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Abstract The recognition of complex events in videos has
currently several important applications, particularly due to
the wide availability of digital cameras in environments such
as airports, train and bus stations, shopping centers, sta-
diums, hospitals, schools, buildings, roads, among others.
Advances in digital technology have enhanced the capabili-
ties for detection of video events through the development
of devices with high resolution, small physical size, and
high sampling rates. This work presents and evaluates the
use of feature descriptors extracted from visual rhythms of
video sequences in three computer vision problems: abnor-
mal event detection, human action classification, and gesture
recognition. Experiments conducted on well-known public
datasets demonstrate that the method produces promising
results.

Keywords Visual rhythm · Spatio-temporal features ·
Abnormal event detection · Human action classification

1 Introduction

Technological advances and their influence in our society
have promoted the generation of new trends and innova-
tions in surveillance systems. The use of video security
cameras in public areas (parks, underground stations, air-
ports), private areas (gambling houses, hotels, banks) and
restricted areas (high reactive chemical labs, electrical instal-

B Helio Pedrini
helio@ic.unicamp.br

Berthin S. Torres
berthin@liv.ic.unicamp.br

1 Institute of Computing, University of Campinas, Campinas,
SP 13083-852, Brazil

lations, radioactive areas) represents just an example of
implementing surveillance solutions to record events for fur-
ther analysis.

In this process of innovation, several powerful resources
have been developed and are now currently available to
address the automationprocess. Full access to highdefinition,
infrared vision and even biometric identification systems
show some of the advances that the community did to address
security issues through the application of computer systems;
however crucial concerns happen because these systems need
to be reviewed and constantly controlled. For instance, in
large closed circuit television (CCTV) installationswith hun-
dreds of cameras, only a small portion of them is usually
watched in real time [23]. Eventually, the use of human oper-
ators to monitor surveillance cameras can represent a serious
problem since looking at monitors for several hours is inher-
ently a difficult task that may have health impacts or even
generate controversy [52,77,89].

Many proposals have been done to address these draw-
backs, in special to reduce the need for monitoring surveil-
lance systems entirely by human operators. One of these
proposals is focused on the development and improvement
of new techniques in the computer vision field. Although
video analysis can be used to figure out the solution to
many problems, some of them (but not limited to) include
human activity classification [1], abnormal event detec-
tion [20], gesture recognition [47], action similarity [43],
motion analysis [32], person re-identification [33], urban
traffic analysis [13], video background subtraction [78],
object tracking [95].

In order to deal with these tasks, a video sequence may
be observed as a set of actions from a high-level point of
view or as a set of pixels in a low-level fashion. On the one
hand, high-level involves an understanding that integrates
each part within the scene; for instance, in trajectory analy-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-016-1321-1&domain=pdf


146 B. S. Torres, H. Pedrini

sis where a moving object is considered to be an amorphous
blob that is tracked [14,68]. Despite the fact that tracking
provides a useful behavior (and/or contextual) model, it is
only computationally suitable for scenes with few objects
(e.g. traffic monitoring [40]), but impractical in crowded or
complex scenarios with superposition and occlusion. On the
other hand, low-level processing extracts features to analyze
the activity pattern of each pixel or groups of pixels that share
spatio-temporal information; due to their low complexity,
these features allow us to propose many real-time applica-
tions to address some of the aforementioned problems.

Even though the difference between high and low level
processing is related to how theymanage, extract and process
the features, some problem specifications require one over
the other. High level processing uses more complex models
to describe, represent and interpret objects or scenes as a
whole, whereas low-level works with assumptions about the
relations among pixels in order to group them up into regions
which are processed to extract shape-based, texture-based,
color-based, and motion-based (in case of video processing)
features.

In contrast to most of the common low-level features used
in computer vision tasks that are obtained from motion and
texture descriptors, in this work we focus on exploring and
proposing a framework to analyze video sequences using a
low-level feature descriptor obtained from visual rhythms of
the video sequences. The visual rhythm, as further described
in the following sections, depicts a different representation
of a video sequence. Instead of managing a set of frames over
time, we deal with slices formed by one-spatial dimension
(axis X or Y ) over time (T ). This constitutes a compact and
effective scheme that has not been widely explored in the
literature.

This work presents a deep literature review about the con-
cept of visual rhythm and its usage in other problems as
well as a description of the problems we are addressing.
Then, we describe our proposal to reduce computer vision
tasks into image classification and imagematching problems.
Due to the great diversity of tasks, we have selected three
specific problems: abnormal event detection, human action
classification, and gesture recognition. Experiments are con-
ducted on UMN, Weizmann, KTH, and SKIG datasets. The
obtained results are promising when compared to state-of-
the-art approaches; and, to the best of our knowledge, this
is the first attempt to apply visual rhythms to the mentioned
problems.

Section 2 presents and discusses relevant works found in
the literature related to the visual rhythm and its applications.
Moreover, we also describe the epipolar-plane image, which
is a specific visual rhythm obtained from a static scenario
and a moving camera. Section 3 provides a more formal def-
inition of the visual rhythm and describes our framework for
extracting and classifying the low-level features from video

sequences. Experimental configuration parameters, dataset
specifications, protocols, and comparative results are pre-
sented in Sect. 4. Finally, Sect. 5 concludes the work with
limitations, final remarks, and directions for future work.

2 Background

A review of relevant visual-rhythm related concepts is
presented in this section, including epipolar-plane images
analysis of video sequence (XT and YT ) slices, visual
rhythm, and a general and powerful structure to address video
analysis problems.

Then, we define and present a literature review of issues
associatedwith the problemswe cover up in this work. Avail-
able results from the literature are shown and compared in
Sect. 4.

2.1 Epipolar images and XT -YT slices

Instead of considering video sequences as a collection of
frames, we define them as a collection of slices having
one-spatial dimension (X or Y axis) and one temporal
dimension (T axis). By taking the specific configuration
where the camera moves along a straight line and the scene
remains static, these slices capture spatio-temporal informa-
tion through a better structure than just frames as spatial
images. This scheme was initially proposed and analyzed by
Bolles [10] with the name of epipolar-plane images (EPI) in
order to describe the motion features in terms of geometric
stereo [57].

EPIs can be used to segment video sequences based on
the 3D space continuity such that, through the concepts of
epipolar geometry, the problem of segmenting the EPI vol-
ume is reduced into a new problem of how to analyze the
epipolar curves [6]. Such curves, even with the requirements
that EPI needs (the camera configuration), preserve useful
information about video motion.

The inverse of the previous assumption, a static cam-
era recording objects in motion, generates slices containing
other kind of spatio-temporal information. Nigoyi and Adel-
son [64] observed that video sequences, under this new
context, produced XT slices (a cut in the X image plane
over time T ) with particular patterns when the video records
people walking. The reason is that these new slices, in spe-
cial the ones capturing the motion of human legs, depict
a braided pattern snake. Years later, Ran [70] used these
patterns to perform person identification tasks in video
sequences.

Figure 1 shows braided snake patterns obtained from a
person walking in a scene and one camera transition. Thus,
spatio-temporal sliceswere also applied to detect three differ-
ent camera shots or transitions: cut, wipe, and dissolve [59].
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Detection of complex video events through visual rhythm 147

Fig. 1 Braided snake patterns obtained from a person walking in a
room. The visual rhythm (XT slices) for the first video frames does
not contain any directional information since the person remains static

within a certain amount of time, then the person walks and the braided
pattern can then be observed. The discontinuity in the images describes
a cut transition in the video

Cut corresponds to a sharp transition fromone shot to another,
wipe gradually replaces the shots giving the effect of trav-
eling from one side to another, and dissolve overlaps two
shots where one of them smoothly disappears whereas the
other appears. Another attempt, for the same problem, was
done by Guimarães et al. [35] through the use of mathe-
matical morphology operations on the slices for detecting
video transitions. Ngo [60] used Gabor decomposition as
texture features and Markov models to represent the depen-
dencies of the slices. They also proposed a more complex
analysis over these XT and YT slices to identify the cam-
era motion types (static, pan, zoom, and tilt) and segment
the foreground (and background) from the videos. Slices
were described by tensor histograms that aimed to model
the motion distribution.

2.2 Visual rhythm

Due to the applicability of the (XT and YT ) slices from
video sequences, new proposals have been made to address
other computer vision problems. Moreover, a new term is
adopted in the literature to indicate a set of rows and/or
columns extracted from each frames, which are later con-
catenated to form a new image: the visual rhythm (this
concept will be explored in more details in Sect. 3). Based
on this idea, Valio et al. [86] extracted the visual rhythms
for caption detection in video sequences. Captions preserve
a well-defined rectangular structure and they could be easily
segmented.

Another application using the visual rhythm is the video
face spoofing detection problem by Pinto et al. [72]. In
that work, instead of directly handling in the image spatial

domain, theyworked on theFourier spectrum; thus, the visual
rhythms contained data from the frequency domain. For
the detection step, features were extracted using gray-level
co-occurrence matrices (GLCM), but this could represent
a drawback since the Fourier spectrum contains values
which vary in high ranges of real and imaginary num-
bers. Although they opted to use the logarithm of the
Fourier spectrum, a quantization step is still necessary
because the GLCM works with positive integer values and
some useful information could be missed in the process.
However, they obtained higher accuracies during their exper-
iments.

In the remainder of the text, we adopt the concept that
events are atomic low-level spatio-temporal entities [15] that
express: (i) the action being performed and (ii) the actor who
performs the action [80].

2.3 Abnormal event detection

Problem definition When we refer to the process of analyz-
ing surveillance videos as a task where the monitor needs
to watch for uncommon occurrences, unintentionally we are
modeling the problem of identifying abnormal events in sur-
veillance systems. Even if it is not a direct application for
crime prevention, it can help to prevent future events to keep
people safe or to learn new patterns according to the observed
object behavior.

For this specific problem, events are commonly catego-
rized as normal and abnormal, such that abnormal events are
thosewith very low likelihoodof occurrence.Additionally, as
described by Chandola et al. [17], they are observations that
do not conform to a well-defined notion of normal behavior.
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In contrast, abnormal (also known as anomalous)1 events
are situations that deviate their behavior from the normal
occurrences, both spatially and temporally. For instance, in
a video-sequence of an underground train station, people
falling into the train tracks will represent the abnormal events
since the common behavior is to have trains on the trackswith
people waiting in the platforms.

One way to see this problem is, for instance, to suppose
that a normalcy2 model is given to describe the behavior in
a scene. This model can be divided into temporal and spa-
tial normalcy submodels [50]. Temporal normalcy is related
to know how normal events are recurrent over time, so the
normal behavior model is learned while the time passes by;
on the other hand, spatial normalcy relates events within a
group (e.g. a crowd). A road, where the usual event is to
see people walking from west to east (or vice-versa), can
depict an abnormal event when suddenly a car appears. The
car itself cannot be described as an anomaly; however, in the
middle of the crowd, it definitely is. Detection of such anom-
alies is based on the spatial context. From another point of
view, a normalcy model can also describe the behavior of
a crowd as a global unit (e.g. a crowd walking) or local
units (e.g. a person running). Therefore, events may also
be categorized into local and global instances. Following
our examples, if a person starts running within the crowd
(where the common behavior is walking), it will trigger an
abnormal-local event; however, if the crowd starts running,
that will be considered as an abnormal-global event. Crowds,
at the same time, can be classified into (a) structured crowds,
where the main motion is directed by environmental con-
ditions (e.g. elevators), and (b) unstructured crowds, which
are those where objects can move freely (e.g. walking on the
street) [66].

Many strategies for solving this problem have been
proposed in the literature. We can differentiate them by con-
sidering the features that are used in the approaches. From
now on, it is important to define two issues in order to cor-
rectly detect abnormal events: (i) event representation and
(ii) anomaly measurement. In the following paragraphs, we
describe some state-of-the-art approaches that used low-level
features.

Literature review Feng et al. [31] proposed an approach that
applies an online SOM (self organized map) to cluster adap-
tively motion patterns. Video sequences were considered
as sets of clips, each clip describing the optical flow pat-
terns. SOM clustering, based on the estimated parameters
of a Gaussian distribution for a clip, is able to distinguish

1 Although some efforts have been made to differentiate among these
terms, in this work, abnormal events will be assumed to similar to
unusual, rare, suspicious, anomalous, irregular, outlying or atypical
events.
2 Normalcy or normality is the state of being normal or usual.

between normal and abnormal behavior in just a fixed scale.
This drawback was overcome by Biswas and Baby [7], who
considered histograms of motion magnitudes at different
scales using pyramids and a Gaussian of mixture model
to represent the normal behavior. Detection of anomalies
started at the coarsest level moving towards the finer scales
only if anomalies were likely to be found. The novelty in
this approach was that motion vectors were obtained from
H264/AVC compressed videos, which improves drastically
the total execution time.

Dealingwith crowds as global entities,Menhran et al. [53]
came up with the Social Force model to capture the dynam-
ics of interaction forces. In crowded scenarios, the actual
force can be modeled as a result of the personal desire forces
and the interaction forces, since the individual motion is
restricted when people are densely packed. However, inter-
action forces are not enough to detect anomalies and, thus,
motion patterns were created from the forces over peri-
ods of time. Later, Zhang et al. [99] improved the social
force model in order to represent the concepts of contact,
consistency, and exclusion. The method used the fourth-
order Runge–Kutta algorithm with bilinear interpolation to
generate the optical flow, unlike most popular methods for
calculating the optical flow such as the ones proposed by
Lucas and Kanade [49], Horn and Schunck [37], and Farne-
back [28]. Chen et al. [18] clustered the optical flow to obtain
groups of human crowds and, for each cluster, they mod-
eled the force field from the orientation, position, and crowd
size.

Wang et al. [93] used a covariance matrix of the opti-
cal flow and the image intensity over the whole frame as
the feature descriptor, then a non-linear classifier SVM was
applied in an online fashion. Thida et al. [83] learned a
model of regular crowd behavior based on the magnitude
and direction of the local motion vectors. A video sequence
was represented as a fully connected graph with local
regions as vertices and the connectivity among these regions
(weighted edges in the graph) represented their similarity.
The graph, analyzed with spectral graph theory, embeds
local motion patterns. Another graph-based method was pro-
posed by Saligrama et al. [73], where abnormal events were
defined by ranking composite scores for video segments.
They adopted a grid-like graph structure in 3 dimensions,
nodes represented motion features and their spatio-temporal
relations were kept using the edges. The graph, along with
Markov assumptions, allowed the composite score recon-
struction.

Cong et al. [19] detected abnormal events via sparse
reconstruction cost considering histograms of optical flow at
different scales. To represent spatial and temporal relations,
they proposed three different neighbor arrangements that
allow them to retain spatial, temporal and spatio-temporal
information. Tang et al. [81] addressed the problem using
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Detection of complex video events through visual rhythm 149

sparse coding with motion features without any pre-learned
dictionary. Both methods claimed to work in an online fash-
ion, which is a great advantage. Due to the nature of the
abnormal event detection problem, we cannot assume to
know beforehand any negative data point (abnormal event)
and we train with only positive points (normal events), which
is more complex when the normalcy concept changes over
time. Differently from the bag-of-words approach, sparse
coding has been extensively studied to update the dictio-
nary adaptively [51,100]. Other online approach, proposed
by Li et al. [46], improved the mixture of dynamic textures
(MDT)—initially modeled by Mahadevan [50]. Because the
MDTs are not scale-invariant, they hierarchically learned
MDTs at multiple scales. Spatio-temporal abnormalities
were integrated into a global anomaly map using online con-
ditional random fields.

Nam [58] extracted motion features from the optical flow
at different scales to calculate a histogram of orientations
and magnitudes. Spatial relations of neighbors within blocks
were used to build a probability distribution of the crowd.
Entropy and the normalized mutual information defined a
metric for the video frames, which were further analyzed
using a set of rules to determine whether a set of frames
describe an abnormal event or not. However, during their
experiments, the directional crowd energy obtained better
results than the mutual information.

Hung et al. [38] showed a direct application of the scale-
invariant feature transform (SIFT) algorithm [48] with bag-
of-words to achieve the 1.00 AUC (Area Under the ROC
Curve) value on the UMN dataset (see Table 3), they also run
cross-scene training experiments. We believe that the idea of
using transfer learning in this specific problem will address
the lack, within the training step, of having only positive data;
and, in consequence, new ideas could be tested to achieve
better accuracies.

2.4 Human action classification

Problem definition Similar to the abnormal event detec-
tion problem, two basic components are identified in the
action recognition task [41,87]: (i) action representation
and (ii) action classification. Action representation can also
be divided into: shape-based models, motion-based models,
geometric human-body models, interest-point models, and
dynamic models [36]. Shape-based models are one of the
most successful representations that estimate the silhouette
of an object (a person) through time forming a 3D-silhouette
(or tunnel). Motion-based models extract characteristics of
the object movements and their deformations. Since human
actions can be represented by the motion of some body parts
(torso, hands, and legs), under a controlled environment,
these parts are easy to identify in order to construct a para-
metric model using the geometry of the body (e.g. Kinect).

Interest-points have also been applied to represent actions
(e.g. Laptev [44]), actions that can also be described by using
dynamic models considering temporal variations with state-
space transition models.

Literature review Gorelick et al. [34] analyzed actions
directly from the space-time volumes of the tunnels by solv-
ing the Poisson equation. Since tunnels contain information
about the human pose and themotion of the body, the Poisson
equation extracts the following shape properties: space-time
saliency, space-time orientations, andweightedmoment. The
classification task was done by the nearest neighbor algo-
rithm. Tunnels contain 3D information; however, instead of
rather than considering the whole shape of an action, just the
moving parts can be mixed into a single image and have the
cumulative motion shapes (CMS). This approach, proposed
by Alcantara et al. [2], addressed the drawback of creating
time consuming complex models; so that, after the concate-
nated image of the motion shapes was created, they extracted
interest points (set of coordinates) equally distributed in the
bounding box that covers theCMS.A support vectormachine
(SVM) and the nearest neighbor algorithm were applied in
the classification process.

Based on motion-based models, Wang et al. [92] divided
a frame into blocks and created histograms of optical flow;
but instead of using them as the feature descriptor, they
opted for some statistical values (obtained from each block)
such as: the portion of active moving pixels, the average
speed, the predominant direction in a block, the bin-index
of the predominant direction, variance and divergence of the
direction distribution. AdaBoost, using a weak classifier for
each feature dimension, performed the classification step.
Fawzy et al. [30] used a 2D-HOOF (Histogram of Oriented
Optical Flow) extracted from the contour of the person who
performs the action. Due to high dimensionality of the 2D-
HOOF features, they applied 2D-PCA (principal component
analysis) to produce a better representation of the dominant
features.

Guo et al. [36] combined local silhouettes and local
motion features with a covariance matrix. Classification was
tested with nearest-neighbors and sparse linear approxima-
tion. Even though this method seems to be simple, it obtained
high-accuracy rates in many datasets.

Yang et al. [96] addressed the problem by using only a
single-shot clip as training data-set. They divided the optical
flow into four channels: x-positive, x-negative, y-positive, y-
negative (since the optical flow is actually a vector), and then
these are densely sampled along the frame using a similarity
metric for any two samples. Since people can perform same
actions with some variations, just one training data per action
cannot be used as an action template; hence, they defined a
more general distance functionwhich compares and looks for
the best pair-matching blocks from any two different videos.
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Another attempt that minimized the training dataset, pro-
posed much earlier by Schindler et al. [74], only used short
sequences (up to 10 frames) for training. They extracted local
edges (from a bank of log-Gabor filters) and motion infor-
mation (dense optical flowmapped into different flow filters)
to compare later with templates previously learned in the
training step. Rather than using the comparison between the
features as result, they defined a similarity score which was
passed as input to a classifier that makes the final decision.

2.5 Hand gesture recognition

Problem definition Human computer interaction has cur-
rently received much emphasis on the developing of new
technologies. Devices such as stereo cameras, Kinect or
motion sensors (e.g. Asus Xtion) generate a new type of
information that not only contains the video sequence with
gestures, but also a depth image. Compared to the human
classification problem, action representation can be depicted
in a similar fashion, however, two major categories are com-
monly adopted in this area: 3Dmodels and appearance-based
methods. The first includes 3D texture volumetric models,
3D geometric models, and 3D skeleton models, whereas
the second category includes color-based models, silhouette-
based models, geometry-based models, deformable models
and motion-based models [12,71].

Literature review Some methods available in the literature
employ depth information to build 3D models. Fanello et al.
[27] represented the actions by applying to them 3D his-
tograms of optical flow (HOOF) on the RGB images and
global histogram of oriented gradients (HOG) features on
the depth images. Additionally, sparse codes produced a
compact portrait of the actions. De Rosa et al. [22] used
the same feature descriptors to learn an incremental non-
parametric prediction system for online action recognition.
Devanee et al. [24] studied a form to depict actions as tra-
jectories using depth map sequences. They reconstructed
trajectories by taking each point of the skeleton of an action,
then the distance between the projected trajectories wasmea-
sured in a shape space. The elastic distance between any two
trajectories defined a similarity metric since the shape of a
trajectory can be viewed as a point in a shape space of open
curves. Moreira et al. [56] extended their previous work [2]
using the depth images to extract shapes and then obtain the
geometric interest points from the cumulative motion shapes
(CMS). Vo et al. [88] also used geometrical properties from
the silhouettes, then graphical models were applied to the
action recognition process. Yu et al. [97] fused RGB and
depth local flux features images to have a binary descrip-
tor. They adopted the local flux features (LFF) to describe
the local flux for each pixel and combine the RGB and
depth LFFs into the Hamming space. Discriminative rep-

resentations were learned through the structure preserving
projection (SPP) that keeps pairwise structure of local fea-
tures and the relations between samples and classes.

More complex approaches, such as graphical models and
convolutional neural networks (CNN), have been recently
applied to the gesture recognition problem. Antonucci et al.
[5]modeleddiscrete-time sequences through imprecise prob-
abilistic information with hidden Markov model (HMM).
Molchanov et al. [55] proposed a recurrent 3D CNN for
dynamic hand gesture recognition. A video sequence was
divided into clips, then spatio-temporal filters were applied
to each clip. From each clip, they extracted blocks that served
as input to a recurrent layer of their CNN, then the output of
the CNN was used to train an SVM that performed the clas-
sification step.

3 Proposed method

Our proposal, based on visual rhythms extracted from video
sequences, generates the histograms of oriented gradients
to train a classifier, detects abnormal events and recognizes
actions. As expected, different preprocessing and classifica-
tion steps are required to solve each problem. All required
stages are detailed and justified considering our own def-
inition of visual rhythm, which is given in the following
paragraphs. This definition differs from the previous works
since it allows us to define not only vertical or horizontal
slices, but also other types of structures to obtain the visual
rhythm.

3.1 Visual rhythm

Let V = (DV , I ) be a video sequence, where DV ∈
RW×H×T and I represents the intensity values that each
frame in V can take (for gray-scale videos, I ∈ [0, 255]). Let
π = p1 → p2 → · · · → pr be a sequence, not necessarily
consecutive, of points defined in the X −Y image plane, and
fπ (t) be a function that extracts all pixels p(xi , y j , tk) ∈ DV

such that they follow the sequence defined by π with tk = t .
The visual rhythm VR, illustrated in Fig. 2, is defined as the
combination of all pixels for every value t ∈ T , and it can
be seen as a matrix-like structure with several fπ (·) as rows,
such that:

VR(V, π) =

⎡
⎢⎢⎣

fπ (t = 1)
fπ (t = 2)

· · ·
fπ (t = T )

⎤
⎥⎥⎦ (1)

An informal analysis, presented as follows, shows that the
visual rhythm contains spatio-temporal information allowing
us to workwith trajectories in a low-level processing fashion.
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Fig. 2 Visual rhythm (bottom figure) for the video sequence (left) con-
sidering the path π as shown on the right side. The arrows in π show
the direction of the path that starts at the upper-left corner (point A)
following a zigzag configuration of points, and ends at the bottom-right
corner (point B). Note that π contains gaps in the borders

Given two image frames H = V (t) and G = V (t +
�t) extracted from the video sequence V at times t and t +
�t respectively, the optical flow defined as the displacement
vector indicates, for all pixels in G, how much those pixels
havemoved over the previous image H . If we assume that the
brightness difference of the pixels in both images is almost
constant (since �t is usually small), H can be modeled as
H(x, y) = G(x+u, y+v), where the components u, v form
the optical flow.

Now, suppose that we have a rigid object3 with a
rectangular-regular shape S of N × M (as a collection of
pixels in the X − Y image plane) which is moving with a
constant velocity in a period of time �t . Ideally, the opti-
cal flow for all points in S will be (u, v). If |u| < N and
|v| < M , we could ensure that at least two points pi and p j

in S will appear in the same (x, y) coordinates because there
is an intersection and the object cannot be found inmore than
u or v units in G with respect to H . Hence, if (x, y) ∈ π , pi
and p j will also be in π and they will appear in the visual
rhythm. Therefore, for short intervals �t with small values
of ||(u, v)||, the visual rhythm captures the object trajectory
defined by π (as shown in Fig. 2).

3.2 Histogram of visual rhythms

Wehave seen that the visual rhythm contains trajectory infor-
mation; however, the difficulty is how to process it in order
to solve real-world problems. In this section, we introduce a
method (Fig. 3) which obtains low-level feature descriptors
from the visual rhythm of a video sequence. Nevertheless,
these features may either be directly used for classification
or used to build a codebook and obtain histograms of visual
words. The decision basically depends on the problem we
are dealing with.

3 An object that fits the principle of distance conservation [54].

Since our method does not use color information, the
visual rhythms are extracted from each video sequence in
gray-scale. Then, the initial idea is to segment the background
to get only the trajectory. However, since the visual rhythm
usually captures texture, it is complex to determine which
regions should be removed. According to how the sequence
π is defined, some segmentation approaches can be ineffec-
tive. Alternately, if π captures static points in the video, the
visual rhythmwill have approximately a constant texture seg-
ment; otherwise, we will see a combination of regions with
some parts formed by constant texture structures and other
parts containing the trajectory information.

The first step of our method takes the visual rhythm and
(depending on the problem) performs preprocessing opera-
tions. Operations that aim at achieving a better representation
of the trajectory; thus, for a given region R = RB ∪ RF

extracted from the visual rhythm, we remove the background
RB to keep just the foreground RF that contains the trajec-
tory. Since detecting anomalies and classifying actions are
different problems; the main idea in this step considers that,
under a controlled environment (e.g. with no illumination
changes), we could take a segment of a vertical line h rep-
resenting the background RB , and the pixels which differ
drastically from h should be considered as foreground. More
details about the preprocessing are explained separately for
each problem in the next subsections. Therefore, at this point,
we assume that we have a good description of the trajectory.

Once we obtained the trajectory representation, it is
divided into small patches called cells bi j of B × B. For
each cell, we obtain a 1-dimensional histogram of the edge
orientations from all pixels in the cell. This histogram is
L1-normalized. Note that this procedure is similar to the his-
togram of oriented gradients (HOG) [21]; however, HOG
merges groups of cells into blocks and then constructs the
normalized histogram for each block.

3.3 Abnormal event detection

We noted that the visual rhythm describes how the objects
move in time with respect to how the sequence π is defined.
For instance, Fig. 4 shows the visual rhythm extracted from
a video sequence, where it is easy to observe that something
occurs within the red interval due to trajectory interruption
of the curved lines and/or their abruptly change in direction.

Problem formulation Let a video sequence V be a col-
lection of several patches τ of visual rhythms, such that
V = {τp}Np=1. The abnormal event detection problem, as
a reconstruction problem, is modeled as follows:

τp is abnormal ⇐⇒ S(τp, τq) ≤ γ ∀q and p 	= q

(2)
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Fig. 3 Proposed methodology for obtaining the histograms of oriented gradients for the visual rhythm

Fig. 4 Visual rhythm for UMN dataset (video sequence 2). Green
region denotes the normal events, whereas red corresponds to the abnor-
mal events

where S represents a similarity function and γ is a threshold
value.

With this brief definition, the rest of this subsection covers
all the aspects considered to detect the anomalies by using
only the visual rhythm features; for convention, we denote
these features as φ(τ).

3.3.1 Preprocessing

Given a region R in τ , our goal here is to extract RF which
represents the trajectory of the objects. Let suppose that we
have segmented RF , and now we aim at finding a finer rep-
resentation (Fig. 5). One common step is to consider the
derivatives and construct a gradient map, but this map still
contains coarse directional information. Another alternative
is to emphasize the edges through the Laplacian of Gaussian
filter, then set a threshold value to have a black-white image
containing directional information.

Even though the results are promising, from our experi-
ments we have seen that trying to obtain a proper approxima-
tion of RF is quite difficult. Moreover, after applying the first
order derivative or the Laplacian of Gaussian, we must find
a finer representation which will depend on the algorithm to
binarize the image. In this sense, a common choice to use is
the Canny edge detection filter [16]. This filter smooths the
image for noise attenuation, then finds the gradients and uses
non-maximum suppression to remove low edge responses. A
double threshold is used to generate a binary image and the
final image is found after removing weak edges. The issue
now is how to obtain the foreground.

Fig. 5 Process of obtaining a finer representation of the trajectory in a
given region R (a) with the foreground RF (b). The first order derivative
of RF (c) shows a coarse representation, and a binarized Laplacian of
Gaussian (d). An alternative solution was considered by using Canny
edge detector (e) in R and then applying an opening morphology oper-
ation with a vertical line as the structuring element (f)

Fig. 6 Preprocessing step for the abnormal event detection problem.
From the visual rhythm, edges are found by Canny detector (a) to
represent directional information of the trajectory; but the background
produces a noisy pattern as vertical lines that is removed by using open-
ing morphology (b) with a vertical line as the structuring element

Since the background is almost constant with small light-
ing changes, we can use h to assume that it is the pattern that
represents RB , so that the edges detected in h should repeti-
tively appear in the background. If a point p(xi ) ∈ h responds
to the Canny filter as an edge, RB will contain a vertical line
y = xi . After removing these vertical lines (Fig. 6), we will
obtain a finer approximation of the edges we search for in the
preprocessing step.Vertical line removal canbeperformedby
morphology operations with an adequate structuring element
or even more complex techniques such as Hough transform
[26].
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Fig. 7 Final feature descriptors for a video sequence used for training
and testing

3.3.2 Feature descriptor

Instead of having a global representation for the entire
visual rhythm by concatenating all histograms, we use the
histograms as block-features. Although these histograms
contain trajectory information in space-time dimensions,
they cannot explain by themselves the behavior of an event;
hence, we build a codebook C using the block-features
as words. To preserve spatial information, the final fea-
ture descriptor pools the codewords from all cells that are
neighbors in a horizontal region (Fig. 7). Finally, these fea-
tures are used in the classification step for training and
testing.

3.3.3 Classification

Due to the nature of the problem, abnormal events are
assumed to be those which are different from previous
observed events. According to the literature, we only have
positive training data points representing normal events.

A widely studied technique to deal with this kind of sit-
uation is the support vector data description (SVDD) [82],
which finds the minimal circumscribing hypersphere in a
high-dimensional space for a set of positive training data
points. In other words, it solves the following optimization
function:

min
R, bbb, ξi

f (R, bbb, ξi ) = R2 + 1

νn

n∑
i=1

ξi (3)

subject to ||φ(τi ) − bbb|| ≤ R2 + ξi and ξi ≥ 0, where n
is the number of data points, ξi are the slack variables, ν

is the user-defined parameter to control how much slack
we are going to admit, R and bbb are the radius and the
center of the hypersphere, and φ(τi ) represents our feature
vector.

After applying Lagrange multipliers and using the Golf
duality of f (R, bbb, ξi ), the optimization function (3) is
reduced to find the best values of the dual variable αi such
that:

Fig. 8 One-Class SVM with a RBF kernel. Orange regions represent
the hypersphere plot. Blue dots are the normal points, whereas triangles
the abnormalities. This image was obtained from the UMNdataset (first
scenario) and PCA for dimension reduction

argmax
α

⎛
⎝

n∑
i=1

αi k(τi , τi ) −
n∑

i=1

n∑
j=1

αiα j k(τi , τ j )

⎞
⎠ (4)

subject to 0 ≤ αi ≤ 1
νn and

∑n
i=1 αi = 1, where k(τi , τ j ) is

the kernel that represents the inner product φ(τi ) · φ(τ j ).
Assuming that the kernel is invariant to translation (e.g.

RBF kernel); k(τi , τi ) will take a constant value ∀i , and the
first term of the equation is removed; so that, it becomes:

argmin
α

n∑
i=1

n∑
j=1

αiα j k(τi , τ j ) (5)

This new optimization function represents the core of the
one-class SVM (OC-SVM) classifier (Fig. 8) for the nov-
elty detection problem [75], and it is what we use for the
classification stage.

3.4 Human action classification

In this problem, the input is a video sequence that contains a
person performing an action and our goal is to detect which
action is being performed. For the abnormal detection prob-
lem in crowd scenes, we have observed that the visual rhythm
contains trajectory information of multiple objects (people).
Based on the braided pattern from a person walking, as seen
in Fig. 1, our intuition assumes that different human actions
can describe distinct patterns and same actions should con-
tain similar patterns because they require our body to act in
a particular way (Fig. 9).

The description of the preprocessing step (Fig. 10) to deal
with the extraction of these patterns from the visual rhythm,
aswell as the algorithm for performing the classification task,
is detailed next.

Problem formulation Suppose a video sequence V as a
collection of several patterns ρ obtained from the visual
rhythms, such that V = {ρ}Np=1. Let Ci (i = 1, 2, . . . ,m)
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Fig. 9 Visual rhythms for the Bend action

Fig. 10 Preprocessing stage for action classification

be a class used to indicate that an event is a container of sev-
eral patterns ρCi in the way that, the classification problem
is depicted by the following optimization function:

argmin
i

∑
ρ̂∈ρCi

minD(ρp, ρ̂) (6)

The purpose of this function is to find the class Ci for
which the patterns ρp ∈ V have the lowest dissimilarity
value with respect any pattern in Ci .

3.4.1 Preprocessing

As previously mentioned, a region R contains some back-
ground RB that will almost be removed through Canny edge
detector and vertical line pruning. However, in this problem
we can see (Fig. 9) many regions with irrelevant information
because no actions are performed by external agents (we just
have one actor); and, consequently, R = RB in these regions.
Even using the last approach to successfully ignoring the use-
less information, the Canny detector is not able to identify
the borders of the patterns with high accuracy (at least not for
our purposes). Hence, we applied the Sobel edge detection
operator since it keeps most of the relevant edges at differ-
ent gray-scale tones. However, the background still contains
information, then a region of interest (ROI) that contains the
pattern of the action should be found. One option is to apply a
thresholding technique directly to the Sobel image, however,
if the background contains lines or if the image is too noisy,
the thresholding will probably fail.

After empirical tests, we opted to create a map of the coef-
ficient of variation over the Sobel image. The coefficient of

Fig. 11 The pattern has aweight of 28 considering the number ofwhite
segments from the highlighted columns in red

variation (cv = σ
μ
) represents the dispersion of the pixel

intensities in a window Ww×w, where μ denotes the mean
of all pixels inW (μ = ∑

p∈W
p

w2 ), and σ the standard devi-

ation in W (σ = ∑
p∈W

(p−μ)2

w
). The map of the coefficient

of variation was built through a sliding window strategy. In
this new image, RB must be close to zero since pixels inside
a small window W are almost constant with small changes.
Even if a line is present in W , cv will remain small. making
the thresholding technique (e.g. Otsu’s method [65]) suit-
able to be applied. Finally, the ROI can be easily found in the
binary image. In order to standardize the dimensions of the
patterns, we resized each ROI to 100 × 100 to have a set of
patterns {ρ}ni=1 for any given video sequence V .

Not all generated patterns are useful to differentiate
actions. Some of them may not have any trajectory informa-
tion due to the absence of actions performed under certain
visual rhythm configuration. Therefore, we need to filter the
most K relevant patterns. This filtering process is one of the
most important steps for action classification since an ade-
quate strategy drives a robust classification.

Suppose that each pattern is a black-white image, and
g(ρi ) assigns a weight to ρi such that, the most K relevant
patterns will be the ones with higher weights. Let g(.) be a
function that counts howmany vertical white segments a pat-
tern contains. In other words, we are going to identify those
patterns that have traces with many variations in the vertical
axis. For instance, Fig. 11 illustrates the strategy that assigns
a weight of 28 to the pattern.

It is worth mentioning that patterns are gray-scale images,
and g(.) is defined only for binary images. Therefore, given
a pattern ρi in gray-scale, the weight of ρi is expressed as:

g(Iplane(ρi , {5, 6})) + g(Iplane(ρi , {6, 7})) (7)

where Iplane(ρi , L) extracts the image planes fromρi at levels
depicted in L and returns a binary image with white intensity
for every pixel greater than zero. For instance, Fig. 12 shows
the binary images generated by Iplane(.) at levels {5, 6} and
{6, 7}.

3.4.2 Feature descriptor

Histograms of gradients are used as raw feature descriptors
just with the modification that cells bi j can overlap (different
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Fig. 12 a A pattern ρi in gray-scale. b The returned image by
Iplane(ρi , {5, 6}) considering only the 5th and 6th gray- levels, and c the
returned image by Iplane(ρi , {6, 7}) considering the 6th and 7th gray-
levels

Fig. 13 Illustration of a sine function (with different phase values) to
explain the reason why we opted to use overlapping windows to extract
the histograms. aNon-overlapping scheme of two similar functions will
not match any of the windows, whereas b overlapping windows will

from the abnormal event problem where we considered non-
overlapping cells to build the histograms).

An action is a repetitive sequence of movements, so
the visual rhythm contains a sequence of small patterns
that are also repeated but with different initializations. For
instance, suppose that we have two sine waves with some
displacement in the x-axis (Fig. 13); working with a non-
overlapping window, we are not able to match these sine
functions; however, with an overlapping scheme, two (out
of three) windows are identical, which means that if we
repeat some information we will (at some point) have the
same data for similar patterns (but with different initializa-
tions).

Some actions (for instance, running and walking) sketch
similar patterns. To help our method discriminate among
these features, we employed a video signature, defined
as:

Sig(V ) =
T−1∑
t=0

|V (t) − V (t + 1)| (8)

where V (t) returns the frame at time t , such that Sig(V )

is the sum of the absolute difference between consecutive
frames of a video sequence V . This can be interpreted as the
cumulative sum of a naive optical flow (see Fig. 14).

Our feature vector for the human action classification
problem will be given by the oriented histograms for the
most K relevant patterns and the oriented histograms of the
signature previously normalized between 0 and 1.

Fig. 14 Signatures for a running and b walking actions

3.4.3 Classification

For the classification task, we trained a linear SVM with a
variation of the Histogram Intersection Kernel (HIK). This
kernel, known as the generalized HIK, has proved to be use-
ful not only in image classification, but also in many other
contexts [11]. It is defined as:

K (X,Y ) =
∑

min(Xα,Y β) (9)

where α and β are normalization parameters.

3.5 Gesture recognition

This problem is analogous to the human action classification
problem, however, with the slight difference that we take a
depth map into consideration. Thus, we will keep the core
ideas for action recognition as well as the preprocessing and
classification steps. Only one variation that is applicable in
the preprocessing and the feature descriptor will be shortly
discussed.
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3.5.1 Preprocessing

In this stage, we aim at removing the background and select-
ing the most K relevant patterns for a video sequence.
We used depth images to segment the background and
foreground with the Triangle’s method [98]. Background
removal will increase the chances of selecting more relevant
patterns.

3.5.2 Feature descriptor

The feature descriptor is given by the concatenation of all
oriented histograms for a pattern. We do not need to use the
video signatures once the patterns obtained from the visual
rhythms are strong enough to differentiate among all the
classes, as will be shown in the experiments.

4 Experiments

This section presents and discusses the experimental results
to analyze the performance of the visual rhythm according
to our proposed method for the abnormal event detection,
action classification, and gesture recognition problems.

All experiments were executed on an Intel(R) Core(TM)
i7-3770K CPU @ 3.50 GHz with 32 GB RAM and 16
GB Swap, Linux version 3.11.0-19-generic (Ubuntu/Linaro)
using Python with the following libraries: scipy and numpy
[90], scikit-learn [67], and scikit-image [91]. Some heavy
processes were executed parallelly (in particular, the training
and extraction of codewords), however, for the other steps,
we used a sequential programming approach.

4.1 UMN dataset for abnormal event detection

Description The UMN dataset [85] represents a dataset for
abnormal global event detection problem that contains three
escape scenarios of crowd people walking in any direction
(the normal event) and suddenly they start to run simulating
a panic scene (the abnormal event)—see Fig. 15. First sce-
nario has 2 video sequences, whereas the second and third
contain 6 and 3 video sequences respectively. All videos have
a resolution of 320 × 240 color frames.

Evaluation methodology This dataset contains global events,
which means that frames are classified into normal or abnor-
mal frames. An abnormal frame contains an abnormal event,
and, analogically, a normal frame does not. All comparisons
are conducted through the AUC metric.

Since no standard protocols were provided to evaluate
this dataset, we adopted the following criterion4: each video

4 Manyworks from the literature consider the first k frames for training,
where k varies from 200 to 300.

Fig. 15 Three different scenarios for theUMNdataset [85].Top figures
represent normal instances, and bottom figures are the abnormal event

Fig. 16 Bagging-like approach adopted for the abnormal event detec-
tion problem. The AUC is obtained from making a decision at different
threshold values

sequence was divided into training and testing sets, first
160 frames (the data training set) were assumed to contain
just normal events. Moreover, we conducted two types of
experiments that considered each video sequence and each
scenario.

Multiple visual rhythms were extracted considering two
different types of sequences π1 and π2 in order to capture
more information. π1 = p(x, 1) → p(x, 2) → p(x, 3) →
· · · → p(x, H), π2 = p(1, y) → p(2, y) → p(3, y) →
· · · → p(W, y), where H = 240 and W = 320. The para-
meters x and y varied in intervals of 20 pixels such that we
obtained 12 and 16 visual rhythms forπ1 andπ2 respectively.

We observed that the abnormal event was contextually
defined by each one of them, which means that, for a partic-
ular visual rhythm, it is possible to have a different abnormal
event behavior than other visual rhythm. Therefore, we
decided to train one specific OC-SVM classifier for each
visual rhythm. AUC values were calculated by considering
a voting strategy, but it is not necessary to give an answer
to the classification problem; however, that answer could be
obtained by setting a certain threshold parameter so that it
establishes the minimum number of votes that a data point
needs to assign it as a normal or an abnormal event (see
Fig. 16).

In the preprocessing step, the size of the structuring ele-
ment used to remove the vertical lines was set to 11, since
higher values remove lines that can be a part of the person’s
trajectory, and smaller values are not very effective to remove
the vertical lines as we would expect. Cells bi j were assigned
to 8 × 8 pixels, and each block contains the histogram of
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Table 1 Experimental results for the abnormal event detection problem
on the UMN dataset

Scenario Video seq. AUC1 AUC2

1 Seq. 1 0.991 0.961

Seq. 2 0.947

2 Seq. 3 1.000 0.984

Seq. 4 1.000

Seq. 5 0.997

Seq. 6 1.000

Seq. 7 1.000

Seq. 8 0.999

3 Seq. 9 1.000 0.977

Seq. 10 0.938

Seq. 11 0.938

Average 0.983 0.974

AUC1 values were calculated for each video sequence independently,
and for AUC2 values experiments were carried for each scenario

oriented gradients with 9 orientations. The codebook C was
learned using the K-Means algorithm with 30 centroids—
each centroid represents a codeword. We used hard coding
and sum pooling strategies for producing the final descriptor
φ(τ).

Table 1 shows the AUC values and Table 2 reports the
running execution time for each video sequence, as well as
for the three scenarios. Although we used the second experi-
ment for comparison with the state-of-the-art because many
approaches tend to use similar protocols, our results are still
comparable to those of the literature (see Table 3) and they
also achieve real-time performance—28.246 fps (frames-
per-second) including all steps required by the method.

From the experiments, we observe that AUC values
decreased if we compare each kind of experiment. To
understand this phenomenon, we executed 150 times both
experiments for video sequences 1 and 2 and for scenario 1.
Once we plotted this data (Fig. 17), we see that weak classi-
fiers are learned for the first experiment since we have only
20 data points for training; on the other hand, for the sec-
ond experiment (with 40 data points) our classifiers are more
robust, but on average, they produce worse results than in the
previous case.

In an additional experiment,we evaluated the performance
of the classifier by considering only half of the training data
(80 frames per video) for the second scenario, once it has
more available samples. We observed that the achieved AUC
value was 0.985, which is very similar if all samples were
used. This test confirms that using more data does not always
produce better results.

Table 2 Total running time for the experiments on the UMN dataset

Scenario Video seq. # Frames Time1 Time2

1 Seq. 1 625 30.259 29.586

Seq. 2 828 35.811

2 Seq. 3 549 28.120 26.642

Seq. 4 685 30.569

Seq. 5 768 33.747

Seq. 6 579 29.001

Seq. 7 895 37.628

Seq. 8 667 29.872

3 Seq. 9 658 31.102 28.509

Seq. 10 677 28.044

Seq. 11 808 34.891

Average 703.545 31.731 28.246

Columns Time1 and Time2 show the frame rate (in frames per second)
obtained on average with our solution for each type of experiment. In
Time1, we excluded the training time that each experiment requires, but
Time2 includes it

Table 3 State-of-the-art results for abnormal event detection on the
UMN dataset

Approach AUC

Optical flow [53] 0.840

Wang et al. [93] 0.928

Chen et al. [18] 0.940

Li et al. [46] 0.952

Biswas and Babu [7] 0.954

Mehran et al. [53] 0.960

Proposed method 0.974

Thida et al. [83] 0.977

Cong et al. [19] 0.980

Nam et al. [58] 0.983

Zhang et al. [99] 0.986

Tang et al. [81] 0.989

Saligrama and Chen [73] 0.995

Hung et al. [38] 1.000

4.2 Weizmann dataset for human action classification

Description The action recognition dataset [9] (known as
the Weizmann dataset) contains video sequences showing
10 natural actions from 9 different actors. Table 4 shows
sample frames from all the following actions defined in the
dataset—running, walking, skipping, jumping-jack (jack),
jumping-forward on two legs (jump), jumping-in-place on
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Fig. 17 The heat map shows the average prediction of running 150 times for: a first experiment with videos sequences 1 and 2, and b the second
experiment with scenario 1. Dark blue indicates a normal event and light yellow an abnormal event

Table 4 Sample frames for different actions from Weizmann dataset
[9]

Action Sample video frames

Bend

Jack

Pjump

Walk

Wave1

Wave2

Jump

Side

Run

Skip

two legs (pjump), galloping-sideways (side), waving-one-
hand (wave1), and waving-two-hands (wave2). All videos
have a resolution of 180 × 144 color frames.

Evaluation methodology For comparative purposes, the
established protocol used is the leave-one-out (LOO) cross-
validation scheme.

Sequenceπ was defined as a set of horizontal cuts in inter-
vals of 5 pixels such that we obtained 36 visual rhythms per
video. We did not consider vertical visual rhythms because
some actions are more discriminative in the Y -coordinates,
and zigzag visual rhythm was not very discriminative to dif-
ferentiate actions among some classes. In the pattern filtering
step, we selected the best 5 patterns per video. Table 5 shows
some samples for the filtered patterns and the video signature.

From each of these patterns, we obtained cells bi j of
20 × 20 considering an overlap of 5 pixels and calculated
the histograms of oriented gradients at 8 orientations. For
the signatures, the oriented histograms were obtained from
21 × 21 cells, an overlap of 5 pixels, and 21 orientations.
Experimentally, the normalization parameters for HIK ker-
nel were setup to α = 0.75 and β = 0.7.

Our method obtained an accuracy of 74.4 % from the
visual rhythmpatterns,while the signature resulted in 67.7%.
The combination of both features, visual rhythm patterns and
signature, improved the accuracy to 78.89 %. The confusion
matrix (Fig. 18) shows that patterns for bend, jack, pjump,
wave1 and wave2 actions can be clearly distinguished, how-
ever, the weakness of the method resides in the walk, jump,
side, run and skip actions. They contain similar patterns,mak-
ing the differentiation among them more difficult.

A comparisonwith state-of-the-art algorithms is presented
in Table 6, where accuracy rates and adopted protocols for
training and testing are shown. We also report the execu-
tion time for each step of our method in Table 7. Note that
the heaviest process locates on constructing the oriented
histograms from the visual rhythm patterns and the video
signature.
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Table 5 Visual rhythm patterns obtained from Weizmann dataset

Action Patterns Signature

Bend

Jack

Pjump

Walk

Wave1

Wave2

Jump

Side

Run

Skip

Fig. 18 Confusion matrix for Weizmann dataset

4.3 KTH dataset for human action classification

DescriptionTheKTH dataset [76] contains 2391 videos, cat-
egorized into six classes (walking, jogging, running, boxing,
hand-waving, hand-clapping), where 25 actors wearing dif-
ferent clothing performed the actions in 4 scenarios with

Table 6 State-of-the-art results for human action classification on the
Weizmann dataset

Approach Accuracy (%) Protocol

Blackburn and Ribeiro [8] 61.00 LOOa

Niebles and Fei-Fei [61] 72.80 LOO

Antonucci et al. [5] 74.70 LOO

Proposed method 78.89 LOO

Yang et al. [96] 87.00 Own setup

Wang et al. [92] 93.30 LOO

Gorelick et al. [34] 97.54 LOO

Fawzy et al. [30] 97.79 LOO

De Rosa et al. [22] 98.61 LOO

Alcantara et al. [3] 98.90 –

Guo et al. [36] 100.00 LOO

Schindler et al. [74] 100.00 LOO

a Experiments reconducted by Almotairi [4]

Table 7 Execution times in seconds and frames per second (fps) for all
required steps on the Weizmann dataset

Steps Time (s) Time (fps)

Visual rhythm patterns 7.871 702.83

Signature 0.689 8,029.02

Features 11.809 468.43

Training 0.514 10,764.74

Testing 0.164 33,711.15

Table 8 Sample frames for different actions from KTH dataset [76]

Action Sample video frames

Boxing

Hand-
clapping

Hand-
waving

Walking

Running

Jogging

particular changes, making the dataset challenging due to
outdoor/indoor scenes, scaling variation, and very shiny/dark
videos. All video sequences have a spatial resolution of
160×120 pixels. Table 8 shows some frames extracted from
the performed actions in the KTH dataset.
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Table 9 Visual rhythm patterns obtained from KTH dataset

Action Patterns Signature

Boxing

Hand-
clapping

Hand-
waving

Walking

Running

Jogging

Evaluation methodology The evaluation protocol for KTH
consists in partitioning the videos with respect to the subjects
into training set (8 persons), validation set (8 persons), and
test set (9 persons). Similar to what occurs in the Weizmann
dataset, the walking, running and jogging actions have same
visual rhythm patterns. The walking action is sightly differ-
ent since it presents a well defined braided pattern, whereas
running and jogging do not, they are noisy (see Table 9).

The feature vector was obtained by calculating the ori-
ented histograms over the visual rhythm patterns and the
signature images. For the patterns, we used cells of 20×20, 5
overlapping pixels, and 20 orientations. The signatures were
processed with cells of 18 × 18 pixels, 5 overlapping pixels
between cells, and 15 orientations. Both HIK parameters are
equal to 0.3.

The patterns resulted in an accuracy of 83.33 %, while
its combination with the signature provided an accuracy of
87.96 %. The confusion matrix (Fig. 19) shows that the clas-
sification errors occur for running and jogging which was
expected because of the similar patterns for those actions. A
comparison with the state-of-the-art approaches is shown in
Table 10. The execution time of our method is presented in
Table 11.

4.4 SKIG dataset for gesture recognition

Description The Sheffield KInect Gesture (SKIG) dataset
[47] contains 2160 hand gesture videos captured with a
Kinect sensor (1080 RGB and 1080 depth videos). There
are the following 10 classes: circle, triangle, up-down, right-
left, wave, Z, cross, come here, turn-around, and pat. Videos
were recorded with 3 different backgrounds and 2 illumina-
tion conditions (Table 12).

Fig. 19 Confusion matrix for KTH dataset

Table 10 State-of-the-art results for human action classification on the
KTH dataset

Approach Accuracy (%) Protocol

Ke et al. [42] 62.96 Split

Schuldt et al. [76] 71.72 Split

Antonucci et al. [5] 72.50 LOO

Yang et al. [96] 75.71 Own setup

Dollar et al. [25] 81.16 LOO

De Rosa et al. [22] 83.20 LOO

Niebles et al. [62] 83.30 LOO

Raja et al. [69] 86.60 Split

Wong and Cipolla [94] 86.20 LOO

Proposed method 87.90 Split

Ji et al. [39] 90.20 Own setup

Fathi et al. [29] 90.50 Own setup

Alcantara et al. [3] 91.30 –

Laptev et al. [45] 91.80 Split

Schindler et al. [74] 92.70 5-Fold

Sun et al. [79] 94.00 LOO

Guo et al. [36] 98.50 LOO

Table 11 Execution times in seconds and frames per second (fps) for
all required steps on the KTH dataset

Steps Time (s) Time (fps)

Visual rhythm patterns 199.537 1452.27

Signature 69.146 4190.86

Features 65.546 4421.05

Training 4.778 60,655.36

Testing 2.754 105,233.32

Evaluation methodology The protocol for testing is defined
as a 3-fold cross-validation scheme.

Features are constructed by concatenating oriented his-
tograms for each pattern with cells of 18 × 18, 5 pixels
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Table 12 Sample frames for different actions from SKIG dataset [47]

Action Sample video frames

Circle

Triangle

Up-
down

Right-
left

Wave

Z

Cross

Come
here

Turn-
around

Pat

overlapping pixels, and 18 orientations. The normalization
parameters of the HIK kernel are equal to 0.35.

As seen in Table 13, the extracted patterns from the
visual rhythm are distinct for each class. The proposed
method achieves an accuracy of 97.96% even with the visual
similitude for the wave and right-left patterns, our oriented
histograms can describe the thickness on the right-left pat-
terns. The confusion matrix (Fig. 20) shows that almost all
classes are classified with a small number of false positives.

A comparison with state-of-the-art approaches is pre-
sented in Table 14 and the corresponding execution time in
Table 15.

5 Conclusions and future work

The visual rhythm provides information that can be fully
exploited to solve many problems in computer vision that
demand a trade-off between accuracy and speed. Detection
of abnormal events and classification of actions set are clear
examples of this fact, which through the proposed general
framework,we achieve state-of-the-art resultswith efficiency
in terms of time complexity.

Table 13 Visual rhythm patterns obtained from SKIG dataset

Action Patterns

Circle

Triangle

Up-
down

Right-
left

Wave

Z

Cross

Come-
here

Turn-
around

Pat

Fig. 20 Confusion matrix for SKIG dataset

Experiments conductedonpublic datasets not onlydemon-
strate our promising results, but also explain how the pro-
posed methodology addresses the problems and the reasons
of failure and success. The visual rhythm was showed to be
a powerful source of information that makes some problems
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Table 14 State-of-the-art results for human action classification on the
SKIG dataset

Approach Accuracy (%) Protocol

Liu and Shao [47] 88.7 3-Fold

Moreira et al. [56] 93.5 3-Fold

Yu et al. [97] 93.7 Own setup

Tung and Ngoc [84] 96.5 10-Fold

De Rosa et al. [22] 97.5 3-Fold

Nishida and Nakayama [63] 97.8 3-Fold

Proposed method 97.9 3-Fold

Molchanov et al. [55] 98.6 –

Table 15 Execution times in seconds and frames per second (fps) for
all required steps on the SKIG dataset

Steps Time (s) Time (fps)

Visual rhythm patterns 259.485 2416.37

Features 13.030 48,121.01

Training 6.672 93,973.80

Testing 2.211 283,600.34

easier to be solved since we reduce the issue of working with
video sequences to images.

Even though that our proposal for the abnormal event
detection works under the assumption of having global
events, the case of detecting local events still needs further
research in order to have an approach that uses the visual
rhythmas local features so thatwe can detect local anomalies.

The visual rhythm for the human action classification and
gesture recognition problems described relevant informa-
tion to discriminate among actions. However, some actions
produced similar patterns and these were difficult to differ-
entiate. To address this drawback, features from the video
signatureswere obtained to have a naive perception ofmotion
in the space, but different paths π must be explored so that
they could perform better when comparing patterns of dis-
tinct actions.

As directions for future work, we intend to explore new
methods and techniques of processing the visual rhythm in
other video analysis tasks. We conjecture that it is still possi-
ble to improve our results and even further investigate local
feature descriptors from the visual rhythm.
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