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Abstract We introduce a distance field guided L1-median
method to extract topologically clean 1D curve skeleton from
the point cloud model. We first voxelize the input point
cloud, and compute the distance field for the point cloud.
Then with the distance field, we extract the initial skeleton of
the model using a multi-scale parameter controlled thinning
method. Finally, we incorporate the initial skeleton into the
L1-median optimization, and develop a distance field guided
L1-median to effectively extract the complete skeleton from
the point cloud. Our method exhibits the advantages of both
the distance field based skeleton extraction methods and the
L1-median skeleton extractionmethods.Our skeleton extrac-
tion system is robust and effective, and can be applied to the
raw scanned point cloud data.
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1 Introduction

Skeletons capture the essential topology of the underlying
shapes, and have been widely used in various applications,
such as model segmentation, registration, animation, and
retrieval. Many skeleton extraction methods have been pro-
posed, including high dimensional medial representation
[31] and 1D curve representation [10]. Recently, owing to the
simplicity of topology and ease of manipulation, 1D curve
skeleton extraction has become a popular research topic in
computer graphics community, for both closed polygonal
meshes [2] and incomplete point cloud [15,34]. To extract
satisfactory skeletons frompoint cloud, however,much space
has been left to be improved, among which robustness and
accuracy are two key problems need to addressed. In this
paper, we focus on 1D skeleton extraction from the point
cloud.

For the point cloud models, especially for the raw data
acquired via laser scanning, to effectively extract their skele-
tons is still a challenging problem for the following reasons.
First, unlike closed polygonal meshes, there is no topology
information between the sampled points, many geometry
operator, such as the mesh-decomposition based method
[18], requires mesh connectivity, cannot be extended directly
to them. Second, for the scanned raw data, the point cloud
usually exhibits missing regions, heavy noise and outliers,
to infer the interior skeleton of input model is a non-trivial
problem. Finally, as skeleton extraction is an ill-posed prob-
lem, to obtain high quality results, many existing algorithms
require tedious model-specific parameters tuning, thus, uni-
form parameter setting is preferable for processing point
cloud models.

In this paper, inspired by the distance field based skele-
ton extraction method [12] and the L1-median skeleton
extraction method [15], we propose a distance field guided
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L1-median method to extract 1D curve skeleton from the
point cloud. Our method works in the following steps. We
first voxelize the input point cloud, and obtain a voxelized
representation for the point cloud. This type of representa-
tion is even effective for model with large missing regions.
With the voxelization results, we compute the distance field
for the point cloud, where each voxel has a nearest distance
from the model boundary. Then, from the distance field, we
extract the initial skeleton of the model using a multi-scale
parameter controlled thinning method. Finally, we incorpo-
rate the initial skeleton into the L1-median optimization and
develop a distance field guided L1-median to extract a com-
plete skeleton from the point cloud. Figure 1 illustrates the
overview of the proposed algorithms.

Our method has following advantages. Compared with
the distance field based method [12], our method can pro-
vide cleaner results. As distance field based methods [12]
usually generate spotted locally minimal/maximal distance,
which results in unconnected and incorrect skeletons. Com-
pared with the L1-median method [15], our method is
more robust and efficient. With distance field as the guid-
ance in the iterative skeleton generation, the sampled points
move to the center of region along the distance increas-
ing direction, avoiding zigzagging moving. Finally, with the
distance field, we can specify more suitable neighborhood
size in L1-median skeleton optimization to obtain desirable
results, which significantly alleviates the problem of trial-
and-error.

Our main contribution is that we develop a distance field
guided L1-median skeleton extracting method, which inte-
grates the advantages of both the distance field and the
L1-median projection skeleton extraction method. Our algo-
rithm can be applied to the raw scanned data, requires only
minimal user interaction to extract topologically clean and
accurate skeletons, that is, we only need to set appropriate
parameters to provide satisfactory skeletons.

2 Related work

Many algorithms have been proposed for skeleton extrac-
tion from static models, we refer the reader to the survey
by Cornea and Min [10] and the most recent work [16]. Sev-
eral skeleton extractionmethods from surface sequences also
have been proposed, please refer to [27]. In this section, we
only review the most related methods, such as the distance
field based skeleton extraction methods, and 1D curve skele-
tons for meshes and point cloud models. For methods on
medial axis and other higher dimensional medial representa-
tions, please refer to [31].

Skeleton extraction using distance field A variety of distance
field methods have been developed for skeleton extraction

[4,5,12,13,37]. The distance field can be computed using
the fast marching method [29]. Most of these algorithms
perform the following three steps: (1) finding the ridge
points which locally center within the object, (2) pruning
the insignificant extreme points, and (3) reconnecting the
remaining extremepoints. Themain advantageof thesemeth-
ods is that the distance field computation is usually fast,
the disadvantage is that pruning the insignificant extreme
points is a non-trivial task, which may produce unclean
skeletons. In this paper, inspired by parameter controlled
volume thinning method [12], we extract the skeleton as the
initial value for the following skeleton extraction optimiza-
tion.

Skeleton extraction for mesh model Various methods have
been developed to extract skeletons from the watertight
surface meshes. Important works include mesh decimation
based method [21], segmentation based method [18], field
based approach [8,25], geodesic distance basedmethod [11],
mean curvature flow based surface contraction [2,9,33], and
method coupling graph contraction and surface clustering
[17]. However, these methods require the mesh connectiv-
ity to obtain the skeletons. For example, Katz and Tal [18]
applied graph cut on themeshmodel to performmesh decom-
position, while graph cut requires mesh connectivity. Au et
al. [2] extracted skeleton from the mesh model by shrink-
ing the mesh with constrained Laplacian smoothing, and the
smoothing operator also requires mesh connectivity.

Skeleton extraction for point cloud Both [6] and [26] con-
structed Reeb graph over point clouds to compute skeletons.
Sharf et al. [30] applied deformable model, which involved
multiple fronts inside the model, to capture the model’s vol-
umetric shape. Then they tracked the fronts’ centers, merged
and filtered the insignificant branches to obtain the final
curve skeleton. Tagliasacchi et al. [34] proposed a ROSA
(rotational symmetry axis) method to extract skeleton from
incomplete point cloud.Thismethod assumed the input shape
to be cylindrical, furthermore, ROSA required normal infor-
mation, while normal is difficult to estimate for sample points
on the raw scanned data. Cao et al. [7] extended themean cur-
vature flow based skeleton extraction method [2] to the point
cloud models. Livny et al. [24] extracted the tree skeletal
structures from point cloud models. Li et al. [20] employed
arterial snakes to extract skeleton from the incomplete point
cloud, while this algorithm focused on topology recovery.
Verroust et al. [35] computed the level sets of the distance
map using neighborhood graph to extract curve skeleton of
tabular shape such as blood vessels. Kustra et al. [19] com-
puted refined skeleton from rawmedial-surface point clouds.
Skeletons can also be used to recover the intrinsic reflec-
tion symmetries of shapes, Zheng et al. [36] applied curve
skeletons to perform intrinsic symmetrization for the input
shape.
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Fig. 1 System overview. The input cloud is first voxelized, then, we estimate the distance field. With the distance field, we compute the initial
skeleton. Finally, we refine the initial skeleton using distance field guided L1 median

More recently, Huang et al. [15] introduced a L1-medial
projection operator to extract curve skeleton from 3D point
cloud. As a state of the art method, without preprocess-
ing, this algorithm can be directly operated on raw scanned
data with poor quality to produce compelling results. How-
ever, in the iterative contraction procedure, the neighborhood
size setting is important for obtaining satisfactory results.
Although sophisticated adaptive neighborhood size tuning
method have be given in [15], to process complex models,
even usingmodel-specific parameters tuning, to obtain desir-
able skeleton is a non-trivial task for this method [15].

3 System overview

The input to ourmethod is one unorganized set of points Q =
{q j } j∈J ⊂ R3, typically unoriented, unevenly distributed,
and containing noise and outliers. The output is a 1D curve
skeleton X = {xi }i∈I ⊂ R3 representing a one-dimensional
local center of the shape underlying the input Q. The main
steps of the algorithm are as follows.

Distance field computing The input raw scan model is first
uniformly voxelized using multi-scale dividing method. On
the output voxelization, we apply fast marching method to
compute the distance field for the model.

Initial skeleton extraction With the computed distance field,
we produce an initial skeleton for the input model using the
multi-scale parameter controlled thinning, which provides an
initial skeleton used in the following skeleton optimization.

Skeleton refinement By incorporating the initial skeleton into
the L1-median optimization, we develop a distance field
guided L1-median to extract the complete skeleton from the
point cloud.

In our system, the voxelization presentation with distance
field provides the internal, external andboundary information
of model, which guides the sample points to move to the
center of the model. With the guidance of initial skeleton
and the distance field, we improve the L1-medial method
[15], and the projected samples will converge to the center of

model in oneoptimalway. Figure 1gives the systemoverview
of the proposed method.

4 Distance field computing

It is more difficult to voxelize the point cloud model than the
closed mesh model. To achieve high-resolution voxelization
for the point cloud, we first have to specify the boundary vox-
els of the point cloud model, then identify the outside voxels
and the inner voxels. Finally, we refine these voxels. Similar
to most of other methods, our method also cannot cope with
the point clouds representing a non-orientable surface, such
as the Klein bottle.

As point cloud is usually not closed, if the voxel is too
small, the voxels cannot envelop the boundary of point cloud.
To this end, we first build one bounding box for input model,
and voxelize this bounding box with an initial voxel size,
which is defined as s0 = dbb/9, (dbb is the diagonal length of
the bounding box). If a voxel contains one or more points of
model, it is a boundary voxel.We specify an exterior voxel as
seed and use flooding method to specify the outside voxels.
With the boundary voxels and outside voxels, the remained
voxels are inner voxels in the volume.

We then divide the volume with a multi-scale refine-
ment strategy. In each refinement scale, we further uniformly
divide each voxel into 3 × 3 × 3 smaller sub-voxels. We do
not change the status of the sub-voxels from the interior vox-
els and the exterior voxles. For each divided voxel from the
boundary voxel, if it contains one or more sample points of
the input model, it is labeled as boundary voxel; if one of its
26 neighbors is exterior voxel, it is labeled as exterior voxel;
otherwise, it is labeled as interior voxel. We subdivide them
in the same way progressively until the voxel resolution up
to a given threshold V 3(V × V × V ), (which is essentially
adjustable) and V is set to 100 by default. Figure 2 shows the
refinement procedure of voxelizing the dinosaur model.

Formodelswith highly concave regions,mis-classification
mayoccur for the sub-voxels of boundary voxels in these con-
cave regions during the refinement procedure of voxelization.
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Fig. 2 Point cloud voxelization. a Input point cloud. b–d are voxelization results with different scales

It happens when an exterior voxel is surrounded by neighbor-
ing voxels containing points, it is mis-classified as interior.
Although this rarely happens, this kind of mis-classification
can be alleviated or even avoided by decreasing the (initial)
voxel size of the multi-scale voxelization heuristically. Also
note that even some voxels are mis-classified, they have no
much impact on the final skeleton results, since we extract
the skeletons using a global optimization system.

This scheme is effective even for models with noise, out-
liers, andmissing areas.As illustrated inFig. 2,we effectively
voxelize the model components with large missing regions.

For raw inputs with heavy noise, outliers and missing
regions, we can pre-filter the input model using the locally
optimal projection (LOP) [23]. Actually, even if we pre-
processed the input model with LOP, its topology would not
be altered. Thus, we can obtain desirable skeleton that cap-
tures the essential topology of the model all the same.

For models with sparsely sampled regions, we resort to
upsampling. Many point set upsampling methods have been
proposed, such as moving least squares method (MLS) [1].
In our method, we employ a simple method. To perform
upsampling, we first detect regions with insufficient sam-
pling density according to the local sampling density ρi . We
estimate ρi for each qi by finding the sphere with minimum
radius ri centered at qi that contains the k-nearest neighbors
to qi . Then ρi is defined as ρi = k/(ri )3. If ρi is below
a given threshold value, then new sample points must be
inserted. In our experiments, we insert the points using the
simple linear interpolation,whichworkswell for our skeleton
extraction purpose. Figure 8 shows a lion model containing
8K points and its upsampled version containing 30K points
after upsampling.

With the voxelization representation P = {pi }i∈L of point
cloud, where L is the total number of the voxels in P , we
apply the fast marching method [29] to approximate the dis-
tance field for the voxelization representation. The distance
field DTp of each interior voxel p of a voxelized volume is
the smallest distance from this voxel to the boundary of the

volume. Note that, to compute distance field for the model
with many disconnected components, we can estimate the
distance field for each component, respectively, to produce
the initial skeletons. Figure 5 shows the color-coded distance
fields of two models.

Note that for model with heavy noise/ourliers, using our
voxelization method, these noise/ourliers will be contained
in the voxels, and these voxels are classified into boundary
voxels, as illustrated inFig. 3c. In the distancefield estimation
using the fastmarchingmethod, these voxels are set the initial
values (in our experiments, the initial value is zero). As these
voxels are scattered and are disconnected with model, in the
fast matchingmethod, the distance field will not propagate in
these voxles.We can remove these voxels from the generated
distance field, and these voxels will not be included in the
following skeleton extraction, as illustrated in Fig. 3d.

5 Initial skeleton extraction

Gagvani et al. [12] selected the ridge voxels having local
maximal distance value as the candidates for curve skeleton
points. They decided whether one voxel is a ridge voxel by
performing the comparisons between the distance field value
at a voxel and the average distancefield value of its neighbors.
That is, if a voxel meets the following condition, it is labeled
as a skeleton point:

MNT p < DT p − TP

MNT p =
26∑

i=1

DT pi /26, pi ∈ VP (1)

where DT p is the distance between voxel p and its near-
est boundary voxel, VP is union of 26 neighboring voxels,
pi ∈ VP,TP is the thinning parameter, determining how
close MNT p should be to DT p for p to be added to the
skeleton. It controls the thickness of skeleton.
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Fig. 3 Point cloud voxelization and distance field computing. a Input model, b, c are voxelization results with different scales, observing the
voxelization results on the outliers, b is the color-coded slice of the distance field

Fig. 4 Comparison of initial skeleton extraction methods. a Result of our method. b Result setting TP = 0.7. c Result setting TP = 0.5

While using this parameterized thinning method, users
have to specify the value for TP, which is neither straight-
forward nor so easy to estimate. Inappropriate parameter TP
setting will make the initial skeleton too thick or too thin,
furthermore, some noise skeleton points will be introduced.
To address this problem, we propose a multi-scale method to
identify the initial skeleton points. We compute TP in three
different scales (with neighborhood size of 3×3×3, 5×5×5
and 7 × 7 × 7, respectively):

MNT1
p =

∑26

i=1
DTpi /26, MNT1

p < DTp − TP
1

MNT2
p =

∑124

i=1
DTpi /124, MNT2

p < DTp − TP
2

MNT3
p =

∑342

i=1
DTpi /342, MNT3

p < DTp − TP
3

(2)

For the 26 neighbors of each voxel p, we first compute
their average distance field MNT1

p. Then TP1 is defined as
the difference between the average value ofMNT1

p of all the
voxels andDT p of all the voxels in the model, that is, TP1 =
c ·

∑
p∈L MNT1

p−
∑

p∈L DT p

|L| , and c is a coefficient between 0 and
1. We empirically set c = 0.86 , and find it an appropriate

value for all of our experiments. TP2 and TP3 are evaluated in
the similar way for the 124 neighbors and the 342 neighbors
of each p, respectively. If voxel p meets all of the conditions
of Eq.2, then we label p as the skeleton points.

As illustrated in Fig. 4, our method greatly improves the
skeleton extraction results without tedious parameter setting.
However, for complex model, as illustrated in Fig. 5c, the
result is still not satisfactory, where there are many points
with local minimal/maximal value using the approximate
distance field. Thus, uniform parameter T P setting cannot
handle all of situations, we need to refine the skeletons gen-
erated using distance field.

6 Skeleton refinement

We incorporate the initial skeleton into the L1-median
optimization [15] to refine the skeleton results. Recently,
L1-median [32] has been widely utilized in point cloud
processing [3,14,15,22,23,28]. Huang et al. [15] exploited
local L1-medianmethod to extract skeleton of the unoriented
raw point scan.
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Fig. 5 Left Color-coded slice of the distance field of themodel.Middle
and right the extracted skeleton by the distance field (different view
points)

Given an unoriented set of points Q = {
q j

}
j∈J ⊂ R3,

the L1-medial skeleton can be obtained by using the optimal
distribution of the projected points X = {xi }i∈I :

argmin
X

∑

i∈I

∑

j∈J

∥∥xi − q j
∥∥ θ

(∥∥xi − q j
∥∥)

+
∑

i∈I
γi

∑

i ′∈I\{i}

θ (‖xi − xi ′ ‖)
σi ‖xi − xi ′ ‖ (3)

where the first term is a localized L1 median of Q, the second
term regularizes the local point distribution of X, I indexes
the set of projected points X , and J indexes the set of input
points Q. The weight function θ (r) = e−r2/(h/2)2 is a fast
decaying smooth function with support radius h. Parame-
ter σi computed using weighted PCA is applied to detect
the formation of the skeleton branches. {γi }i∈I are balancing
constants among X .

In this method [15], appropriate support radius h setting
and bridge points selection (bridge points are used to con-
nect skeleton branches, and connect skeleton branch with
other non-branch points) are vitally important to obtain good
results.With appropriate parameters setting andbridge points
selecting, this method can produce desirable skeleton for
model such as Fig. 6a. However, to set appropriate parame-
ters and select bridge points is a tedious task. As illustrated in
Fig. 6b, for the same model with different pose, this method
may not work well.

The L1-medial method tries to find the center of compo-
nent as the skeleton points. As complex point cloud is usually
composed of lots of disconnected components, if the neigh-
borhood with radius h contains points coming from only one
component of model, the sample point xi may be moved to
the center of the part. However, if the neighborhood con-
tains several components of the model due to inappropriate
radius h setting, it will be difficult for the sample point xi

Fig. 6 Left appropriate support radius h setting produces good results.
Middle wrong bridge points lead to uncorrected skeleton extraction
result. Right using voxelization information to select the bridge points,
we get much better result

to move to the center of right part, which will reduce to the
wrong results. Furthermore, for model with several compo-
nents with different sizes (each component also may have
different size in its different parts), it is also difficult to set
uniform h for all the components to produce high quality
results. Thus, setting adaptive h is required to obtain good
results. Although adaptive h setting techniques are given in
[15], to produce satisfactory results is still tedious.

6.1 Distance field guided L1-medial

We apply the information of classified voxels and distance
field to solve above problems. When iteratively projecting
the sample points to the center of the components, we assure
that they should move along the direction of distance field
increasing. For bridge points selecting, the connection line
between branch endpoint and bridge point must be always
inside the model.

Initial skeleton produced in previous section is located at
the central regions of themodel components, and can provide
useful information to guide the movement of the projected
sample points. Based on this observation,we use initial skele-
ton to guide the convergence of sample points, and present
the following distance field guided L1 median samples pro-
jector:

argmin
X

∑

i∈I

∑

j∈J

∥∥xi − q j
∥∥ θ

(∥∥xi − q j
∥∥)

+
∑

i∈I
θi

( n

N

) ∑

k∈K
‖xi − sk‖ θ (‖xi − sk‖)

+
∑

i∈I
γi

∑

i ′∈I\{i}

θ (‖xi − xi ′ ‖)
σi ‖xi − xi ′ ‖ (4)
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where K is the index of initial skeleton points S = {sk}k∈K ⊂
R3 and θi (r) = ne−r2 . For the neighborhood centering at xi
with radius h, N is the number of model points contained in
the neighborhood, n is the number of initial skeleton points
contained in the neighborhood.

The distance field guided L1 median (Eq.4) indicates that
initial skeleton has strong attraction to the projected sample
points, and makes the projected points move to component
center. When we set the gradient of the energy (Eq.4) to zero,
we can obtain the following relation for each point location:

∑

j∈J

(
xi − q j

)
αi j + θi

∑

k∈K
(xi − sk)αik

−γi
∑

i ′∈I\{i}

xi − xi ′

σi
βi i ′ = 0, i ∈ I (5)

where αi j = θ(‖xi−q j‖)‖xi−q j‖ , j ∈ J ; αik = θ(‖xi−sk‖)‖xi−sk‖ , k ∈ K ;

βi i ′ = θ(‖xi−xi ′ ‖)
‖xi−xi ′ ‖2 , i ′ ∈ I\ {i}.

We set

u =
γi

∑
i ′∈I\{i} βi i ′

σi
∑

j∈J αi j
, ∀i ∈ I

v = θi
∑

k∈K αik∑
j∈J αi j

, ∀i ∈ I (6)

Then by rearranging Eq. (6) we get

(1 + v − u) xi + u

∑
i ′ ∈I\{i} xi ′ βi i ′∑
i ′ ∈I\{i} βi i ′

=
∑

j∈J q jαi j + θi
∑

k∈K skαik∑
j∈J αi j

(7)

Eq.7 can be considered as a system of equations with X
as unknowns, i.e., AX = BQ + SP. As v ≥ 0, and u ≥ 0,
if 0 ≤ u < (1 + v)/2, then matrix A is strictly diagonally
dominant and is non-singular. The solution can be obtained
by solving the system: X = A−1(BQ + SP).

In our implementation, similar to [15], we apply a fixed
point iteration to solve above system. Given the current itera-
tion Xt = {

xti
}
, t = 0, 1, . . ., the next iteration is computed

as follows,∀i ∈ I ,

xt+1
i = (u − v)xti +

∑
j∈J q jα

t
i j + θi

∑
k∈K skαt

ik∑
j∈J αt

i j

−u

∑
i ′ ∈I\{i} x

t
i ′ β

t
i i ′∑

i ′ ∈I\{i} β t
i i ′

(8)

where αt
i j = θ(‖xti −q j‖)

‖xti −q j‖ , j ∈ J ; αt
ik = θ(‖xti −sk‖)

‖xti −sk‖ , k ∈ K ;

β t
i i ′ = θ

(∥∥∥xti −xt
i ′
∥∥∥
)

∥∥∥xti −xt
i ′
∥∥∥
2 , i ′ ∈ I\ {i}; σ t

i = σ
(
xti

)
. As σ t

i is defined

as the directionality degree of xi within a neighborhood, then
σ t
i ∈ (0, 1]. As v ≥ 0 always holds, if we set from [0, 1/2),

matrix A is strictly diagonally dominant, and the sequence
x0i , x

1
i , x

2
i , . . ., will converge to a position. In this paper, we

set u = 0.35 for all the results.
In each iteration, the sample point xi should moves along

the directionwith larger distance field. Let Dk
i be the distance

value of point xki at kth iteration. If in the next iteration, x
k+1
i

moves to one voxel with less value: Dk+1
i < Dk

i , we keep xi
fixed in the iteration, that is, xi does notmove in this iteration.

Note that, if 0 ≤ u < (1 + v)/2, then matrix A is
strictly diagonally dominant and is non-singular, using the
fixed point iteration, the xti will converge to a position. In
addition, if we do not set above hard constraint, the moved
sampled points, that is, the generated skeleton may penetrate
out of the model. In our implementation, we found the itera-
tions always converge and the sample points always move to
the model center. It also should be pointed out, using above
hard constraints, the iterations will converge relatively slow.

To set appropriate radius size h is important to obtain
desirable results. In [15], Huang et al. set uniform value in
the initial iterations. In the following contraction iterations,
they increase h gradually to contract the non-branch points to
the component center. In our method, the initial skeleton and
the distance field provide useful cues to set adaptive radius h
for the sample points. Let sample point xti at the t th iteration
has support radius hti , and the neighborhood contains n initial
skeleton points, s j , j ∈ n. We compute the center of these
initial skeleton points in the neighborhood as:

center =
∑

j∈n s jθ
(∥∥xti − s j

∥∥)
/n (9)

If the distance between center and sample point xti is
smaller than the size of voxel, the next support radius ht+1

i
will be set as the distance field value of voxel which contains
center . If the distance is larger than the size of one voxel,
then ht+1

i = (1 + radio)hti , where radio is the increasing
radio of the support radius. Note that, in the initial iterations,
we use the same support radius defined in [15], we find that
it works well in our experiments.

Similar to [15],we use bridge points to produce a complete
skeleton.With the distancefield,we can select suitable bridge
points to connect the skeleton branch to the non-branchpoints
for updating the existing skeleton branch, or to create joints
which connect the neighboring skeleton branches. When we
select bridge point, if the connection curve of the branch end-
point e and the bridge point penetrates outside of the model,
it is not a qualified bridge point. With the voxelization pre-
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Fig. 7 Skeleton extraction comparisons. a Input models, b voxelization results, c initial skeletons, d our finial skeletons, e results of [15]

sentation and voxel type information (boundary, outside and
inner voxel), we can assure that skeleton will not penetrate
outside of the model by selecting appropriate bridge point.
That is, if connection curve passes through outside voxels,
then this connection curve is not qualified, and we need to
select new bridge points. In Fig. 6, we give the comparison
results using and without using voxelization information for
bridge point selection.

7 Results and discussion

We validate the effectiveness of the proposed methods by
demonstrating the skeletons extracted frommodels of diverse
shape and structure. We also compare our method with the
most related method [15].

The running time of the proposed method is mainly con-
sumed in the following four steps: voxelization, distance
field computing, initial skeleton extraction, and final skele-
ton refinement. The former three steps are relatively fast, and
the most time-consumption step is the latter. While accurate
time consumption is model-specific, we evaluate the timing
consumption of our method statistically. For a model with
35,000 points, if we take 1500 sample points in the project-
ing contraction, and voxelize the model with the resolution
of 100 × 100 × 100, it averagely takes 3 seconds for vox-

elization, 10 seconds for distance field computing, 3 seconds
for initial skeleton extraction, and 24 seconds for skeleton
refinement using L1 median. By using the code presented
by [15], it usually consumes about 32 seconds for the same
model to produce the results. Our method costs more time
due to the integration of the extra steps, which contributes to
refined skeletons. All the tests are carried out on a PC with
an Intel Core i7-4790K CPU and 16GB RAM.

In Fig. 7, we extract skeletons from models with thin
cylindrical components. Note that these models exhibit sig-
nificantly heavy noise. In these examples, both our method
and algorithm [15] obtain satisfactory results, however, our
method requires less tedious parameter tuning to produce
the desirable results. That is, our method needs less trial and
error operations to get the final results.Without distance field
guidance, using the algorithm [15], the projected samples are
apt to deviate from the center of components without careful
parameters tuning, especially for the support radius h.

Impact of sampling density As having been pointed out,
before voxelization, we need to detect the sparsely sampled
regions and upsample these regions on the input point cloud
Q. We define local sampling density as ρi = k/(ri )3. If
ρi is below a given threshold value, then that region is of
insufficient sampling density and need upsampling. In our
implementation, we set k = 5 and set ri with a default neigh-
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Fig. 8 Skeletons extracted from models before and after upsampling. a, e Skeletons from original models by [15]. b, f Skeletons from upsampled
models by [15]. c, g Skeletons from original models by our method. d, h Skeletons from upsampled models by our method

borhood size ri = 3dbb/ 3
√|J |, where dbb is the diagonal

length of Q’s bounding box and |J | is the number of points
in Q. So the required sampling density ρi is 5|J |/27d3bb. For
above neighborhood size, if the neighbors contained in the
neighborhood are less than 3, then we increase neighborhood
size to make the interpolation-based upsampling work, and
produce enough samples for voxelization. Actually, we usu-
ally make the sample points denser than above threshold to
facilitate the subsequent voxelization.

We perform our algorithm on two models with sparsely
sampled torso and their upsampled models (see Fig. 8).
When extracting skeletons from the sparse models contain-
ing 6381/4211 points, the results of both [15] and ourmethod
are not satisfactory. For our method, as insufficient sampling
density will lead to the disconnection of distance field with
high voxelization resolution, which leads to the artifacts in
the final skeleton. After upsampling the models (amount-
ing to 33,920/22,802 points), our method obtains compelling
results, which are much better than the results of [15].

Comparison to mesh contraction We compare our method
with Oscar Kin-Chung Au’s method on the dog model pro-
vided by the authors [2], and show respective results as
follows. Note that we perform Oscar’s method on the mesh
model using the executive files presented by the authors. We
perform our method on the corresponding point cloud. As
illustrated in following Fig. 9, the result of Oscar has more
skeleton branches around the head part of the dog, and the
skeleton retains the key features of the head part. In compar-
ison, our method only retains the most salient features of the
model. We also compare our result with that of [15].

Comparison to L1-medial skeleton In Fig. 10, we work on
the models with different characters, and also compare with
[15]. In these examples, each model has some components

Fig. 9 Result comparisons. a Result of Oscar [2], b result of [15], c
our result

that are not thin and cylindrical. In performing iterative con-
traction, Huang et al. [15] have to gradually increase the
support radius h to further contract non-branch points to
produce skeletons. While setting h in this way is model-
special, to process complex model, the sample points may
not contract to the component center. In our experiments, we
found thatwithout prior for the centers of components, the L1

median projection, aimed to automatically contract the points
to the centers, sometimes does not work well. Furthermore,
to receive satisfactory results, besides the radius h setting,
appropriate bridge points selection is also a non-trivial prob-
lem.Without model shape prior, wrong bridge points may be
selected, whichwillmake the resulting skeleton penetrate out
the model. However, with the guide of the distance field, our
method provides much better results and also requires less
trial and error operations. In Fig. 10, we present comparison
results on six models. Note that we use the code presented
by authors of [15] to produce all the results of the method
[15], and for each result, we use the optimal parameters and
try to obtain the best results.

Compared with [15], our method also has some disad-
vantages. Even for models with significant heavy outlier,
the method [15] can be performed on these models without

123



252 C. Song et.al

Fig. 10 Skeleton extraction comparisons. a Input models, b voxelization results, c initial skeletons, d our final skeletons, e results of [15]
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Fig. 11 Failed example. a Input modal viewed from 3 viewing directions: front, left side and right side. b RBF reconstruction result of (a). c
Skeleton extracted from (b) using our method. d Skeleton extraction result of [15] (result from the authors’ paper)

preprocessing for outlier removal. In this situation, we need
to pre-filter the models using the locally optimal projection
(LOP) [23] before performing effective voxelization. While
it also should be pointed out that, the preprocess procedure
will not alter the topology of the input model, thus, it will not
have effect on the final skeleton generation.

LimitationsAlthough ourmethod can obtain excellent results
for models with complex shape, our method still has the
following limitations. The proposed scheme works well for
most input data, however, for those scanned point clouds
whose missing regions are too large, our method would be
challenged. Taking the deer model in Figure 1 of [15] as
an example, our method performs worse or even does not
work. As illustrated in the Fig. 11a, large missing regions
are distributed on the model. Our method cannot perform
voxelization on the input model, thus, fails to extract the
skeleton from the input model. If resample and complete
the model using RBF method (Fig. 11b), we can voxelize
the model and extract the skeleton, however, as illustrated
in Fig. 11c, the skeleton deviates from the original model
part center, since it is extracted from the upsampled mod-
els obtained using energy minimization model (RBF). The
method of [15] can extract satisfactory result from the origi-
nal inputmodelwithout upsampling (Fig. 11d). This example
illustrates that our method usually fails to extract the satis-
factory skeleton from the model with large missing surface
regions.

Finally, compared with [15], our method has higher time
complexity for computing the distance field, and needs more
memory consumption for voxelization presentation.

8 Conclusion

In this paper, we present a distance field guided L1-median
to extract skeletons from the point cloud. Our method com-
bines the advantages of both the distance field based method
and of L1-median based method, and particularly, improves

the robustness and effectiveness of the L1-median skeleton
method. We have extracted the skeletons from a variety of
point clouds to illustrate the effectiveness of the proposed
methods.

Many 1D skeleton extraction algorithms have been pro-
posed, and every algorithm has its advantages and disadvan-
tages. As skeleton extraction from complex point cloud data,
especially from the scanned raw data with missing data, is
an ill-posed problem, our method also exhibits some limita-
tions. Thus, we believe that our method can be considered as
a good complement for the skeleton extraction community.

Compared with extracting skeleton from one static model,
extracting the skeleton series from the time-varying surface
sequences is a more challenging task. As desirable extracted
skeleton series should not only be topologically clean but
also be temporally coherent. In the future, we would like to
extend our method to this research direction.
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