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Abstract Articulated hand tracking systems have been
commonly used in virtual reality applications, including
systems with human–computer interaction or interaction
with game consoles; hand pose estimation has various other
applications comprising sign language recognition and ani-
mation synthesis. The advanced technological achievements
in motion capture over the last decade allow data acquisi-
tion with high accuracy and low cost. However, due to the
high complexity of the human hand, it is still challenging
to animate a hand model able to deal in details with the
anatomical and physiological constraints of the hand. In this
paper, we present a simple and efficient methodology for
tracking and reconstructing 3D hand poses. Using an opti-
cal motion capture system, where markers are positioned at
strategic points, we manage to acquire the movement of the
hand and establish its orientation using a minimum number
ofmarkers. An InverseKinematics solverwas then employed
to control the postures of the hand, subject to physiological
constraints that restrict the allowed movements to a feasible
and natural set. The proposedmethodology produces smooth
and biomechanically correct movements, while the required
processing time remains low, enabling an effective real-time
hand motion tracking and reconstruction system.
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1 Introduction

In recent years, there has been a growing demand for reli-
able hand motion tracking systems, which find applications
in hand gesture and sign language recognition, to generate
virtual figures for films or computer games, and for human–
computer interaction (HCI), including interaction with game
consoles. However, building a fast and effective hand pose
tracker with full articulation remains challenging. The high
dimensionality of the hand pose space, in our examples
31 Degrees of Freedom (DoF), its mechanical complexity,
the ambiguities due to self-occlusions and the significant
appearance variations due to shading, make efficient tracking
difficult. To achieve a successful reconstruction and anima-
tion of the movement, the hand model is required to be
structured taking into consideration the anatomical and phys-
iological properties of the hand.

Many methods have been proposed to deal with hand
tracking. Glove-based methods usually require a large num-
ber of markers to be attached on the hand and/or need
of additional information in order to deal with marker
occlusions [78]. The current trend is to use vision-based
methods, such as infrared or RGB-Depth (RGB-D) cam-
eras (e.g. [68,70]). These methods can efficiently track the
hand movement without requiring the user to wear a glove
or attach markers. However, apart from their small capturing
volume, it is challenging to automatically splice the hand cap-
tureswith full-body acquisition to attain holistic performance
capturing. Since it is not always possible to simultaneously
capture fingers and full-body motions, hand movements
are usually captured in separate sessions and later con-
nected with full-body animation [44], or are manually cre-
ated by animators; nevertheless, manual interventions may
result in poor synchronization between the body and hand
movements.
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In this work, we introduce an efficient and highly struc-
tured method for accurate hand tracking and animation of
virtual hands; it utilizes optical motion capture (mocap) data
and can be used for performance capturing or precise interac-
tive control in large capture volumes. Marker-based motion
capture has been demonstrated in several interactive systems
(including but not limited to hand reconstruction) producing
results which are highly accurate and easily configurable.
There are, however, instances where the number of mark-
ers that is possible to be attached on each limb segment is
limited, complicating the reconstruction of the hand. To over-
come these limitations and achieve real-time hand animation,
a new hand model is presented; this model uses a reduced set
of eight markers to capture the full articulation of the com-
plex hand movement. A single labeled marker is attached
and tracked on each finger, one marker at the wrist (root) and
two additional markers at strategic positions to define the
hand orientation. The problem is solved as an optimization
process that includes Inverse Kinematics, to fit the joint posi-
tions to the hand model, and a marker prediction framework,
combined with joint constraints, to maintain a continuous
data-flowwhen occlusion of markers by other elements leads
to missing data. The optimization process is then completed
by integrating physiological constraints to eliminate the pro-
duction of unnatural motion, ensuring that the reconstructed
hand motion is within a feasible set. The results were visu-
alized using a mesh deformation algorithm, demonstrating
that the produced motion is smooth and without oscillations.

The proposed hand structural method is real-time imple-
mentable; it does not use pre-captured data, or search in large
database to match a pose. It is not limited to low-accuracy
hand interactive applications, and can find applications in
hand gesture recognition, sign language, and high-quality
performance animation. The main contribution of this paper
is a two-step optimization process that consists:

• A simple framework that uses a reduced set of markers
and Inverse Kinematics (IK) to track and reconstruct the
full hand and fingers articulation; the hand data can be
automatically spliced to full-body acquisition to obtain
holistic performance capturing.

• Physiological constraints to ensure productionof anatom-
ically natural movements that are within a feasible set;
in addition, they are used as inferred information to the
marker prediction framework, recovering the occluded
marker positions to maintain a continuous data-flow.

2 Literature review

Over the last few decades, many approaches have been pre-
sented for tracking and gesture configuring of the hand
model. A great overview is given in Wheatland et al. [75]

work, where the authors present a state-of-the-art in hand and
finger modeling and animation. Themain research directions
and industry applications are also illustrated, highlighting the
advantages and disadvantages of each methodology.

In general, hand reconstruction and animation methods
can be classified into two major classes: glove based and
vision based. Glove-basedmethods are usually real time, they
are, however, expensive and detect only a limited set of finger
movements (e.g., P5 Data glove). The vision-based methods,
on the other hand, are more accurate, but they have problems
with occlusions, noise and spurious data. The following para-
graphs briefs the most recent and popular technologies and
methods for hand pose reconstruction.

Bend sensor gloves Bend sensor is a glove-based method
that allows gesture reconstruction and can efficiently mea-
sure hand and finger joint angles in real time. There are
many different types of data gloves available; for instance,
CyberGlove [12] systems used sensors that convert the angles
into voltages. Sensored gloves are favored for use in large
spaces and outdoors, and since they do not face occlusions
problems, they are popular for hand interaction applications.
The main disadvantage of this technology is that they suffer
from sensor cross-coupling, resulting in low joint angle accu-
racy [23]. Furthermore, the gloves usually have fewer sensors
attached than handDOFs, limiting the precision of the articu-
lated hand reconstruction. Lin et al. [40] proposed a learning
approach tomodel constraints in the hand configuration space
using motion data collected by a CyberGlove. Typically, the
hand posture is estimated by searching in high-dimensional
configuration spaces; in contrary, the authors incorporate
constraints to define a lower-dimensional subspace, thus gen-
erating more natural and feasible hand movements.

Marker-based motion capture Marker-based motion cap-
ture technology, such as PhaseSpace [53] and Vicon [72],
offers high positional accuracy; it is commonly used for full-
body motion and performance capture. These systems usu-
ally require a large number of markers to be attached on each
limb segment to accurately reconstruct the motion. However,
fingers are small and it is not possible to attach many mark-
ers for capturing the full articulation of the fingers [27]. In
addition, missing data due to markers’ occlusions by other
elements add a substantial amount of post-processing time to
clean the data. Lien and Huang [39] proposed a hand model
together with a closed form IK solution for the finger fitting
process. The 3D positions were obtained using color mark-
ers and stereo vision, and the finger poses were chosen using
a search method. Park and Yoon, [52], also used a marker-
based mocap system; a LED glove has been employed to
produce interactions in multi-modal display environments,
while the gestures were recognized and classified using hid-
den Markov chains. Aristidou and Lasenby [4] used optical
mocap data and a reduced set of eight markers to track hand
movements; however, each kinematic chain of their hand
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model was structured and treated independently, eliminating
the control of the movement. In addition, hand physiological
constraintswere not taken into consideration, resulting some-
times in unfeasible poses. Pollard and Zordan [54] presented
a method that allows control for physically based grasp-
ing using mocap data; the motion can be further adjusted
to external changes using Liu’s optimization [42]. Recently,
Schröder et al. [58] applied IK optimization in a subspace
learned from prior hand movements, using a reduced marker
set. The authors evaluated various reduced marker layouts to
find the best configuration for capturing the hand articulation.
Using Forward and Inverse Kinematics techniques, Hoyet et
al. [21] has previously show that fingermotions reconstructed
using a set of eight markers per hand are perceived to be sim-
ilar to the corresponding motions reconstructed using a full
set of twenty markers.

Vision-basedmethodsAcheaper alternative to themarker-
based methods, that provides a more natural interaction
experience to the user, are the vision-based methods. The
vision-based methods can be separated into two major cat-
egories: the methods that use a monocular video camera to
recover the hand posture, and themethods that utilize infrared
and/or RGB-Depth (RGB-D) cameras. Both vision-based
methods can be further divided into two classes, the methods
that estimate the hand pose via template-matching [59,73],
which reconstruct the hand pose from a single frame through
classification or regression techniques, and the methods that
utilize a model-based search [30,38,50], where the posture
is approximated by projecting a 3D articulated hand model
and aligning the projection with the observed image.

Monocular video camerasMonocular video cameras have
been used for tracking and reconstruction of articulated
motion due to its easy and quick setup. In this manner,
Cerveri et al. [10] utilized a kinematic model using a multi-
camera system and markers, which consists of a hierarchical
chain and rigid body segments. Limitations relative to the
joint rotational and orientational constraints were taken into
consideration to restrict the motion to natural postures.
In [17] and [11], vision-based hand shape estimationmethods
were introduced using shape features acquiring from camera
images. The extracted features were then used to approxi-
mate the hand’s state, and the local state of each finger was
estimated using IKandphysical hand constraints.On the con-
trary, Kaimakis and Lasenby [24] used a set of pre-calibrated
cameras to extract the hand’s silhouette as a visual cue. The
2D silhouette data is then modeled as a conic field and phys-
iological constraints are imposed to improve the reliability
of the hand tracking [25].

Dewaele et al. [13] implemented a bare-hand tracking
approach using edge data detection and silhouettes to identify
the pose of the hand. Sudderth et al. [67] used a nonparamet-
ric belief propagation (NBP) algorithm for tracking the hand
poses and kinematic constraints; in that way, they were able

to handle cases with self-interactions and self-collisions. De
la Gorce et al. [29] proposed a 3D hand tracking approach
from monocular video. A formulation for exploiting both
shading and texture is presented, which is able to handle
the problem of self-occlusions and time-varying illumina-
tion. However, due to the high dimensionality of the human
hand, these methods have high computational cost, making
it difficult to use them for real-time interactions in control
applications. In contrast [34,57], achieve interactive speeds
using bare-hand tracking systems at the cost of resolution and
scope. More recently, Feng et al. [15] proposed a behavior-
driven freehand tracking based on correlations among Local
Motion Models and cognitive information, achieving real-
time results with satisfactory reconstruction accuracy.

Wang and Popovic [73] and Fredriksson et al. [16] pro-
posed methods for hand tracking using a single camera and
an ordinary cloth glove that was imprinted with a custom pat-
tern; the pose corresponding to the nearest database match
was then retrieved. Furthermore, Wang and Neff [74] used
data gloves, introducing a method that provides hand shape
and fingertip reconstruction using a Linear Mean Composite
Gaussian Process Regression (LMC-GPR) model. Although
these methods offer a simple, computationally cheap and
promising solution, a large database is required to correlate
the resulting pose. Guan et al. [19] proposed an Isometric
Self-Organizing Map for nonlinear dimensionality reduc-
tion, so as to organize the high-dimensional feasible hand
pose space in a low dimension lattice structure. Taking into
account that generally not all the required information is
available, these methods suffer from erroneous pose predic-
tions and oscillations. In addition, since the hand pose is
obtained by search and template matching, the reconstructed
hand postures are highly correlated with the training data,
making these methods less reliable than optical mocap sys-
tems.

Infrared cameras and RGB-D cameras: Inferred and
RGB-D cameras have been used for efficient and real-time
human pose reconstruction, aiming to track the complex
human motion for interactive applications [62]. Based on
this technology, many companies manufactured products
for real-time hand motion recovery and interaction. Nimble
VR [49], introduces Nimble sense, a tiny depth sensor that
is attached on virtual reality head-mounted display, that is
specifically designed to capture the hand movements. Leap
Motion [33] has produced a computer hardware sensor device
for hand and finger motions control. Using two monochro-
matic infrared (IR) cameras and three infrared LEDs, the
device synthesize 3D position data by comparing the 2D
frames generated by the two cameras.

Many researchers over the last decade use RGB-D cam-
eras to track a fully articulated hand [43,55,61,68,70];
the first attempts were almost a decade ago [47], where a
real-time pose recognition was achieved, but due to the low-
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resolution of the depth images at the time, the reconstruction
accuracywas low. The resolution and quality of RGB-D cam-
eras were later improved, allowing a more precise tracking
and reconstruction. For instance, Krejov and Bowden [28],
using RGB-D for 3D detection and tracking of fingertips,
were capable of processing four hands simultaneously.Many
papers in the literature use the RGB-D technology to fit a
model in continuous pose space, achieving better accuracy
compared to template matching [26,45,50,51]. In that way,
Liang et al. [38] proposed a spatiotemporal feature, which
enforces both spatial and temporal constraints in a unified
framework for hand parsing and fingertip detection. Oth-
ers, [18,76], utilized a regression forest (RF) to produce a
number of votes for the hand pose for each individual input
pixel; the votes are collected for all pixels, and are fused for
the final estimation. RF proves to be fast, accurate, robust
to partial occlusion, and very effective for articulated pose
estimation. Later, Liang et al. [36,37] took advantage of the
hand joint rigidity (bone lengths are fixed) and that the fin-
ger motion is highly constrained, proposing a multimodal
prediction fusion, learning the joint correlations using PCA
analysis in the training data. Finally, they seek the optimal
joint parameters in this reduced dimensional space during
testing; the depth image is parsed by per-pixel classifica-
tion using a pre-trained classifier, aiming to obtain the hand
parts. Zhao et al. [78] combinemarker position data recorded
using a mocap system with RGB-D information, to acquire
high-fidelity hand motion; the inferred RGB-D information
complements the marker-based mocap data when markers
are occluded. An optimization technique is then introduced
to estimate the pose that best matches with the observed
data. Data-drivenmethods are also used to estimate the finger
motion that satisfies spatiotemporal correlations with motion
segments [22,44,77]. However, generating model features
online is time-consuming, while searching for a matched
pose of an input image to the high-dimensional space of
the hand requires high computational cost. In addition, due
to the high articulation of the hand, the fingers encounter
self-occlusions in the projected image, making the full 3D
reconstruction of the pose challenging.

Several papers [46,56,65,66] focus on statistical meth-
ods, such as an Unscented Kalman Filter and a Hierarchical
Bayesian Filter, to track the hand motion. These statistical
methods approximate the posterior by a single Gaussian and
update these approximations via a liberalization of the mea-
surement process. Shan et al. [60] employed a mean shift
embedded particle filter for visual tracking; they incorporate
the mean shift optimization into particle filtering to move
the particles to local peaks in the likelihood. However, such
methods are still far from real-time target, therefore limiting
their use. More recently, Sridhar et al. [64] use a detection-
guided optimization strategy to increase the robustness of the
hand pose estimation; the pixels of the hand model shape are

classified as parts of the hand using random forests, while
later are merged with a Gaussian mixture representation to
estimate the pose that best fits the depth.

The human hand, as demonstrated in anatomy and anthro-
pometry, is very intricate mechanical unit, consisted of
many interrelated parts that cooperate to carry out a specific
action. Many researchers in the past studied and incorpo-
rated physics-based models to imitate the hand movements
based on muscle and skin movements [2,9,63]. Thereby,
Albrecht et al. [1] employed a physically basedmusclemodel
to animate hands, including elastic skin and bones; in this
way, the authors manage to produce anatomically correct
poses. The authors also proposed a hybrid muscle model that
comprises pseudo muscles for better control of the rotation
of the bones based on anatomical and mechanical laws.

This paper introduces an efficient framework that does
not employ any machine learning or other data-driven
approaches, but carefullymodels the physical and anatomical
constraints of the human hand. A reduced number of mark-
ers is attached on the hand to enable real-time tracking of
the finger and palm positioning, while the hand articulation
is reconstructed by utilizing an IK solver that incorporates
physiologically based constraints. The principle of these con-
straints has been adopted from [25], where hand’s physiology
rules are used as integrated parameters of a Bayesian frame-
work so as to establish a measure of validity and obtain the
most natural pose that best conforms the silhouette data. In
contrast, we use data captured using a marker-based mocap
system, while the physiological constraints are employed
within an IK framework to restrict the allowed pose only
within a natural set. The use of marker-based mocap tech-
nology enables data acquisition in large capturing volumes,
whereas the reconstructed hand can be utilized to attain holis-
tic performance capturing. Finally, the problem of missing
entries that most of the marker-based methods encounters
has been solved using filtering and inferred information from
neighboring visible markers.

3 The hand model

Humanmotion is typically represented as a series of different
configurations of a rigid multibody mechanism consisting of
a set of segments connected by joints. These joints are hier-
archically ordered and have one or more DoFs. The DoFs
describe the rotations relative to their parent joints up to the
root joint, for which the position and orientation are repre-
sented with respect to a reference coordinate system. In order
to construct the position and orientation of the hand, and re-
establish its motion, optical motion capture systems use a
number of markers attached over the body of the performer.
It is important for these markers be located at strategic posi-
tions on the hand as they are more easily specified by an
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animator and tracked by mocap systems. The placement of
markers on the hand is very important, otherwise the system
is vulnerable to false predictions; in addition, the accuracy
of the system is sensitive to skin movements. Thus, this sec-
tion presents the proposed hand configuration and layout that
can be used for real-time hand reconstruction using a small
number of markers attached.

The reconstructed hand pose H∗ can be expressed as a
function of the positions of the markers that can be used
to compute the positions and orientations of the hand’s
joints. The reconstruction process consist of two optimiza-
tion processes executed simultaneously.

H∗ = K + G (1)

where K applies Inverse Kinematics to estimate the remain-
ing joint positions, and G is concerned with physiological
constraints, aiming to keep the reconstructed hand pose
within a feasible set. In the following we elaborate on each
of these two processes.

3.1 Mathematical Background

The mathematical background used for hand reconstruction
and animation is based on Geometric Algebra (GA) [20],
which provides a convenient mathematical notation for
representing orientations and rotations of objects in three
dimensions. The conformal model of GA (CGA) is a math-
ematical framework that offers a compact and geometrically
intuitive formulation of algorithms and an easy and immedi-
ate computation of rotors; it extends the usefulness of the 3D
GA by expanding the class of rotors to include translations,
dilations and inversions. Rotors are simpler to manipulate
than Euler angles; they aremore numerically stable andmore
efficient than rotationmatrices, avoiding the problem of gim-
bal lock.1 CGA also simplifies the mathematical model since
basic entities, such as spheres, lines, planes and circles, are
simply represented by algebraic objects. Thus, CGA gives
us the ability to describe algorithms in a geometrically intu-
itive and compact manner, making it suitable for applications
in engineering, computer vision and robotics. More detailed
treatment of GA can be found in [14].

3.2 The hand geometry

The first step toward an efficient and precise reconstruc-
tion of the hand motion is the structure definition of the hand
layout; for implementation purposes, it is assumed that the
hand geometry, meaning the initial joint configuration of the

1 Gimbal lock is a common problem associated with Euler angles and
occurs because two axes become aligned during rotational operations,
producing unexpected behavior.
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Fig. 1 The hand’s model geometry used in this work

hand, is known a priori. An example of a hand model is illus-
trated inFig. 1. The proposed handmodel consists of 25 joints
and has in total 31DoFs (25DoFs for the hand and 6DoFs for
the wrist). Some others in the literature used different skele-
tal models with more or less DoFs [41,71,79]. The marker
positions, which in this work are used as motion controllers,
are captured using an optical motion capture system, such as
the PhaseSpace Impulse X2 system, while the markers are
labeled (e.g. in the PhaseSpace system, each LED marker is
pulsed at a different frequency) so that it is known a priori
on which finger each marker is placed. Markers are placed
on the forth joint (Fi,4, for i = 1, . . . , 4), that is the joint
connecting the distal phalanx and the middle phalanx. The
reason we chose not to place the markers on the last joint is
because is more likely to have markers occlusions when the
hand closes (e.g., to form a fist). The marker, for the case of
the thumb, is placed on the last joint (F5,4). The orientation
of the hand is also important so as to efficiently reconstruct
the hand. This can be achieved by attaching 2 extra markers
at specific positions, p and q, on the back of the hand (reverse
palm). Assuming that the palm is always flat, we can find the
plane describing the orientation of the hand using p, q and
the position of the base root (wrist), r , which also lies on the
palm plane. For simplicity, markers p and q can be placed
at the joint positions F1,2 and F4,2, respectively, as shown in
Fig. 1.

3.3 Inverse kinematics K

The first process K aims at estimating the hand joints, at
each frame, using InverseKinematics and the inferredmarker
positions. However, before employing the IK solver, it is
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important to find the fingers’ orientations, the chain roots
and the end effectors for each chain; end effectors in this
case are assumed to be the joints with the markers’ attached.
The target positions are considered to be known since they
are tracked by the motion capture system. The procedure is
simple. Firstly, we estimate the hand orientation; thereafter,
we calculate the palm joints and thefinger orientations at each
time step. When each finger orientation is known, the finger
joints at the previous time step are translated and rotated in
such a way that all joints belong to the current finger plane.
Finally, FABRIK [5], a simple IK solver, is incorporated to
fit the joints of each finger. FABRIK is chosen due to its
efficiency, simplicity and low computational cost.

The process initialized by calculating the hand orientation;
hence, by accepting that the hand plane Φx is similar to the
palm plane and that the markers p, q and r are lying on that
plane, the hand orientation, meaning the plane Φx , can be
estimated. Therefore,

P = 1

2

(
p2n + 2p + −ñ

)

Q = 1

2

(
q2n + 2q + −ñ

)

R = 1

2

(
r2n + 2r + −ñ

)
(2)

where P , Q, and R are the 5Dnull vectors representing points
p, q and r respectively, and n and n̄ are the null vectors in
CGA. The plane Φx is equal to

Φx = P ∧ Q ∧ R ∧ n (3)

where ∧ is the outer product.
Calculating the palm joints The next step is to incorporate

constraints to obtain other palm joints. Thus, by assum-
ing that the inter-joint distances (for the joints Fi,1 where
i = 1, . . . , 5 and Fj,2 where j = 1, . . . , 4) are fixed over
time and that all these joints lie on the palm plane, we can eas-
ily locate them using basic geometric entities such as planes,
circles and spheres. An example of palm constraints is given
in Fig. 2. As an example, the joint position we are looking
for can be estimated by intersecting the spheres with centers
being the marker positions p and q and radii being the dis-
tance between the marker and that joint position (taken from
the model). Therefore, find the sphere with its center at the
marker position P and radius equal to the distance between
the marker P and the joint we are working on

Σp =
(
P − 1

2
ρ2
1n

)
I (4)

where ρ is the sphere radii. Similarly, find the sphere with
center at the marker position Q and radius equal to the dis-
tance between the marker Q and the joint we are working
on

Marker positions

Joint positions

P

Q

R

p q

1

2

nRQPx

Fig. 2 The palm plane constraints: the hand plane Φx is calculated
using the marker positions P , Q and R, accepting that the markers
lie on Φx and that the hand and palm planes are similar. The rest of
the palm joints are computed, assuming that their inter-joint distances
remain constant, by intersecting the spheres Σp and Σq with centers
at the positions P and Q and radii of the distance between their center
and the joint position we are looking for

Σq =
(
Q − 1

2
ρ2
2n

)
I (5)

The intersection of the two spheres gives a circle or a single
point or no intersection. Thus, the meet between the two
spheres equals to,

C = Σp ∨ Σq (6)

– If C2 > 0, then C is a circle. In that case, the possible
solutions are given by intersecting the circle C and the
palm plane Φx

B = C ∨ Φx (7)

– If B2 > 0, the meet between C and Φx gives
two points which can be extracted via projectors, as
described in [31]. The new joint position is assigned
as the point that is closer to the previous joint position
(at time k − 1).

– If B2 = 0, the intersection is a single point X =
BnB.

– If B2 < 0, the intersection does not exist. For that
instance, the new joint position is then taken as the
nearest point on circle, C , from the previous joint
position (at time k − 1).

– If C2 = 0, the intersection is a single point X = CnC .
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– if C2 < 0, the two spheres do not intersect. In that case,
the final joint position is given by averaging the distance
between the two markers x = (p + q)/2.

Calculating the finger joints To estimate the finger joints,
we need to find the finger planes Φi , for i = 1, . . . , 4. Each
Φi can be calculated using the known joint positions Fi,2,
the marker positions Fi,4 and by assuming that they are per-
pendicular to the palm plane Φx (note that this does not hold
for the thumb plane Φ5). Since both points from each fin-
ger are known (the motion capture system tracks the joint
positions Fi,4 and the finger roots Fi,2 lie on the palm plane
with constant distance from the attached markers p and q,
as explained in previous paragraphs), each finger plane can
be estimated at the current time frame. The vector that is
perpendicular to the hand plane Φx is given by

n̂ = Φ∗
x − 1

2

(
Φ∗

x · n̄)
n (8)

as explained in [31]. The finger planes can then be calculated
as

Φi = Fi,2 ∧ Fi,4 ∧ n̂ ∧ n for i = 1, . . . , 4 (9)

The thumb orientation Φ5 can be estimated using the
marker position F5,4, and the joint positions F1,2 and F5,2
that lie on the palm, assuming that when the thumb bends to
the ventral side of the palm, it always points at the joint F1,2
(approximately true in practice).

The next step is to estimate the rotation between the pre-
vious and the current frame of each finger plane. This can be
done using rotors; the rotor R which expresses the rotation
between the plane in the previous frame and the plane in the
current frame, for each finger, can be found using the closed
form expression given in [32]. Then each finger joint at time
k − 1 is translated and rotated in such a way that all joints
of a given finger lie on the plane of the current frame k, as
demonstrated in Figs. 3 and 4. Hence,

F̂k
i, j = RFk−1

i, j R̃ (10)

where i = 1, . . . , 4 and j = 3, 4, 5 (except for the thumb
where i = 5 and j = 2, 3, 4).

All joints now lie on planeΦk
i . Lastly, the FABRIK Inverse

kinematic solver is applied to eachfinger chain, assuming that
the root of the chain is Fk

i,2, the end effector is the rotated

point F̂k
i,4 and the target is the current marker position Fk

i,4,
as shown in Fig. 4. The inter-joint distances are constant
over time, thus, for computational efficiency, they can be
calculated and stored at the first frame.

The resulting posture can be further improved in accu-
racy and naturalness by incorporating constraints subject to
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Fig. 3 The joints’ positions at times k − 1 and k. Each finger joint at
time k − 1 needs to be rotated by R in such a way that all joints of that
finger lie on the plane of the current frame k
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Fig. 4 The current joint positions, after rotating them to lie on the
current finger planeΦk

i . The problem of orientation is, therefore, solved
and FABRIK can then be utilized assuming that the root of the chain
is Fk

i,2, the end effector is the point F̂k
i,4 and the target is the current

marker position Fk
i,4

the physiological model of the hand, taking into account the
hand, fingers, muscle, skin and individual joint properties.

3.4 Physiological constraints G

Even though K consists of soft constrains, a natural hand
pose cannot be ensured since the physiological and anatom-
ical restrictions of the hand are not guaranteed. To form a
natural skeleton, we define G that takes into consideration
the physiological constraints of the hand movement [25],
that is divided into six categories. The constraints are applied
sequentially, in the order presented here.

Inertia The first physiological constraint is inertia, a
limitation correlated with the dynamics of the articulated
structure. For implementation, it is assumed that all moving
parts of the hand skeleton have similar velocity and accel-
eration at different time periods. Obviously, the kinematic
movement can be divided into two classes, the spatial veloc-
ity of the hand’s root giving the translation of the hand, and
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the local angular velocity of each bone. Since markers are
tracked using an optical motion capture system, inertia con-
straints are usefulwhenmarkers are not visible to the cameras
due to self-occlusions (e.g. fingers overlay the markers) or
occlusions from other elements in the scene. A state-of-the-
art marker prediction mechanism is employed, such as [6],
that uses aVariable TurnModel within anUnscentedKalman
Filter (VTM-UKF); the trajectories of the omitted markers
are predicted by assuming that the finger under consideration
has similar direction, velocity and acceleration to that of the
hand.

Transdigital correlation The fingers also share transdigi-
tal correlations; in particular, certain ligaments and muscles
interact to cause an amount of flexion to be transmitted across
neighboring fingers. An exception to the transdigital corre-
lation is the thumb, which moves independently of other
fingers since it is directly connected to the trapezium. An

Fig. 5 An example explaining the transdigital correlation of the hand.
a The finger flexes without affecting its neighboring fingers, breaching
the transdigital correlation feature andproducing anunnatural posture,b
a realistic hand pose after taking into account the transdigital correlation
between neighboring fingers

example showing violation of the transdigital correlation is
given in Fig. 5a where even if both individual rotational and
orientational constraints are satisfied, the resulting hand pos-
ture remains abnormal. Figure 5b shows the physiologically
correct hand configuration, for this specific pose, where the
linked pairs of bones share a transdigital correlation move-
ment.

Friction is a constraint associated with the nature of the
skin that restricts hand movements. For instance, when fric-
tional forces are applied to a finger, they cause motion that
is transmitted to other fingers. A clear example of the fric-
tion feature is given during the formation of the fist; the skin
causes motion that is transferred from one finger to another
when they are in contact.

Again, since each finger is tracked individually by labeled
markers, the transdigital correlation and friction constraints
are considered as solved. However, similar to inertia, a
mechanism to detect violations of these constraints has
been integrated to deal with cases of marker occlusion. In
this direction, the spatiotemporal correlation between the
positions of nearby markers are studied, stating a feasible
candidate space for each marker with regards to the position
of its neighboringmarkers.When amissing entry is detected,
the VTM-UKF framework returns estimates of the occluded
marker positions. Thus, ourmechanism checkswhether these
marker estimates are within a feasible set by inferring infor-
mation from other visible markers; if a violation is detected,
our mechanism forces the estimates to remain within the
physiological bounds. This can be achieved by selecting as
the new marker position the state of the candidate space with
the shortest Euclidean distance from the VTM-UKF marker
estimate. Figure 6 indicates the linked pairs of bones which
share a correlation movement.

Flexion The design and physical restrictions of the human
handmean that fingers canmove to the ventral side, with very
limited move in any other direction. The movements that a
hand can undergo are, therefore, restricted in terms of flexion
and extension.

No Correlation

Low Correlation

High Correlation

Moving Finger

Fig. 6 The linked pairs of bones which share a transdigital correlation
movement. a The little finger and the affected neighboring fingers, b,
c and d the ring, middle and index fingers, respectively, with the effect
of their flexion on the neighboring fingers, e the thumb. The thumb’s
movement is independent of the other fingers since it is directly con-

nected to the trapezium. The moving fingers are highlighted in blue, the
highly correlated fingers in red, the fingers having low correlation to
the moving finger in green and finally, the fingers with no correlation
are colored in light gray
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Fig. 7 Examples of unnatural hand postures due to violation of the a
flexion and abduction, b rigidity properties of the finger

Abduction Another family of limitations, caused by hand
physiology, are the abduction and adduction constraints.
These constraints control and limit the amount of sideways
motion. In this paper, it is assumed that finger orientation is
highly correlated with that of the hand palm.

Figure 7a shows an example where the flexion and
abduction constraints are not satisfied; the forefinger was
erroneously rotated where the little finger was bent in an
inappropriate direction and angle.

The hands posture constraints, related to flexion and
abduction, can be incorporated directly into the FABRIK
algorithm as rotational and orientational constraints, as
described in [3]. In that manner, side rotations on fingers are
eliminated, allowing motion with only 1 DoF. Taking into
account that fingers do not twist, only rotational constraints
are applied, locking the joint orientation to be identical to
that of the palm (apart from the thumb).

FABRIK also guarantees that the performed rotation
remains within the allowed range bound; the main idea is the
re-positioning and re-orientation of the target to be within

2 4 1 3

Fig. 8 Graphical representation of the angles θ1, . . . , θ4 which define
the rotational constraints of each joint

the valid limits and to satisfy the model constraints. This can
be accomplished by checking whether the target is within the
valid bounds, at each step of FABRIK, and if it is not, to guar-
antee that it will be moved accordingly. The allowed range of
motion is defined by the angles θ1, . . . , θ4, which represent
the minimum and maximum allowed rotation of each joint
about the x and y-axes, respectively. Table 1 lists the degrees
of freedom for each joint as well as its rotational and orien-
tational limits. Figure 8 presents the angles θ1, . . . , θ4 which
define the rotational limits of each joint Fi, j .

Intradigital correlation Beyond flexion and abduction,
several posture restrictions are caused by the muscles of the
hand. For instance, the phalangeal flexion in particular fin-
gers is influenced by tendinous synapses with more than one
phalanx of that finger [8]. Therefore, it is clear that themuscle
contraction and phalangeal flexion are not fully independent,
but there is an inter-connection between them. The intradig-
ital correlation constraint is responsible for the inter-finger
connections caused by certain tendons. Similarly to finger’s
transdigital correlation, we studied the spatiotemporal corre-
lation between the joints of each finger; in this way, parents
and children joints are not treated independently. We inte-
grate pull weights that links the rotation between nearby
joints, distributing the rotation uniformly along the joints.
The position of the last joints (Fi,5 for i = 1, . . . , 4) can
be estimated by assuming that the rotation between the dis-
tal and middle phalanx is approximately 80 % of the rotation
formed by themiddle and proximal phalanx.Pull weights can
be applied as follows: check whether the rotation between

Table 1 Hand joint
configuration

DoF Rotational–x (◦) Rotational–y (◦) Orientational

θ1 θ3 θ2 θ4

Fi,1 i = 1, . . . , 4 1 – – – – No twist

Fi,1 i = 5 2 20 20 30 40 No twist

Fi,2 i = 1, . . . , 4 2 10 85 15 15 No twist

Fi,2 i = 5 2 5 30 10 10 No twist

Fi,3 i = 1, . . . , 5 1 10 95 – – No twist

Fi,4 i = 1, . . . , 4 1 10 90 – – No twist

Total 25
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4
3

(a) (b) (c)

4
3

Fig. 9 Incorporating intradigital correlation constraints. a The initial
configuration of the finger’s chain; the joint positions are in blue color,
the target is in red. b The FABRIK solution without taking into account
the intradigital restrictions; the algorithm checks whether the rotations
between joints (in this example θ4 and θ3) meet the intradigital restric-
tions. c The last joint is forced to flex so as θ4 satisfies the intradigital
correlation to θ3

Fig. 10 An example showing the intradigital correlation feature. aThe
intradigital correlation constraint is violated; even if the rotational and
orientational constraints are satisfied, the posture of the hand is not
natural since it is impossible to bend the distal phalangeswithout flexing
the intermediate and proximal phalanges, b the correct posture of the
hand when the intradigital correlation of the finger has been taken into
account

joints fulfils the intradigital correlation constraints. If they
are not satisfied, bend the last joint in such a way that θ4
satisfies the intradigital correlation to θ3. This procedure is
illustrated in Fig. 9. Figure 10 shows an example where the
intradigital correlation constraint is not satisfied; an unnat-
ural pose of the hand is produced, even if the rotational and
orientational constraints for individual joints are satisfied.

4 Results and discussion

Experiments were carried out using an 8 camera Phas-
eSpace ImpulseX2motion capture system.The implemented
methodology was able to process up to 120 frames per sec-
ond; runtimes were measured on an Intel Core i7 3.5 GHz
personal computer. Our dataset comprises marker motion
capture data, while data captured using RGB cameras are

Fig. 11 Example of simple linear blend skinning scheme applied using
theweights frombone-heat. Theweight assigned to each vertex has been
indicated using a gradation from blue to red to indicate the range [0, 1]

used to compare the reconstruction quality between the esti-
mated and the true hand postures.

4.1 Mesh deformation

A mesh deformation algorithm is employed to visualize
the movements of the underlying hand skeleton in order to
compare the resulting animations with the true hand poses.
Animating an articulated 3D character requires manual rig-
ging to specify its internal skeletal structure and to define
how the input motion deforms its surface. In this paper we
used a mesh deformation algorithm driven by animation of a
skeleton, named bone-heat [7]. The articulated hand is auto-
matically assigned a per-vertex and per-boneweighting given
only by the underlying skeleton. Figure 11 illustrates the
mesh deformation algorithm, where the mesh and armature
representing the hand are automatically associated using the
bone-heat algorithm.

4.2 Experimental results

The proposed method is simple and has low computational
cost,meaning it is real-time implementable. It requires 8.3ms
per frame for tracking and fitting 25 joints, hence process-
ing on average 120 frames per second. The rotational and
orientational constraints ensure that each finger movement
remains natural without showing asymmetries, or irregular
bends and rotations. In addition, the physiological constraints
restrict the results to anatomically correct postures, subject
to the hand, muscle and skin properties.

The implemented system can smoothly track the hand
movements, resulting in visually natural motion. The recon-
struction quality can be checked visually by comparing the
generated 3D hand animations with the data captured using
an RGB camera, as demonstrated in the supplementary video
and seen in Fig. 12; our system is sufficient, producing pos-
tures which are very close to the true hand poses. Figure
13 shows results when the physiological constraints model
was disabled (third row), and it is compared against the true
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Fig. 12 Four sequences showing examples of hand reconstruction
using our methodology at a frame rate of 120 Hz. The first, third, fifth
and seventh rows show the true hand posture as recorded using an RGB

camera, while the second, forth, sixth and eighth show the 3D recon-
structed virtual hand pose; it can be clearly observed that he resulting
postures are visually natural and biomechanically correct
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Fig. 13 Applying physiological constraints. The first row show the
true hand posture, the second shows the 3D reconstructed hand pose
when physiological constraints are applied, and the third row shows the
same reconstruction but when the physiological model was disabled. It

can be observed that there is violation of various constraints, especially
when markers are occluded, including the inertia, flexion, transdigital
and intradigital correlation constraints

Fig. 14 An example of continuous hand pose tracking; in this example the hand flexes to its ventral side to form a fist

hand motion (first row) and our method (second row). More
specifically, it can be observed violation of the flexion and
abduction constraints (when markers are not visible, the sys-
tem cannot track the occluded markers and reconstruct the
hand posture), the intradigital correlation constraints (the last
joints are not forced to bend), and the transdigital correlation
constraints (nearby markers do not contribute on estimat-
ing the finger pose when markers are unobserved). Another
example is illustrated in Fig. 14, where the hand flexes to its
ventral side, to form a fist. The advantages of our method
are its efficiency and ability to return natural and feasible
motion, with low computational cost, while locking the non-
permissible joint positions, thus eliminating the poses that
do not satisfy the model constraints.

In addition, we experiment how the number of cameras
used for the hand movement acquisition affects the perfor-
mance of ourmethod.By assuming that the handpose that has
been generated using data from 8 cameras is the ground truth,
we evaluate the hand reconstruction quality when less cam-
eras track the positions of the markers. We use Lee et al. [35]
formula, that is a weighted sum of the difference in rota-
tion between joints, to quantitatively compute the difference

between the twoposes and assesses the precisionof the recon-
struction.

Dist2 =
m∑

k=1

‖ log
(
q−1
jk qik

)
‖2, (11)

where m = 25 is the number of joints of our hand model,
qik , q jk ∈ S

3 are the complex forms of the quaternion for the
kth joint for the two under investigation hand skeletons i and

j , respectively. The log-norm term ‖ log
(
q−1
jk qik

)
‖2 repre-

sents the geodesic norm in quaternion space, which delivers
the distance between the joint qik to q jk on S3 for each frame.
Table 2a reports the error when information from six, four
or two cameras was used; it is important to recall that each
PhaseSpace Impulse X2 camera is equipped with two linear
detectors, thus two cameras are enough to unambiguously
establish the marker’s 3d position. The error listed in Table 2
is the averaged, over all frames, summation of the distances
between the joints. Results demonstrate that the use of only
two or four cameras have long-term occlusions which result
in large errors; six is the minimum recommended number of
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Table 2 Performance evaluation when (a) a smaller number of cameras
was used for the handmotion acquisition, and (b) at different frame rates

Number of cameras Mean error (per frame)

(a)

6 (six) 0.07 (max: 0.36)

4 (four) 0.49 (max: 1.12)

2 (two) 0.58 (max: 1.27)

Frame rate (Hz) (8 cameras) Mean error (per frame)

(b)

240 0.006 (max: 0.008)

120 0.007 (max: 0.011)

60 0.009 (max: 0.012)

30 0.010 (max: 0.015)

The error is reported against the corresponding hand pose that has been
captured using eight cameras at 480 Hz

cameras needed for tracking and capturing hand movements
without marker occlusions being problematic.

We also investigate the performance of the system under
different capture rates. To evaluate the impact on the per-
formance when capturing at different frame rates, we again
assume that the reconstructed hand pose captured at 480Hz
is the ground truth. Again, we use Lee et al. formula to mea-
sure the difference on joint rotations between hand postures.
Looking at Table 2b, it can be observed that generally the
reconstruction quality is slightly better when the capture rate
becomes higher. This is mainly because the system is more
vulnerable when low frame rates are combined with frequent
marker occlusions.Nevertheless, even at lowcapture rates the
performance of our methodology remains sufficient, deliver-
ing smooth and visually natural results. The time needed for
the IK solver to fit the joints to the model also varies for
data captured at different frame rates; by reducing the rate,
the distance between the target and end effectors is increased,
thusmore computational time is required for the optimization
process (mainly the IK solver) to track the target positions.

Our method, in contrary to others, can track and recon-
struct the hand movement using a small number of optical
markers, generating postures that are natural and biomechan-
ically feasible, even in cases where data are missing due
to self-occlusions or occlusions from other elements in the
scene. For instance, Schroder et al. [58] performed an IK
optimization in a subspace learned from prior hand move-
ment that allows natural hand recovery using optical motion
capture data. However, they do not consider the common
phenomenon that markers are occluded or ways to overcome
this problem. In contrast, our method introduces a physio-
logical model that can deal with missing markers. Moreover,
our configuration suggests to avoid placing themarkers in the

edgeof thefingers since it ismore likely to face self-occlusion
problems, especially when fingers bend on the inside of the
hand.

4.3 Limitations

The effectiveness of the proposed hand tracking framework is
depended on the accuracy of the capturing device. Long-term
marker occlusions or marker swapping do affect the track-
ing performance. Nevertheless, an expensive motion capture
system is not a prerequisite for an accurate reconstruction;
our method works equally well with any capturing system as
far as the 8 key positions are clearly captured and tracked.

In addition, the structuring of the hand relies on a number
of assumptions (e.g., the palm is always flat, or the thumb
bends to the ventral side of the palm, pointing at the joint
F1,2) that ultimately affect the precise reconstruction of the
hand. Moreover, since markers are placed on the forth joint,
that is the joint connecting the distal phalanx and the middle
phalanx, there is no information available to infer the posi-
tions of the fingertips, except for intra-digital correlations
between their joint angles. However, these intra-digital cor-
relations may not be always true (e.g., when pushing fingers
on a hard surface). For higher accuracy in the computation of
the fingertips joints, a flex sensor (e.g., Tactilus� Flex sen-
sors) can be employed to return the precise angle between
the distal and middle phalanx.

Finally, the rigidity feature of the hand was not inves-
tigated in this work since data were captured using a
marker-based optical motion capture system and the 3D ani-
mated hand did not automatically have a mesh that defines
its external shape. As the hand is the most mobile part of the
human body, we expect a considerable degree of interaction
between fingers, despite the limitations already discussed.
Rigidity concerns such interactions, where different fingers
may self-intersect, thus causing unnatural postures. While
some of the constraints already discussed will limit such
self-intersections, there are instances where extra movement
restrictions must be applied. This problem is also known as
self-collision and has been tackled in several papers, such
as [69].

5 Conclusions and future work

This paper presents a system that tracks a human hand of 31
DoFs, relying on a reduced set optical motion capture data;
one labeled marker is attached on each finger, treated as end
effector, and three more markers are placed at strategic posi-
tions on the hand reverse palm to help in identifying the root
and orientation of the hand. A physically based hand model
is employed, as part of a two step optimization process that
involves Inverse Kinematics, to fit the joint positions, subject
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to physiological and anatomical restrictions. Without utiliz-
ing any machine learning or other data driven approaches,
it converts marker positions into a feasible movement of
the hand skeleton. Finally, bone-heat, a mesh deformation
algorithm, is used to visualize the results for evaluation and
comparison.

The proposed methodology produces smooth and natural
hand postures, taking into consideration the anatomical and
physiological limitations of the hand. The target for real-
time implementation is satisfied, processing up to 120 frames
per second, and enabling an effective interaction and recon-
struction of the hand movement. Even with a low capture
frame rate, the proposed methodology can animate the hand
smoothly, without oscillations or discontinuities and with
high reconstruction quality. Our method is able to operate
in rooms with large capturing volume, and it can be used for
simultaneous acquisition of the hand with other parts of the
human body, attaining an integrated performance capturing.

In future work, a more sophisticated model will be imple-
mented which takes into consideration, in addition to the
proposed physiological constraints, muscle dynamics and
properties. In this way, bio-potential sensors can be incor-
porated, such as muscle gesture sensors (e.g., MYO gesture
control armbands [48]), which can sense finger and wrist
motions and recognize gestures patterns in the muscle trig-
gering.
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