trackers to extend reconstruction range. Both
the 3D scanner and stereo trackers are fitted with infrared
light-emitting diode (LED) lights. During reconstruction,
the stereo trackers are placed one after another, their poses
are estimated according to the LED lights, the 3D scanner
is moved to reconstruct partial sections of a large object,
and the LED lights on the 3D scanner are tracked by the
stereo trackers to compute the poses of the 3D scanner for
partial alignment. The experimental results show that this
proposed method can accurately and effectively reconstruct
large objects, and has its advantages for long-range recon-
struction compared with similar existing methods.
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1 Introduction

3D reconstruction is of great importance in numerous appli-
cations, such as industrial manufacturing, game production
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and film-making. However, rapid and accurate 3D recon-
struction of large objects is still an open question because
lots of difficulties may be simultaneously present.

Recently, a number of literatures have presented some 3D
reconstruction methods. However, many of them have limi-
tations because they are usually designed for special fields,
and most of existing methods can only acquire 3D shapes
for small objects. Existing 3D reconstruction methods can
be roughly divided into two categories: passive and active
methods. Passive methods use a sensor to reconstruct the
radiance reflected or emitted by an object’s surface to infer
its 3D structure. Some of the passive methods can acquire
large scenes’ 3D structure [1–8] using feature-based align-
ment strategy. However, passive methods require an object
with rich texture, and thus, they cannot reconstruct texture-
less objects which usually exist in industrial manufacturing.

Active methods, which can be mainly categorized into
time-of-flight (TOF) laser methods and structured light
methods, usually reconstruct 3D shapes by projecting special
light onto objects. Compared with passive methods, active
methods can usually acquire more accurate and denser data
in a rapid and stable manner.

TOF laser methods acquire 3D shape of an object using
time of flight based on the known speed of light. Though tra-
ditional TOF laser techniques can obtain high-precision 3D
data [9], they are usually time-consuming to perform a dense
scanning of a large object because point-by-point scanning
strategy is used. Recently, TOF camera [10], a kind of range
imaging camera system that resolves distance according to
the speed of light, has been widely used. By using TOF cam-
era, an entire scene can be captured with lots of laser beams
in one time, as opposed to point-by-point scanning with one
laser beam [11,12]. These TOF methods can obtain dense
3D data in real time. However, the 3D data captured with
TOF cameras usually have very low data quality because
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the image resolution is rather limited and the level of ran-
dom noise contained in the depth maps is very high [13–15].
Thus, it is difficult to accurately reconstruct the 3D shapes
of large objects by TOF camera.

Compared with TOF laser methods, structured light
methods can rapidly and accurately capture 3D data. Cur-
rently, several studies of structured light techniques have
been conducted regarding the 3D reconstruction of large
objects. The basic idea of these methods is: first reconstruct
multiple partial sections of a large object and then align dif-
ferent sections together. According to alignment strategies,
these methods can be roughly categorized into four types:
shape-based method [16–20], marker-based method [21],
guide rail-based method [22,23] and tracker-based method
[24,25].

The shape-based methods in [16,17] capture partial sec-
tions of a large scene using Kinect sensor and then align
different sections by using a coarse-to-fine iterative closest
point (ICP) algorithm. [18] designs a real-time volumetric
surface reconstruction method, which supports live recon-
struction of large scenes with fine geometric details. [19]
presents a full 3D mapping system that utilizes a joint
optimization algorithm combining visual features and shape-
based alignment. Bylow et al. [20] present a method for
real-time camera tracking and 3D reconstruction of indoor
environments using an RGB-D sensor, where the camera
pose can be estimated by minimizing the error of the depth
images on the signed distance function. Because these meth-
ods require the reconstructed scene has complex surface
geometries for alignment, they cannot be applied into large
smooth objects, such as large bending plates used in ship
manufacturing.

Barone et al. [21] propose amarker-based method, which
needs to put fiducial markers on objects and reconstruct the
3D coordinates of fiducial markers that are used as refer-
ences to align point clouds obtained by a 3D scanner. Though
this method can accurately align different sections, it is also
inconvenient and time-consuming because special markers
are adopted.

Paoli and Razionale [22] present a guide rail-based
method which is based on the integration of a robotic sys-
tem with a 3D scanner. The position of the robotic system
on two linear guides is determined by a laser total station,
thus allowing the automatic multiple view data registration
into a common reference frame. Though this method can
reconstruct large objects, it is inconvenient to use. In [23],
we present a guide rail-based method for large object recon-
struction,which preforms partial alignment by computing the
motion distance of a 3D scanner sliding on a guide rail via a
laser range finder. This method can obtain good result. How-
ever, the 3D scanner must be moved in a straight line on the
guide rail; otherwise, the alignment accuracy will be heavily
influenced, which requires high quality of system manufac-

turing and brings some problems for system installation due
to the use of a long guide rail.

[25] presents a tracker-based method which adopts one
stereo tracker and one 3D scanner. The 3D scanner is used
to reconstruct partial sections, and the stereo tracker detects
retroreflective infrared markers rigidly connected to the 3D
scanner for alignment of different partial views. Since the
stereo tracker cannot clearly catch the infrared markers if
the distance between the tracker and 3D scanner becomes
larger, the reconstruction range is limited. In [24], we pro-
pose a tracker-based method, in which some high-brightness
LEDmarkers installed on the 3D scanner are used as tracking
markers in order to extend the reconstruction range, and one
stereo tracker is in charge of tracking the LED markers to
estimate the poses of the 3D scanner for partial view align-
ment. This method is convenient and flexible to use, and can
perform 3D reconstruction of large texture-less objects with
simple surface geometries. However, the alignment accuracy
may be reducedwith the increase ofmoving distance because
only one stereo tracker is used.

In summary, active methods can acquire more accurate
and denser data compared with passive methods, and the
tracker-based methods have advantages over the other active
methods: firstly, it is not limited by the shapes and texture
of objects; secondly, it does not need to paste markers on
objects; thirdly, it is convenient and flexible to install the
system. Thus, tracker-based methods are very suitable for
applications in industrial manufacturing where objects to be
reconstructed are usually smooth, large and texture-less.

In this paper, an active tracker-based framework is
designed for industrial applications. In this framework, we
make use of one 3D scanner and multiple stereo trackers;
some infrared LED lights are rigidly connected to the 3D
scanner; multiple stereo trackers are used instead of one
to extend the reconstruction range. Compared with exist-
ing tracker-based methods, in this framework, we present
a method of matching LED markers based on trajectory, a
method of stereo tracker pose estimation, a method of par-
tial section reconstruction and a method of partial section
alignment. Overall, the proposed method has the follow-
ing advantages over the existing methods: firstly, compared
with feature-based methods, our method can reconstruct
texture-less objects due to the use of structured light tech-
nique; secondly, compared with shape-based method, our
method can reconstruct large objects with simple surface
geometries because we integrate structured light technique
with tracker-based alignment method; thirdly, compared
with marker-based methods, our method is more conve-
nient because it need not attach special markers on objects;
fourthly, compared with guide rail-based methods, this
method is easy for installation; finally, by comparison with
the existing tracker-based methods, our method can obtain
more accurate result for large object reconstruction because
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multiple stereo trackers make more remote tracking feasible.
Certainly, like other methods based on LED lights, there is
a limitation for the current method: If the LED markers on
the 3D scanner are rotated with a large degree, they may be
deformed in images, which will result in inaccurate detec-
tion. However, we think the current method is still useful for
many industrial applications.

2 The proposed method

As Fig. 1 shows, our system is composed of one 3D scan-
ner and multiple stereo trackers. The 3D scanner consists of
one stereo vision systemwhich includes two calibrated video
cameras and one infrared line projector which can only emit
an infrared line. To align different partial sections recon-
structed by the 3D scanner, we place ns infrared LED lights
on the 3D scanner as tracking markers. As previously men-
tioned, if we only use one stereo tracker, the reconstruction
range is limited. In order to extend the reconstruction range,
we adopt multiple stereo trackers which are used to remotely
track the infrared LED markers on the 3D scanner. Each
stereo tracker consists of two calibrated video cameras. We
suppose n stereo trackers are used, and let τk , k ∈ {1, . . . , n},
denote the kth stereo tracker. In order to locate the poses of
the stereo trackers, we install nτk infrared LED lights on τk
(where k ∈ {2, . . . , n}).

Before reconstruction, firstly, infrared LED markers on
τk (k ∈ {2, . . . , n}) and on the 3D scanner should be recon-
structed and calibrated; secondly, we place the stereo trackers
one after another so that the infrared LED markers on τk can
be seen by τk−1, and estimate the poses of the stereo trackers
by computing the transformation Γτkτk−1 between coordinate
systems of τk and τk−1.

During reconstruction, firstly, we reconstruct partial sec-
tions of a large object using the 3D scanner; secondly, we

align different partial sections based on the tracking of the
3D scanner using multiple stereo trackers.

2.1 Preparatory work before reconstruction

2.1.1 Reconstruct LED markers

The calculation of the LED markers’ 3D coordinates is an
essential prerequisite for pose estimation of the 3D scanner
and stereo trackers. Actually, the process of calculating LED
markers’ 3D coordinates includes two subproblems, namely
detecting LEDmarkers andmatching LEDmarkers.We here
use the method we presented in [24] to detect LED markers
in the images captured by the stereo trackers, and this is not
the focus of this paper and will not be discussed in detail.

Next, the key problem is how tomatch LEDmarkers in the
stereo images captured by the stereo trackers. When captur-
ing images, we stop down the lenses of the stereo trackers to a
small aperture in order to increase robustness; thus, the LED
markers are bright points and other regions are very dark in
the stereo images. In such a situation, there are no distinc-
tive color, intensity or texture features for each LED marker.
Therefore, it becomes a difficult problem to robustly match
the LED markers in stereo images. To solve this problem,
we propose a matching method based on trajectory. Next,
we explain the basic idea. Firstly, without loss of general-
ity, suppose τ1 is the working stereo tracker which directly
tracks the 3D scanner, and suppose the coordinate of a LED
marker on the 3D scanner is denoted by Mτ1s

i (t) in the
coordinate system of τ1 at time t , where i ∈ {1, . . . , ns}.
Mτ1s

i (t) will be projected onto the rectified stereo image
plane of τ1, and form two projected image points, denoted by
Ql

i (t) = (xli (t), y
l
i (t))

T and Qr
i (t) = (xri (t), y

r
i (t))

T. Sec-
ondly, suppose during time span T (t) = {t |1 ≤ t ≤ T0}, we
move the 3D scanner in the FOV (field of view) of τ1, the
projections Ql

i (t) and Qr
i (t) will form two trajectories in the

rectified stereo image sequences, as Fig. 2 shows. We must

Fig. 1 Illustration of system
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Fig. 2 Match LED markers by trajectories

ensure the LED markers on 3D scanner cannot be occluded
due to large rotation, when we move the 3D scanner. Here,
to construct the trajectories over time span T (t), we use
Kanade–Lucas–Tomasi (KLT) tracker [26,27] to track the
LED markers in consecutive sequence of frames. Finally,
we construct descriptors based on the trajectories during
time span T (t) for LED markers Mτ1s

i (t), and the descrip-
tors can be denoted by Dl

i (T (t)) = (yli (1), .., y
l
i (T0)) and

Dr
i (T (t)) = (yri (1), .., y

r
i (T0)). In theory, yli (t) should be

equal to yri (t), which means the same LED marker in the
stereo images has the same trajectory descriptor, and then
the LED markers across views can be matched according to
the descriptors. After matching LEDmarkers, we can recon-
struct Mτ1s

i (t) in the coordinate system of τ1 using stereo
triangulation.

In addition, we suppose, at time t , the coordinates of the
LED markers on τk are denoted by Mτlτk

j (t) in the coordi-
nate system of τl , where k ∈ {2, . . . , n} and l ≤ k. Therefore,
similarly, we can calculate Mτ1τk

j (t) using τ1 as well accord-
ing to the above-mentioned method in the same way, where
j ∈ {1, .., nτk }.

2.1.2 Calibrate LED markers

Though Mτ1s
i (t) and Mτ1τk

j (t) can be computed using τ1,
they locate in the coordinate system of τ1. However, to com-
pute the poses of the 3D scanner and stereo trackers, we
need to transform Mτ1s

i (t) from the coordinate system of
τ1 to that of the 3D scanner, and suppose the correspond-
ing coordinate is Mss

i after transformation. We also need to
transform Mτ1τk

j (t) to that of τk , and similarly we suppose

the corresponding coordinate is Mτkτk
j after transformation.

The process of computing Mss
i and Mτkτk

j is also called as
LED marker calibration [24,25].

Next, we take the computation of Mss
i as an example to

explain the process. As Fig. 3 shows, a calibration board is
used to calibrate the LED markers. The calibration board is

Fig. 3 Compute the locations of LEDmarkers in the coordinate system
of 3D scanner

put in a place where both the 3D scanner and stereo tracker
τ1 can see. Meanwhile, the LED markers on the 3D scanner
must be seen by the stereo tracker. The calibration board is
considered as the world coordinate system, which is denoted
by CW. The coordinate systems of the 3D scanner and stereo
tracker are represented by CS and CT, respectively. The
transformation between CS and CW is denoted by TSW, the
transformation between CT and CW is denoted by TTW, and
the transformation between CT and CS is denoted by TTS.
TSW, TTW and TTS are matrix with 4 rows and 4 columns. To
calibrate the LED markers, we must know TTS. According
to the transformations among CW, CS and CT, we have:

TTW = TTS TSW (1)

Thus, we obtain:

TTS = TTW T−1
SW (2)

Since TTW and TSW can be obtained by using the calibration
board, we can obtain TTS.

Next, we compute the locations of LED markers in the
3D scanner’s coordinate system. Suppose Mss

i is homoge-
neous coordinates of the LED markers in CS, and Mτ1s

i (t) is
homogeneous coordinates of the LED markers in CT. Since
Mτ1s

i (t) is directly reconstructed by the stereo tracker τ1, we
can transform Mτ1s

i (t) to the 3D scanner’s coordinate system
by Eq. (3):

Mss
i = TTS Mτ1s

i (t), i ∈ {1, . . . , ns} (3)

In the same way, we can calculate Mτkτk
j according to

Mτ1τk
j (t) based on the above-mentioned method.

2.1.3 Estimate the poses of stereo trackers

The steps of estimating the stereo trackers’ poses are as fol-
lows: firstly, we place the stereo trackers one after another,
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ensure the LED markers on τk can be seen by τk−1, and
regard the coordinate system of τ1 as the global coordinate
system, as shown in Fig. 1; secondly, after τk−1 has been
placed, when we place τk , τk will be moved in the FOV of
τk−1; meanwhile, we can compute Mτk−1τk

j (t) using the tra-
jectories generated by the motion of τk in the FOV of τk−1;
thirdly, we build two connected graphs according to Mτkτk

j

and Mτk−1τk
j (t); fourthly, we match Mτkτk

j and Mτk−1τk
j (t) by

graph matching. The concrete thought of connected graph
matching will be elaborated in subsequent sections, and we
here only suppose Mτkτk

j and Mτk−1τk
j (t) have been matched;

fifthly, we can compute the transformation Γτkτk−1 between
coordinates systems of τk and τk−1 using:

Γτkτk−1 = arg min
Γτk τk−1

⎛
⎝∑

j

|Γτkτk−1M
τkτk
j − Mτk−1τk

j (t)|2
⎞
⎠

(4)

Here,

Γτkτk−1 =
(
R t
0T 1

)
(5)

where R ∈ R
3×3, and t ∈ R

3. Finally, after the transforma-
tion between adjacent stereo trackers is obtained, the poses
of stereo trackers can be estimated. For example, for the kth
stereo tracker, if k = 2, its pose can be represented by Γτ2τ1 ,
and if k ≥ 3, its pose can be represented by:

PT
k = Γτ2τ1 . . . Γτkτk−1 (6)

2.2 3D reconstruction

2.2.1 Reconstruct partial sections

As Fig. 4 shows, the 3D scanner is composed of two video
cameras and one infrared line projector. The infrared line
projector only casts one infrared line onto objects; therefore,
the 3D scanner can only reconstruct one line at a time. We
here use infrared light instead of visible light because this can
reduce the effect of visible light and infrared light is harmless
to human eyes. Furthermore, we use line projector which
can only cast one line instead of video projector because of
two reasons. One reason is that highly light-reflecting objects
usually reflect light to the cameras with video projector so
that captured images cannot be understood, but line projector
will not result in large area reflection; another reason is that
it is easier to match lines in rectified images due to only
projecting one line on objects, which increases the system
robustness. Figure4a illustrates the principle of 3D scanner.
During reconstruction, we use an infrared bandpass filter to
filter useless light andmeanwhile stop down the lens of video

(a)

(b)

(c)

(d)

Fig. 4 3D scanner. a Principle of 3D scanner, b rectified stereo images
with projected lines, c one scanline with a cross section between the
scanline and projected line, d Smoothed scanline

cameras to a small aperture. Under this circumstances, the
projected line will be very distinct in rectified stereo images,
as illustrated in Fig. 4b.

We detect lines in stereo images in three steps: firstly, for
each scanline, there is a cross section between the projected
infrared line and the scanline, as Fig. 4b shows. Figure4c
shows one scanline, where the trapezoid represents the cross
section. We use one-dimensional difference of Gaussian
(DOG) to filter each scanline (Fig. 4c) in rectified stereo
images and obtain a smoothed scanline, as Fig. 4d illustrates.
The one-dimensional DOG function can be represented as:

f (x;μ; σ1; σ2) = 1√
2π

(
1

σ1
exp(− (x − μ)2

2σ 2
1

)

− 1

σ2
exp(− (x − μ)2

2σ 2
2

)) (7)

Now, the cross section will change from trapezoid to
paraboloid. Here, σ1 is set to about the width of the pro-
jected infrared line, and σ2 is set to about half of the width
of the projected infrared line; secondly, for each pair of fil-
tered lines, we detect the peak with the biggest gray value;
as Fig. 4d shows, the peak can be considered as initial value
of the center of cross section, and we here let xlI = (xl , yl)T

and xrI = (xr , yr )T to represent the initial values of cross-
sectional centers in the stereo images; finally, in order to
obtain more accurate center for the cross section, we need
to select some neighbor pixels around initial values. For
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example, some neighbor pixels of xlI form a point sequence
{. . . , xq , xlI , xq+1, . . .}, we use the point sequence to fit a
parabola Cl , and let the extremum value xle of Cl be the
accurate center of cross section. Similarly, we can obtain the
corresponding extremum value xre of x

r
I .

After detecting xle and x
r
e in left and right rectified images,

they are considered as the matching pair, and we compute
the corresponding 3D coordinates using stereo triangula-
tion [28]. In this way, we can reconstruct one line of an
object using the 3D scanner. We here suppose, at time t ,
there are p 3D points reconstructed by the 3D scanner, let
Xs(t) = (Xs(t)

1 , . . . , Xs(t)
i , . . . ., Xs(t)

p )T represent the recon-

structed 3D point set, and Xs(t)
i denote one 3D point in the

3D scanner’s coordinate system.

2.2.2 Align different partial sections

To align different partial sections, we need to compute the
poses of 3D scanner using the stereo trackers. In order to track
the 3D scanner in the FOV of the stereo trackers, we here
present a method based on the integration of KLT tracking
algorithm with graph matching algorithm.

At the beginning of 3D reconstruction (suppose, at time
t0), τ1 is the working tracker, and ns(t0) LED lights on the
3D scanner can be seen by τ1, we suppose all LED lights can
be seen at this time, and that means ns(t0) is the number of
LED markers installed on the 3D scanner. Meanwhile, we
compute the 3D coordinates of the LED markers on the 3D
scanner and then establish a connected graph in which LED
markers are considered as vertices and the links between
different vertices are regarded as edges. We here represent
this connected graph by a matrix Gns (t0), where Gns (t0) is a

ns(t0) × ns(t0) matrix with dns (t0)i j as its element in the ith
row, jth column, i ∈ {1, . . . , ns(t0)}; j ∈ {1, . . . , ns(t0)}.
dns (t0)i j denotes the Euclidean distance between the ith vertex

Mτ1s
i (t0) and the jth vertex Mτ1s

j (t0). When we install the
LED markers on the 3D scanner, we try our best to ensure
the distance between every two LED markers is different;
namely, it is better to make dns (t0)i j distinctive; in this case, it
becomes more robust to track LED markers.

During 3D reconstruction, with the movement of the 3D
scanner from the near to the distance, stereo tracker τk ,
k ∈ {2, . . . , n}, will become theworking tracker by detecting
the emergence of the 3D scanner in stereo image sequence.
For example, during tracking the 3D scanner using τ1, a
thread of τ2 continuously detects its stereo image sequence
until the 3D scanner emerges, and then, τ2 becomes thework-
ing stereo tracker until it is replaced by τ3. We here use a
method similar with that in [29] to detect the emergence of
the 3D scanner in stereo image sequence. After τk becomes
the working tracker, τk will track the motion of the LED
markers on the 3D scanner using KLT algorithm. However,

some LED markers may frequently appear and disappear in
the FOV of the stereo trackers due to occlusions. Thus, the
number of detected and tracked LEDmarkersmay be smaller
than ns(t0). In this circumstance, tracking error may occur,
and the system may be not robust if we only use the results
tracked by KLT. Therefore, we combine KLT algorithm and
graph matching, where KLT algorithm is adopted to match
LEDmarkers across views by computing trajectories of LED
markers, and graph matching is adopted to compute the 3D
scanner’s poses by matching the 3D coordinates of the LED
markers captured at different time. Next, suppose, at time
t1, ns(t1) LED markers are tracked by τk , similarly, a con-
nected graph Gns (t1) can be constructed as well. Gns (t1) is a

ns(t1)×ns(t1)matrixwithdns (t1)hk as its element in the hth row,
kth column, h ∈ {1, 2, . . . , ns(t1)}; k ∈ {1, 2, . . . , ns(t1)}.
And dns (t1)hk also denotes the Euclidean distance between the
hth vertex Mτk s

h (t1) and the kth vertex Mτk s
k (t1).

The tracking of the 3D scanner can be performed by
matching connected graph Gns (t0) and Gns (t1). The basic
idea is: firstly, we build connected graph Gns (t0) and Gns (t1)

according to dns (t0)i j and dns (t1)hk ; secondly, we create a KD tree

for each row of Gns (t0); thirdly, for each element dns (t1)hk in

the hth row of Gns (t1), we locate the nearest element dns (t0)i j
in every row of Gns (t0) using KD tree; fourthly, we compute
the distances between the hth row of Gns (t1) and every row
ofGns (t0), and the distances can be denoted by d<h,i>, where
i ∈ {1, 2, . . . , ns(t0)}; fifthly, we locate the smallest distance
d<h,i>, and the hth vertex in Gns (t1) and the i th vertex in
Gns (t0) are considered as a matching pair if d<h,i> is smaller
than a threshold value. By this method, even if some LED
markers are invisible due to occlusions in the process of 3D
scanner movement, while ns(t1) is smaller than ns(t0), we
can match Gns (t0) and Gns (t1) very well. Next, we elaborate
the proposed graph matching algorithm.

Algorithm 1 Graph Matching based on KD tree
Input: (1)Mτ1s

p (t0) computed at time t0, p ∈ {1, . . . , ns(t0)};
(2) trajectories in stereo image sequences obtained using
KLT algorithm; (3) a threshold value σ ;

Output: Matching the LED markers captured at time t0 and
t1

1. At time t1, match LEDmarkers across views bymatching
trajectories, and reconstruct LED markers’ 3D coordi-
nates Mτk s

q (t1), q ∈ {1, . . . , ns(t1)},k ∈ {1, . . . , n − 1};
2. Compute dns (t0)i j and dns (t1)hk ;
3. Build connected graph Gns (t0) and Gns (t1);
4. for i ← 0 to ns(t0) − 1

(∗ i represents the row of Gns (t0) ∗)
5. Create KD tree for the ith row of Gns (t0);
6. for h ← 0 to ns(t1) − 1

(∗ h represents the row of Gns (t1) ∗)
7. for i ← 0 to ns(t0) − 1
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8. For each element dns (t1)hk in the hth row of

Gns (t1), find its nearest element dns (t0)i j in
the ith row of Gns (t0) using KD tree algo-
rithm;

9. Compute the average distance between the
hth row ofGns (t1) and the ith row of Gns (t0)

by d<h,i> = ∑
< j,k> |dns (t1)hk − dns (t0)i j |;

10. Record the distance di and the correspond-
ing index h and i ;

11. Let dmin
h = min{d<h,0>, . . . , d<h,ns (t0)−1>};

12. if dmin
h ≤ σ

13. Record thematching index 〈i, h〉, and cor-
responding vertices are considered as a
matching pair

〈
Mτ1s

i (t0), M
τk s
h (t1)

〉
;

The threshold value σ is set to 1mm in our method. Next,
suppose the pose of 3D scanner at time t1 is represented as
Γsτk (t1) which can be obtained using:

Γsτk (t1) = arg min
Γsτk (t1)

⎛
⎝ ∑

<i,h>

|Γτ2τ1 · · · Γτkτk−1Γsτk (t1)M
τk s
h (t1)

−Mτ1s
i (t0)|2

⎞
⎠ (8)

Thus, one reconstructed partial 3D point set Xs(t1) can be
transformed into the coordinates system of τ1 by:

Xτ1(t1) = Γτ2τ1 · · · Γτkτk−1 Γsτk (t1) X
s(t1) (9)

3 Results and evaluations

An experimental system is designed to validate the perfor-
mance and effectiveness of the proposed method. Figure5
illustrates the experimental system. Figure5a shows the 3D
scanner with LED markers, where the 3D scanner is com-
posed of one infrared line projector to generate a 850nm
infrared line and two 5-million-pixel Bamuer video cam-
eras to capture images. We make use of two stereo trackers

due to our laboratory conditions, namely τ1 (Fig. 5b) and τ2
(Fig. 5c). All the video cameras are equipped with Japanese
Computar lenses having a focal length of 16mm, and the
lenses are fitted with 850nm filters. The FOV of video cam-
eras is about 60◦, the FOV of 3D scanner is about 45◦, and
the FOV of stereo trackers is about 50◦. The frame rate of
video cameras is 15 fps, and we adopt an external trigger
with a PLC (programmable logic controller) module to syn-
chronously capture images. Twelve infrared LED lights are
rigidly connected to 3D scanner and stereo tracker τ2. When
we install these LED lights, we try our best to ensure the
distance between every two LED markers is different, and
ensure all LED lights are not in the same plane. In addition,
a Leica FlexLine TS09 laser total station and two circular
retroreflective markers are used to evaluate the system accu-
racy. The distance error of FlexLine TS09 laser total station
is less than 1.5mm for large object measurement. We cali-
brate the cameras of the 3D scanner and stereo trackers using
the method in [30], and we calibrate the LED markers using
the method described in Sect. 2.1.2.

3.1 Experimental results

Two types of experiments are performed in this section, the
size of reconstruction range is about 6.5m × 1.6m, and we
put τ2 at a distance of about 3.5m from τ1.

In the first type of experiments, we want to confirm
the effectiveness of reconstructing large smooth texture-less
objects used in industrial manufacturing. Figure6a shows the
image of smooth texture-less bending plates, and Fig. 6d, e
illustrates the reconstructed 3D point clouds viewed from
different angles. Figure6b, c shows the results of the region
within red rectangle in Fig. 6a, captured, respectively, by our
method and KinectFusion [16], and we take advantage of
Kinect 2.0 for Windows and the KinectFusion source code
provided by Microsoft SDK. Figure6f, g shows the results
captured using [24,25], respectively.We can see there ismore
noise on the reconstructed 3D data in the rectangular region
in Fig. 6f, g compared with that in Fig. 6d, e, whichmeans the
alignment result becomes worse and worse with the move-

Fig. 5 Experimental system. a
3D scanner with infrared LED
markers, b stereo tracker τ1, c
stereo tracker τ2 with infrared
LED markers

(a) (b) (c)
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Fig. 6 Experiments of
reconstructing large smooth
texture-less objects. a An image
of smooth texture-less bending
plates, b region within the red
rectangle in a captured by our
method, c region within the red
rectangle in a captured by
KinectFusion, d, e reconstructed
3D point clouds viewed from
different angles, f, g results,
respectively, captured using
[24,25], h an image of a mat
which is placed beside a large
bending plate, i, j corresponding
dense 3D point clouds of h

ment of the 3D scanner for the method [24,25]. Figure6h
shows an image of a mat which is placed beside a large bend-
ing plate, we here only show the mat in Fig. 6h because we
want to illustrate the detailed information of the mat, and
Fig. 6i, j shows the corresponding dense 3D point clouds.

In summary, we can see that our method can obtain better
experimental results.

In the second type of experiments, some large complex
scenes are reconstructed. Figure7a shows the image of a
scene with free form surfaces, and Fig. 7d, e demonstrates
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Fig. 7 Experiments of
reconstructing complex scenes
with free form surfaces. a Image
of a scene with free form
surfaces, b, c results of the
region within red rectangle in a
captured, respectively, by our
method and KinectFusion, d, e
reconstructed 3D point clouds of
a viewed from different angles,
f, g results of a captured using
[24,25], respectively, h an image
of a bear, i, j corresponding 3D
point clouds of a viewed from
different angles, k, l
corresponding 3D point clouds
of h captured by [24,25],
respectively,m an image with a
straw hat and a porcelain horse,
n, o corresponding 3D point
clouds of m viewed from
different angles
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the our reconstructed 3D point clouds viewed from different
angles. Figure7b, c shows the results of the region within red
rectangle in Fig. 7a, captured, respectively, by our method
and KinectFusion. Figure7f, g shows the results captured
using [24,25], respectively. Figure7h shows an image of a
bear, we here only show the bear in Fig. 7h because we want
to illustrate the detailed information of the bear, Fig. 7i, j
shows the corresponding 3D point clouds viewed from dif-
ferent angles, and Fig. 7k, l shows the corresponding 3D
point clouds captured by [24,25], respectively. Figure7m
shows an image with a straw hat and a porcelain horse, and
Fig. 7n, o shows the corresponding 3D point clouds viewed
from different angles. From these experimental results, we
can see that our method is effective for accurate 3D data
acquisition of large complex objects, the results captured by
KinectFusion are oversmoothed, while our results are more
edge-preserving; there is more noise on the reconstructed 3D
data captured by [24,25], while our method can obtain better
experimental results.

3.2 Evaluate pose estimation of long-range tracking

Next, another experiment is performed to validate the effec-
tiveness of the 3D scanner’s pose estimation for long-range
tracking. Because there is no groundtruth, it is difficult to
evaluate 3D scanner’s pose estimation. However, if the LED
marker tracking is accurate enough, the topology of con-
nected graph formed by the tracked LED markers should
never change during the reconstruction; under the circum-
stances, the pose estimation must be accurate. According to
this thought, we evaluate the long-range tracking by estimat-
ing the topology change of the LEDmarkers, and by this way
we evaluate the accuracy of the 3D scanner’s pose estima-
tion. Firstly, we put τ2 at a distance of 6m from τ1, τ1 can see
the infrared LED markers on τ2, and both τ1 and τ2 remain
stationary. If the distance between the 3D scanner and τ1 is
less than 7m, τ1 is used as working tracker; if the distance
is bigger than 7m, τ2 will automatically replace τ1 as work-
ing tracker. Secondly, we put the 3D scanner at a distance of
2m from τ1, τ1 can see the infrared LED markers on the 3D
scanner. At time t0, we compute the LED markers’ 3D coor-
dinates Mτ1s

i (t0) in the coordinate system of τ1. The current
location of the 3Dscanner is considered as reference location.
Thirdly, we compute dns (t0)i j according to vertices Mτ1s

i (t0)

and Mτ1s
j (t0). Fourthly, we move the 3D scanner about 14m

from the near to the distance. Meanwhile, we track and cal-
culate the 3D coordinates of the LED markers at intervals of
one meter in the coordinate system of τ1. Here, we suppose
all LEDmarkers can be seen during the moving process, and
compute dns (tk)i j according to Mτk s

i (tk) and Mτk s
j (tk) at time

tk , where k ∈ {1, . . . , n − 1}. Finally, we evaluate the errors
for long-range tracking according to the changes between
dns (t0)i j and dns (tk )i j using Etk = 1

H

∑ |dns (t0)i j −dns (tk )i j |, where

H is the number of edges of connected graph formed by LED
markers. Here, Etk is called as average tracking error at time
tk . Figure8 shows the curves of computed average tracking
error, and Fig. 9 shows the corresponding standard deviation.

For comparison, we perform an experiment of similar
tracker-based method we presented in [24], where only
stereo tracker τ1 is used, and the curve of tracking error is also
shown in Figs. 8 and 9. We can see that the tracking accuracy
using τ1 and τ2 is higher than that only using τ1, especially,
when tracking distance is more than 7m. In addition, we also
implemented the similar tracker-based algorithm described
in [25] proposed by Barone, and we here call it our imple-
mented version. We take advantage of some low-brightness
LED lights to simulate the reflective markers used in [25].
The corresponding curves are also shown in Figs. 8 and 9. As
Fig. 8 shows, if the distance between the stereo tracker and
3D scanner is less than 6m, the errors for two methods are
similar. However, when distance is bigger than 6m, the error
of the method with low-brightness LED lights increases dra-
matically; this is because some LED lights cannot be located
correctly due to the low brightness.

From this experiment, we can see that the pose estimation
of the presented method is more accurate than those similar
methods in [24,25], and certainly ourmethod ismore suitable
to reconstruct large object compared with the methods in
[24,25].

3.3 Evaluation of accuracy

Actually, it is very difficult to assess system accuracy because
the reconstruction range is very large. Thus, to evaluate the
system accuracy, we here make use of two circular retrore-
flective markers and one laser total station. Firstly, we paste
two retroreflective markers on ground; secondly, we manu-
ally measure the distance between the centers of twomarkers
using laser total station, and the measured distance can be
considered as ground truth for accuracy evaluation; thirdly,
we measure the distance between the two markers using our
system, where we also put τ2 at a distance of 6m from τ1,
τ1 can see the infrared LED markers on τ2, and both τ1 and
τ2 remain stationary. The distance between the first retrore-
flective marker and τ1 is about 2m. During the measurement,
we manually select the centers of retroreflective markers in
images; fourthly, we measure the distance between markers
only using one stereo tracker (the method in [24]) for com-
parison, where the distance between the first retroreflective
marker and the stereo tracker is also about 2m, and we also
manually select the centers of retroreflective markers; fifthly,
we measure the distance between markers using the method
in [25] for comparison, where the distance between the first
retroreflectivemarker and the stereo tracker is also about 2m,
and we manually select the centers of retroreflective mark-
ers as well; finally, we compare the measured values with
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Fig. 8 Average tracking error

Fig. 9 Standard deviation

ground truth. We here preform 5 tests by putting the mark-
ers at different places. The evaluation results are shown in
Table1. From the results, we can see that the proposed sys-
tem is more accurate.

3.4 Evaluation of speed

The running time can be divided into three parts: One is the
time of reconstructing one 3D line, another is the time of
aligning one line into the global coordinate system, and the
third one is the time of moving the 3D scanner. Here, the
time of 3D scanner movement is not considered, because it
is the same for the proposed method, the methods in [24,25].
We process the method by a server that has one dual core 3.0
GHz CPU, 16G RAM and two GeForce GTX 690 NVIDIA

graphics cards with 4096MBGDDR5memory. Based on the
hardware, we test the running time for the three methods. All
of the three methods need about 2.5ms to reconstruct one
3D line, the proposed method needs about 1.5ms to align
one 3D line when two stereo trackers are used, and the meth-
ods in [24,25] need about 1ms to align one 3D line. When
we reconstruct a 6-m-long area, if we reconstruct one line
every five millimeters, which means we need to reconstruct
1200 3D lines. In this case, the proposed method costs about
1200 × (2.5 + 1.5)ms = 4.5 s, and the other two methods
cost about 1200 × (2.5 + 1.0)ms = 4.2 s. That means the
proposed method is a little bit slower than the methods in
[24,25]. However, we think it still fast enough for the large
reconstruction in industrial manufacturing.
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Table 1 1 Evaluation of
accuracy (mm)

Tests Ground truth
(mm)

Reconstructed
by this system
(mm)

Reconstructed
by [24] (mm)

Reconstructed
by [25] (mm)

The first test 7324.4 7326.3 7326.2 7330.0

The second test 8491.1 8493.3 8493.9 8499.3

The third test 9562.5 9565.4 9567.7 9578.8

The fourth test 10448.2 10453.3 10460.6 10466.7

The fifth test 11748.9 11757.0 11764.1 11771.5

Average error 4.04 7.48 14.24

4 Conclusions

We present a 3D reconstruction framework for large objects.
According to the experiments, this method can effectively
reconstruct large objects and has its advantages compared
with similar existing methods. Certainly, there exist some
limitations: The current method is unsuitable to reconstruct
objects with large occlusions which tend to require the 3D
scanner to rotate a large degree. Under such circumstances,
LED markers may be seriously deformed in the images of
stereo trackers, which will result in inaccurate detection. In
the future, we will solve this issue by redesigning the LED
markers arrangement. However, we think the current method
is still valuable for some applications.
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